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One of the key applications for the emerging
quantum simulators is to emulate the ground
state of many-body systems, as it is of great
interest in various fields from condensed mat-
ter physics to material science. Tradition-
ally, in an analog sense, adiabatic evolution
has been proposed to slowly evolve a simple
Hamiltonian, initialized in its ground state, to
the Hamiltonian of interest such that the fi-
nal state becomes the desired ground state.
Recently, variational methods have also been
proposed and realized in quantum simulators
for emulating the ground state of many-body
systems. Here, we first provide a quantitative
comparison between the adiabatic and varia-
tional methods with respect to required quan-
tum resources on digital quantum simulators,
namely the depth of the circuit and the num-
ber of two-qubit quantum gates. Our results
show that the variational methods are less
demanding with respect to these resources.
However, they need to be hybridized with
a classical optimization which can converge
slowly. Therefore, as the second result of the
paper, we provide two different approaches
for speeding the convergence of the classical
optimizer by taking a good initial guess for
the parameters of the variational circuit. We
show that these approaches are applicable to a
wide range of Hamiltonian and provide signif-
icant improvement in the optimization proce-
dure.

1 Introduction

Simulating strongly correlated many-body systems at
and out of equilibrium is one of the key tasks in con-
densed matter physics. On classical computers, sim-
ulating a general quantum many-body system is in-
herently intractable, due to the exponential growth of
the Hilbert space with respect to the system size. The
only genuine approach for understanding a quantum
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system is to emulate its behavior on a quantum sim-
ulator, which is a quantum device with more control-
lability and versatility [13, 18, 28, 48]. Quantum sim-
ulators are now rapidly emerging in various physical
systems, including optical lattices [9, 26, 27, 30, 72],
Rydberg atoms [7], ion traps [33, 44, 45, 73, 89],
photonic circuits [2, 79], quantum dot arrays [34],
dopants in silicon [69, 70] and superconducting de-
vices [1, 3, 19, 33, 35, 41, 60, 66, 68, 84, 85, 87].
There are two different approaches for implementing
quantum simulation, namely analog and digital. In
the analog approach, the particles interact via some
Hamiltonian, possibly time-dependent, and the quan-
tum simulation is the continuous evolution of this
system [9, 26, 27, 66, 84, 85]. Although, reasonably
strong noise can be tolerated [24, 62, 86], the ana-
log quantum simulation is not universal, in the sense
that only limited types of unitary operations can be
implemented. In contrast, the digital quantum simu-
lation is implemented through quantum gates acting
on either one or two qubits in the system [3, 35, 68].
The main advantage of digital quantum simulation is
the capability of performing universal computation,
i.e. implementing arbitrary unitary operations [58].
The major drawback is the high fragility of such sim-
ulators to noise and their demand for complex error
correction schemes [76].

Many important phenomena in condensed mat-
ter physics, material science, and chemistry are ex-
plained from the ground state of a certain Hamil-
tonian. This includes electronic structures of mat-
ter [32], molecular formations [38], magnetization [20]
and quantum phase transitions [67]. There has been
a significant effort to simulate the ground state of
many-body systems on classical computers. Semi-
classical approaches, such as density functional the-
ory [39], are extensively used for characterizing the
electronic structures but fail to explain all quantum
effects. Quantum Monte Carlo [25] has been devel-
oped to go beyond such mean field approaches but
they also suffer from sign problem. Density matrix
renormalization group based methods [71], are per-
haps the most successful approach for characterizing
the ground state features of many-body systems, al-
though they are mostly limited to 1-dimensional sys-
tems. Machine learning [14, 15, 17, 29, 59, 80] has
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also been exploited to capture the ground state fea-
tures, but it is hard to scale them up for large systems.
The limitations of these approaches truly reveals the
limited power of classical simulations for unraveling
quantum features.

The emergence of quantum simulators has opened
new vistas for simulating many-body systems. To
date, there are three different methods for simulat-
ing the ground state of many-body systems on quan-
tum simulators: (i) imaginary time evolution [51, 56];
(ii) adiabatic evolution [10, 24]; and (iii) Variational
Quantum Eigensolver (VQE) [61]. The first two ap-
proaches are entirely performed on quantum simu-
lators, and thus their success heavily relies on the
quality of the quantum hardware. In particular, for
large systems, these approaches either demand deep
quantum circuits or long coherence times. How-
ever, the current Noisy Intermediate Scale Quantum
(NISQ) simulators are prone to various types of er-
ror in their initialization, readout, and gate opera-
tions, while their finite coherence time limits both
the system size and the depth of the circuit. To
overcome these obstacles, the VQE method, a hy-
brid combination of a quantum circuit and a classi-
cal optimizer, has been theoretically investigated [4,
52, 53, 55, 65, 82, 83, 88] and experimentally imple-
mented on various NISQ simulators, including pho-
tonic chips [61], ion traps [33, 44, 73], nuclear mag-
netic resonance systems [47], and superconducting
quantum devices [19, 41, 60]. In fact, the use of the
classical optimizer allows one to simplify the quan-
tum hardware into a shallow circuit. In other words,
the resources needed for simulating the ground state
is divided between quantum hardware and classical
optimizer, enabling the imperfect NISQ simulators to
emulate the ground state of many-body systems. Re-
cently, VQE has been generalized to simulate excited
states [37, 40], non-equilibrium dynamics [46], Gibbs
ensemble [81], and approximate solutions for combi-
natorial optimization problems [23] in many-body sys-
tems. Based on these, it is highly desirable to have a
quantitative analysis for the required resources, either
quantum or classical, in different approaches for sim-
ulating the ground state of many-body systems (see
e.g., Ref. [12] for resources in variational methods).

In this paper, we use a digital quantum simulator
to prepare the ground state of many-body Hamilto-
nians. We first compare the adiabatic evolution and
the VQE with respect to their demand of quantum
resources, namely the depth of the circuit or equiva-
lently the number of two-qubit entangling gates. Our
results quantitatively show that the VQE is far more
efficient in terms of quantum resources than the adi-
abatic scheme. We then focus on the classical op-
timization part of the VQE to speed up its conver-
gence and thus minimize the total time needed for
the performance of the VQE. We specifically develop
two different strategies for improving the initial guess

for the circuit parameters to start the optimization
at a closer point to the global minimum. Our analy-
sis shows that these strategies can significantly speed
up the convergence of the optimization, in particular,
for larger systems. The results are very general and
can be applied for a wide range of Hamiltonians even
without symmetries.

2 Model

Our goal is to prepare the ground state of a many-
body system on a Digital Quantum Simulator (DQS).
For simplicity, and without loss of generality, we con-
sider a 1-dimensional chain of N spin-1/2 particles
interacting via Heisenberg Hamiltonian

H = J

N−1∑
i=1

σi · σi+1, (1)

where J > 0 is the exchange coupling and σi =
(σix, σiy, σiz) is the vector of Pauli operators at site
i. The Heisenberg model is one of the key models
in both condensed matter and quantum information
technologies, and thus, has been extensively explored
in both ground state [54] and non-equilibrium dy-
namics [5, 11, 16, 22]. The Heisenberg Hamiltonian
has SU(2) symmetry and commutes with the total
spin in the α = x, y, z direction (i.e. [H,Sα] = 0
where Sα =

∑
i σ

i
α). In addition, the Hamiltonian

also commutes with the total spin operator S2
tot =

S2
x + S2

y + S2
z . This implies that every eigenstate of

the system has a specific total spin Stot with a fixed
Sz. In particular, for even N , assumed in this paper,
the ground state |GS〉 is a global singlet with both
Stot = 0 and Sz = 0. Furthermore, the Heisenberg
Hamiltonian supports mirror-inversion symmetry as
[H,M] = 0, where M is the mirror-inverting oper-
ator with M|i1, i2, · · · , iN 〉 = |iN , · · · , i2, i1〉. This
implies that the eigenstates of the system also follow
the same symmetry. It is worth emphasizing that our
methodology is easily generalized to other Hamiltoni-
ans, such as XXZ, which satisfy the conservation of Sz
and mirror-inversion symmetries. The ground state
of the Heisenberg Hamiltonian has a matrix product
state representation so that the results from quan-
tum simulators can be certified by classical simula-
tion. This allows us to enhance our confidence on
the performance of quantum simulators, and paves
the way for solving more complex problems which are
not classically simulable, such as the ground state of
2-dimensional systems.

3 Digital Quantum Simulator

A digital quantum simulator is a quantum machine
which manipulates the quantum state of its qubits
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through performing certain one- and two-qubit gate
operations. In order to be a universal quantum com-
puter, a digital quantum simulator needs to be capa-
ble of applying arbitrary single qubit unitary opera-
tions (which can be decomposed into rotations around
x, y and z axes) on all qubits together with at least
one two-qubit entangling gate between any pair of
particles [58]. In this paper, we consider all the single
qubit unitary operations to be a combination of the
following gates

P (θ) =
(

1 0
0 eiθ

)
, and Rα(θ) = ei

θ
2σα , with α = x, y, z,

(2)
where P (θ) is the phase gate and Rα(θ) is the rotation
around the α-axis. For a two-qubit entangling gate we
use controlled-x (also known as CNOT) gate which is
defined as

UCX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3)

By properly combining the above one- and two-qubit
gates one can make any unitary operation. Nonethe-
less, there is not a straightforward recipe to design
an efficient circuit to generate a specific target state.
In particular, designing protocols for preparing an
eigenstate of a Hamiltonian, on digital quantum sim-
ulators, has attracted significant attention in recent
years [3, 19, 33, 35, 41, 60, 68]. We pursue two ap-
proaches for generating the ground state of many-
body systems, namely adiabatic approach and VQE.
In both methods, which will de discussed in the fol-
lowing sections, the entangling part of the circuit is a
two-qubit unitary operator in the form of

N (θx, θy, θz) = ei(θxσx⊗σx+θyσy⊗σy+θzσz⊗σz) (4)

in which θx,y,z are three angles. One can actually
implement this unitary operator using a simple cir-
cuit shown in Fig. 1(a), in which three CNOT gates
are combined by five local rotations around y and z
axes [78]. Thanks to the symmetries of the Heisen-
berg Hamiltonian, throughout this paper, we consider
θx=θy=θz and thus we omit the dependence on three
independent parameters and simply use N (θ). Note
that by imposing the condition θx=θy=θz=θ, the op-
erator N (θ) not only conserves Sz, but also can create
a maximally entangled state when acts on |01〉 for the
choice of θ=π/8. Therefore, N (θ) is truly a two-qubit
entangling gate.

4 Adiabatic Evolution

Adiabatic theorem [10] is a well-known procedure for
the preparation of the ground state of a complex

Figure 1: (a) Circuit for realizing N (θx, θy, θz) as the en-
tangling gate between two qubits. (b) A single layer circuit
for realizing the first order Suzuki-Trotter approximation in
a system of length N = 4. (c) A single layer circuit for re-
alizing the second order Suzuki-Trotter approximation in a
system of length N = 4.

Hamiltonian starting from a simpler one. The sys-
tem is initially prepared in the ground state of a
simple Hamiltonian Had(0) which is then slowly var-
ied in time to a more complex desired Hamiltonian
Had(Tmax) after time t = Tmax. If the variation of
the Hamiltonian is slow enough, the quantum state
of the system always remains in the ground state of
the instant Hamiltonian Had(t) [57]. In this paper,
we are focused in the preparation of the ground state
of the Hamiltonian H in Eq. (1) using a digital quan-
tum simulator. In Ref. [24], in an analog approach,
a dimerized Heisenberg Hamiltonian is adiabatically
evolved to the uniform Hamiltonian H according to

Had(t) = Hodd + t

Tmax
Heven (5)

where 0 ≤ t ≤ Tmax and

Hodd = J
∑
odd i

σi·σi+1, and Heven = J
∑

even i

σi·σi+1.

(6)
At t = 0 the Hamiltonian is fully dimerized with only
odd couplings switched on and the ground state of the
system is simply |Ψ(0)〉 = |ψ−〉 ⊗ · · · ⊗ |ψ−〉, where
|ψ−〉 = (|01〉−|10〉)/

√
2. By choosing Tmax ∼ N2 the

condition of adiabatic theorem [57] is satisfied and at
t = Tmax, where Had(Tmax) = H, the quantum state
of the system becomes the ground state of the desired
Hamiltonian H [24].

To obtain the time evolution of the system, gov-
erned by Had(t), on a digital quantum simulator one
has to adopt two essential steps: (i) discretize the
time evolution into Mad steps over which the Hamil-
tonian remains fixed for a time interval of ∆t =
Tmax/Mad; and (ii) exploit the Suzuki-Trotter expan-
sion for evolving the system in each time step. In
each discretized time step k (with k going from 1

Accepted in Quantum 2020-09-13, click title to verify. Published under CC-BY 4.0. 3



to Mad) the Hamiltonian is considered to be fixed,
namely Had(k∆t). The time evolution operator at
time step k is thus written as

Uk(∆t) = e−iHad(k∆t)∆t = e−i(Hodd+ k∆t
Tmax

Heven)∆t.
(7)

Notice that, in order to emulate the true time evo-
lution of the Had(t) the discrete time steps have to
be small or equivalently the number of steps Mad

has to be large. This will be discussed in more de-
tails in the following. As mentioned above, the sec-
ond essential step for realizing the time evolution of a
many-body system on a digital quantum simulator is
to use Suzuki-Trotter expansion [31]. This will allow
us to simulate the dynamics only through one- and
two-qubit gate operations. We consider both the first
and the second order realization of the Suzuki-Trotter
expansion for the unitary operator Uk(∆t), given in
Eq. (7), at the time step k , namely

UST1
k (∆t) = e−iHeven

k∆t2
Tmax e−iHodd∆t,

UST2
k (∆t) = e−iHodd

∆t
2 e−iHeven

k∆t2
Tmax e−iHodd

∆t
2 . (8)

While the first order Suzuki-Trotter operator
UST1
k (∆t) approximates the discrete time evolution

Uk(∆t) by a quadratic error as Uk(∆t) ≈ UST1
k (∆t)+

O(∆t2), the second order Suzuki-Trotter operator
UST2
k (∆t) improves the approximation as Uk(∆t) ≈

UST2
k (∆t) +O(∆t3). In Figs. 1(b)-(c) we present the

quantum circuit for each time step of the first and the
second order Suzuki-Trotter evolution, respectively.

In order to speed up the adiabatic protocol, we first
determine the minimum time Tmax which is required
to prepare the system in its ground state for a given
threshold fidelity F = |〈Ψ(Tmax)|GS〉|2 between the
quantum state of the system |Ψ(Tmax)〉 and the tar-
get state |GS〉. By fixing the threshold fidelity F and
system size N , one can solve the Schrödinger equation
with time dependent Hamiltonian Had(t) and find the
minimum Tmax which results in a fidelity above the
threshold F . As shown in Ref. [24], the minimum
time needed scales as Tmax ∼ N2 where the pro-
portionality coefficient gets larger as the threshold fi-
delity increases. By specifying the minimum value of
Tmax one can then apply the above adiabatic proto-
col on a digital quantum simulator to find the min-
imum required Suzuki-Trotter steps M∗ad to achieve
the threshold fidelity F . In Figs. 2(a)-(b), we plot
M∗ad as a function of N for various threshold fidelities
when the first and the second order Suzuki-Trotter
circuits are used respectively. Notably, for a given
threshold fidelity, the number of layers in the the
second order Suzuki-Trotter approximation is almost
one order of magnitude smaller than the the first or-
der one. However, the number of gates in each layer
of the second order Suzuki-Trotter circuits are more
than the number of gates in their corresponding first
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Figure 2: The minimum circuit depth M∗
ad as a function of

N for various threshold fidelities using: (a) first order Suzuki-
Trotter approximation; and (b) Second order Suzuki-Trotter
procedure. The number of CNOT gates required for the
adiabatic evolution as a function of length N for required
for various threshold fidelities using: (c) first order Suzuki-
Trotter approximation; and (d) Second order Suzuki-Trotter
procedure.

order. Hence, it is more meaningful to compare the
number of gates needed for achieving the threshold
fidelity rather than the number of layers. In practice,
the two-qubit gates are far more challenging than the
one-qubit gates. Therefore, in Figs. 2(c)-(d) we plot
the number of CNOTS versus the system size N for
various threshold fidelities in both first and second
order Suzuki-Trotter circuits, respectively. Remark-
ably, the second order Suzuki-Trotter circuit shows
a clear superiority over the first order by demanding
significantly less number of CNOT gates for delivering
the same fidelity. This clearly shows that the second
order Suzuki-Trotter expansion is significantly more
resource efficient than the first order for realizing the
ground state of a many-body system on a digital quan-
tum simulator.

5 Variational Method

As shown in the previous section, the adiabatic ap-
proach for creating the ground state of many-body
systems demands deep circuits, i.e. large M∗ad, with
a considerable number of gates. The near-term quan-
tum simulators cannot provide such deep circuits due
to their imperfect noisy quantum gates, in particu-
lar the two-qubit gates. Therefore, it is worthy of
exploring the possibilities for the use of shallow cir-
cuits to simulate the ground state of many-body sys-
tems. Variational methods, such as variational quan-
tum eigensolver (VQE) algorithm, provide an alter-
native to adiabatic evolution which can be realized in
shallow circuits. In these methods, the post processed
measurement outcomes of a fairly shallow quantum
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circuit has to be fed into a classical optimizer itera-
tively to find the optimal circuit parameters for re-
alizing the ground state of a many-body system. In
the VQE algorithm, the quantum device prepares a
quantum state |ψ(~θ)〉, which is often called the ansatz,
with ~θ = (θ1, θ2, · · · , θL) being some controllable pa-
rameters in the circuit. Then one can measure the
average energy 〈H〉 = 〈ψ(~θ)|H|ψ(~θ)〉 for this quan-
tum state through appropriate measurements on the
qubits of the simulator. For the Heisenberg model
in Eq. (1), this reduces to measure correlation func-
tions between adjacent qubits and then add them up,
namely 〈H〉 =

∑N−1
i=1 〈ψ(~θ)|σi ·σi+1|ψ(~θ)〉. The mea-

sured average energy can be used as an input for a
classical optimizer to find its minimum by adaptively
adjusting the parameters ~θ on the simulator. The
minimization algorithm eventually finds the optimal
parameters ~θmin for which |ψ(~θmin)〉 is the ground
state with minimum average energy. Therefore, the
resources required for VQE is divided between the
quantum simulator and the classical optimizer. In
fact, in each Classical Optimization Iteration (COI) a
new experiment on the quantum simulator is needed,
making the VQE very time consuming. Thus, for the
success of the VQE, two steps are essential: (i) a quan-
tum circuit, as shallow as possible with minimal num-
ber of parameters; and (ii) an efficient classical opti-
mizer which can find the minimum of average energy
using least number of iterations.

Designing a quantum circuit, with minimal re-
sources, which is capable of realizing the ground state
of the Hamiltonian, here Heisenberg interaction, is a
key step in a VQE algorithm [36]. The output of the
circuit will be |ψ(~θ)〉 and by varying the parameters ~θ
one can explore the Hilbert space for finding the quan-
tum state with minimum average energy. Ideally, the
quantum circuit should be able to explore the whole
Hilbert space as ~θ vary. However, using symmetries
of the system one can simplify the circuit, i.e. de-
creasing the number of parameters in ~θ, and instead
of exploring the whole Hilbert space only focus on
the relevant part of the Hilbert space. For instance,
in the case of the Heisenberg Hamiltonian, consid-
ering the preservation of Sz and the mirror-inversion
symmetries can significantly reduce the number of pa-
rameters in ~θ which not only simplifies the quantum
circuit but also makes the convergence of the classical
optimization procedure faster. Considering these two
symmetries, we suggest to use N (θ), introduced in
Eq. (4), as the entangling gates of the circuit because
they do not create any extra excitation in the system.
These gates can be combined in a geometry similar
to the first order Suzuki-Trotter steps. In order to be
able to locally manipulate the phases of each qubit we
can also add phase gates to every qubit of the circuit
as shown in Fig. 3(a). The mirror-inversion symmetry
implies that for even (odd) N the angles of the phase
gates acting on site k and N−k+1 are equal with the

ST 1st order ST 2nd order V QE

N M∗ad #CNOT M∗ad #CNOT M∗V QE #CNOT
4 15 135 3 45 2 18
8 113 2373 18 594 3 63
10 247 6669 32 1344 3 81
16 770 34650 79 5451 5 225
20 1330 75810 132 11484 6 342

Table 1: A comparison for the circuit depth M∗ between the
adiabatic approach (with both first and second order Suzuki-
Trotter approximation) and the VQE algorithm for various
system sizes when the threshold fidelity is chosen to be F =
0.99.

opposite (the same) signs. Therefore, one can easily
show that the total number of parameters L in a VQE
circuit is

L =
(

3N
2 − 1

)
MV QE (9)

where, MV QE represents the number of layers. The
proposed circuit is capable to explore a part of Hilbert
space which includes the ground state. In principle,
one can chose the parameters such that this circuit
replicates the adiabatic circuit in Fig. 1(b)-(c), e.g. by
putting the angles of the phase gates to zero. How-
ever, in the adiabatic circuit every layer is close to
identity operator as it evolves the system only for
small time ∆t. This results in a deep circuit demand-
ing a considerable number of gates as shown in Fig. 2.
The idea behind the VQE is to exploit an optimiza-
tion algorithm to find the optimal set of parameters
for which a shallow circuit can implement the ground
state of a many-body system.

In order to finalize the VQE circuit, apart from de-
signing each layer, one has to also determine the num-
ber of layers MV QE . To find out the number of layers
needed to successfully produce the ground state, one
can use the fidelity between the quantum state of the
circuit and the real ground state at the end of opti-
mization procedure. The layers are increased one by
one so that the attainable fidelity exceeds a thresh-
old value. Note that fidelity is not an experimentally
friendly quantity as one needs to know the quantum
state. Therefore, in practice, instead of fidelity one
can focus on the convergence of optimized average
energy as the number of layers increases. For any sys-
tem size N and a chosen value for the layer number
MV QE we use 50L (for L being the number of param-
eters in ~θ) COI to see whether the obtained fidelity
(or average energy) reaches the threshold value. If the
optimization fails to reach the threshold fidelity then
we increase the layer numberMV QE by one unit until
the algorithm is successful.

In every circuit, we initially start with a random
guess for all the parameters in ~θ and use Adam algo-
rithm (with amsgrad applied) [43, 64], as an exten-
sion to stochastic gradient descent, to minimize our
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Figure 3: (a) The schematic picture of a single layer VQE circuit for a chain of length N = 4. (b) The qubit recursive algorithm
for creating a large circuit using the optimized parameters of two subsystem with smaller sizes, here half size. Apart from the
optimized gates, one entangling gate, shown in green, initialized by a random number is added between the two subsystems
for connecting them. If the larger system needs more layers than the smaller ones then the extra layers are initialized with the
parameters copied from the previous layer. (c) The layer recursive algorithm for making the circuit deeper step by step after
optimizing each layer. The optimized parameters of the previous layers are used as the initial guess for the new circuit when
a new layer is added. The parameters in the new layer are copied from the previous one.

cost function, namely the average energy of the sys-
tem. In Adam algorithm there are four different hyper
parameters which have to be set as the input of the
optimizer: (i) the learning rate α, which controls how
fast the parameters are going to be updated in each
iteration. (ii) β1, the exponential decay rate for the
first moment estimation; (iii) β2, the exponential de-
cay rate for the second-moment estimation; and (iv) a
very small number ε to prevent any division by zero.
We set the hyper parameters to be α = 0.01, β1 = 0.9,
β2 = 0.999 and ε = 10−8.

In order to be independent of the initial random
guess for the parameters ~θ we repeat the procedure
for several (∼ 100) different random samples. Only if
the fidelity of all of them exceeds the threshold after
50L iterations we call it a success. For our numerical
simulations, we use a cluster equipped with 192 cpu
cores and 512 GB memory. For the largest system size
considered here N = 20, the simulations take nearly
a week to finish 100 different random samples using
such hardware. Similar to the adiabatic approach,
the minimum number of layers which can successfully
generate the ground state within the threshold fidelity
is called M∗V QE . In Table. 1, we compare M∗V QE with
M∗ad in both first and second order Suzuki-Trotter
approximation and their corresponding CNOT gate
numbers for different system sizes when the thresh-
old fidelity is chosen to be F = 0.99. As it is clear
from the Table, the number of required layers and the
CNOT gate numbers in the VQE approach is signif-
icantly smaller than the adiabatic procedure. Even
for a system of size N = 20, a fairly shallow circuit
of M∗V QE = 6 layers suffices to produce the ground
state of the Heisenberg chain with the fidelity exceed-
ing F = 0.99. This remarkable observation shows the
superiority of the VQE over the adiabatic approach
with respect to the complexity of the circuit. The
simplification in quantum resources, i.e. the circuit,
is achieved thanks to the employment of a classical op-
timizer. Thus, in order to truly investigate the com-
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Figure 4: (a) The average energy as a function of COI in
random strategy (i.e. strategy 1) for various circuit layers in
a chain of length N = 20. As the circuit layer increases the
optimized average energy approaches the real ground state
energy. (b) The obtainable fidelity averaged over 100 dif-
ferent random samples as a function of COI for circuits of
different depth. (c) The average obtainable fidelity, and its
corresponding error bars, as a function of COI when the whole
VQE algorithm is repeated for 100 times.

plexity of the VQE approach, one has to consider the
required resources for the classical optimization pro-
cedure as well.

6 Strategies for accelerating the clas-
sical optimization

A conventional classical optimization procedure starts
with a random guess for ~θ and iteratively minimizes
the cost function, here the average energy. However,
the random initial guess can be very far from the real
minimum of the cost function. This may lead to two
unwanted outcomes: (i) many optimization iterations
are needed to get to the global minimum; and (ii) it
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Figure 5: (a) The average energy as a function of COI in
qubit recursive strategy (i.e. strategy 2) for various circuit
layers in a chain of length N = 20. As the circuit layer
increases the optimized average energy approaches the real
ground state energy. (b) The obtainable fidelity averaged
over 100 different random samples as a function of COI for
circuits of different depth. (c) The average obtainable fi-
delity, and its corresponding error bars, as a function of COI
when the whole VQE algorithm is repeated for 100 times.

is likely that the optimization gets trapped in a local
minimum and thus fails to reach the right answer.
Therefore, it is of high interest to see whether one
can start the optimization with a smart guess which
is relatively close to the real minimum of the cost
function. In the following, we first explain the
random initial guess in details, as the first strategy,
and then provide two different strategies with which
we can speed up the convergence and improve the
precision.

Strategy 1: random initialization. We first
provide a detailed introduction for the basic random
initialization strategy. A single circuit layer which is
used in this strategy is shown in Fig. 3(a). One has to
cascade several layers in order to achieve a high qual-
ity output. In a circuit of N qubits and MV QE layers
there are L number of parameters, which is given in
Eq. (9). In this strategy, the initial values of the pa-
rameters are sampled from a Gaussian distribution of
mean 0 and variance 1. In Fig. 4(a) we plot the av-
erage energy as a function of optimization iterations
for circuit of different layers. As the figure shows by
increasing the iterations the average energy decreases
steadily, however, if the number of layers are small
the final converged value is far from the ground state
energy. This shows that if the circuit is too shal-
low then it has no capacity to reach the ground state
merely by classical optimization. As the number of
layers increases the converged value is closer to the
real ground state energy. In the Fig. 4(b) we give the
corresponding obtainable fidelity averaged over 100
different random samples as a function of COI for cir-
cuits of different circuit layers MV QE . As the average

0 2 4 6 8
Iteration ×103

35

34

33

32

31

H

(a)

Ground Energy

0.0 2.5 5.0 7.5
Iteration ×103

0.0

0.5

1.0
(b)

= 0.95

0.0 2.5 5.0 7.5
Iteration ×103

0.0

0.5

1.0
(c)

= 0.95

1 layer
2 layers
3 layers
4 layers
5 layers
6 layers

Figure 6: (a) The average energy as a function of COI in
layer recursive strategy (i.e. strategy 3) for various circuit
layers in a chain of length N = 20. As the circuit layer
increases the optimized average energy approaches the real
ground state energy. (b) The obtainable fidelity averaged
over 100 different random samples as a function of COI for
circuits of different depth. (c) The average obtainable fi-
delity, and its corresponding error bars, as a function of COI
when the whole VQE algorithm is repeated for 100 times.

energy approaches the real ground state the fidelity
also goes to 1. In order to see the stability of the
protocol, we repeat the optimization for 100 different
random samples. In Fig. 4(c) we plot the average of
obtained fidelities together with the error bars, given
by the standard deviation, as a function of iterations
for a system of length N = 20 and a circuit with
MV QE = 6 layers. Even after ∼ 7500 iterations the
average fidelity does not reach 0.95 showing that the
random initial choice is not an efficient guess for the
optimizer.

Strategy 2: qubit recursive. The first strategy
to improve the classical optimization procedure is to
use the optimized value of a smaller system as the ini-
tial guess for the larger one. Here, we focus on the
case that we use the optimized parameters in a circuit
of size N/2 as the initial guess for a system of size N .
Let’s first consider the case that the number of layers
MV QE is identical for both the systems of size N/2
and N . In this case, we simply replicate the optimized
circuit of size N/2 twice to make a larger system of
size N . To have a complete circuit one has to add one
entangling gate N (θ) to each layer at the connection
between the two copies acting on odd couplings, as
shown in Fig. 3(b). Therefore, in total, one has to add
MV QE different entangling gates between the copies
which are initialized with random guesses. Apart from
these newly added gates, the rest of the one- and two-
qubit gates are all initialized with the optimized value
from the system of size N/2. The motivation behind
this choice is that, the reduced density matrix of the
subsystems from the ground state of the large sys-
tem has large overlap with the ground state of the
local system. Thus, using this strategy, one expects
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to converge to the real global minimum faster. In the
case that the number of layers in the small chain is less
than the layers required for the large system we simply
repeat the same parameters of the last layer for the
added layers. The convergence of the average energy
versus the COI is shown in Fig. 5(a) for different cir-
cuit layers. In Fig. 5(b) the corresponding obtainable
fidelity averaged over 100 different random samples
are depicted as a function of COI. Indeed, the results
show faster convergence for each choice of layers. In
order to see the overall performance, we repeat the op-
timization for 100 different initial random guesses in
a system of size N = 20 with MV QE = 6 layers. The
average obtained fidelities, with corresponding error
bars, are plotted in Fig. 5(c) as a function of itera-
tions. The performance shows clear improvement in
comparison with the random strategy as the average
fidelity exceeds the threshold fidelity of F = 0.95 only
after ∼ 3500 iterations.

Strategy 3: layer recursive. In this strategy,
we start a circuit with only one layer. Obviously this
circuit is too shallow to provide the ground state
for large systems. Nonetheless, one can perform
the optimization using random initial guess for
minimizing the average energy. The minimization
converges normally fairly quick, as the circuit is
shallow and the number of parameters are not that
large. However, the output state may have a small
fidelity with the real ground state as the circuit is
shallow. Hence, in the next step we add one more
layer, which means that the circuit becomes deeper
and more parameters exist to be optimized. The
initial values for the parameters of the newly added
layer are copied from the previous layer. At the end
of the optimization, one can add a new layer and
repeat this procedure. A schematic of the procedure
is shown in Fig. 3(c). In Fig. 6(a) we plot the average
energy versus the number of iterations for different
layers. As the figure shows while the energy converges
by increasing the iterations the final value reaches the
ground state energy only for circuits with adequate
depth. In order to see the overall performance, we
repeat the procedure 100 times and compute the final
fidelities. In Fig. 6(b), we illustrate the obtainable
fidelity averaged over 100 different random samples
as a function of COI. As evident from the figure,
this strategy shows faster convergence as contrasted
with the previous ones. In Fig. 6(c) we plot the
average fidelities, with the corresponding error bar,
as a function of COI in a circuit of size N = 20
and depth M = 6. As the figure shows the speed of
convergence is sensibly faster than the random initial
guess, discussed in the strategy 1, and the average
fidelity exceeds the threshold fidelity F = 0.95 only
after ∼ 2500 iterations.

In order to compare the three VQE strategies, in
Table 2, we report the average fidelities obtained in

1000 iter. 3000 iter. 6000 iter.
Random 0.648 ± 0.090 0.786 ± 0.098 0.849 ± 0.087

Qubit 0.810 ± 0.123 0.898 ± 0.084 0.923 ± 0.064
Layer 0.916 ± 0.049 0.939 ± 0.024 0.947 ± 0.023

Table 2: Comparing the obtainable fidelities between the
three different VQE strategies for given number of iterations
in a system of size N = 20.
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Figure 7: Simulating the ground state of a XYZ Hamiltonian
using the mirror symmetry rule. (a) The average energy as a
function of COI in random initialization strategy (i.e. strat-
egy 1) for various circuit layers in a chain of length N = 10.
As the circuit layer increases the optimized average energy
approaches the real ground state. (b) The average obtain-
able fidelity, and its corresponding error bars, as a function of
COI when the whole VQE algorithm is repeated for 100 times
in random initialization strategy. (c) The average energy as
a function of COI in layer recursive strategy (i.e. strategy
3) for a chain of N = 10. As the circuit layer increases the
optimized average energy approaches the real ground state
faster than in strategy 1. (d) The average obtainable fidelity,
and its corresponding error bars, as a function of COI when
the whole VQE algorithm is repeated for 100 times in layer
recursive strategy.

each strategy for three different iterations in a system
of sizeN = 16 and a circuit ofM = 6 layers. The data
clearly shows significant improvement of both qubit
and layer recursive strategies over the random one, in
particular, when the number of iterations are smaller.
Interestingly, the layer recursive strategy also shows
modest superiority over the qubit recursive strategy.
This means that optimizing the system layer by layer
and use their optimized data as the initial guess for
building a deeper circuit significantly enhances the
convergence of the classical optimization in a VQE
algorithm. This is the main result of our paper.

7 Generality of the protocol

In the previous sections, we have focused on the
Heisenberg Hamiltonian for which we have exploited
two major symmetries of the system, namely the con-
servation of Sz and the mirror symmetry. Here, we
generalize our analysis and show that our protocol
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Figure 8: Simulating the ground state for a spin chain Kondo
Hamiltonian. (a) The average energy as a function of COI
in random initialization strategy (i.e. strategy 1) for various
circuit layers in a chain of length N = 10. As the circuit layer
increases the optimized average energy approaches the real
ground state energy. (b) The average obtainable fidelity, and
its corresponding error bars, as a function of COI when the
whole VQE algorithm is repeated for 100 times in random
initialization strategy. (c) The average energy as a function
of COI in layer recursive strategy (i.e. strategy 3) for various
circuit layers in a chain of length N = 10. As the circuit
layer increases the optimized average energy approaches the
real ground state energy faster than in the strategy 1. (d)
The average obtainable fidelity, and its corresponding error
bars, as a function of COI when the whole VQE algorithm is
repeated for 100 times in layer recursive strategy.

and the developed accelerated algorithms work well
for more general Hamiltonians where these symme-
tries are not applicable. As the first example, we con-
sider the general XYZ Hamiltonian

HXY Z =
N−1∑
i=1

Jxσ
i
xσ

i+1
x +Jyσiyσi+1

y +Jzσizσi+1
z , (10)

where Jα stands for the coupling in α direction.
Clearly this Hamiltonian does not commute with Sz
for general choices of Jα’s. Nonetheless, the XYZ
Hamiltonian still supports the mirror symmetry. To
perform our VQE analysis, we use the circuit in
Fig. 3(a) with the difference that θx, θy, and θz in N
(see Fig. 1(a)) are replaced by θα = Jαθ. Note that
by this choice, the number of parameters remains the
same as the case for the Heisenberg Hamiltonian.

In Fig. 7(a) we plot the average energy 〈H〉 as a
function of COI for a circuit of different depths in a
chain of length N = 10 using the strategy 1, namely
random initialization of parameters. Clearly, the aver-
age energy converges as the number of COI increases
and the converged value gets closer to the real ground
state energy as the circuit gets deeper. In Fig. 7(b),
we plot the fidelity for a circuit with 6 layers. By
increasing the COI, the fidelity increases above the
0.95 threshold, showing that the protocol still works
even in this more general case. To speedup the con-
vergence, in Fig. 7(c) we plot the average energy 〈H〉
as a function of COI employing the layer recursive
strategy which shows faster convergence in contrast

to the random strategy case. To evidence this more
clearly, in Fig. 7(d) we plot the fidelity as a function of
COI when the layer recursive strategy is exploited. As
evident from the figures, the layer recursive strategy
shows significant improvement over the random strat-
egy, which demonstrates that our protocols for speed-
ing up the convergence are still applicable in more
general Hamiltonians.

In the XYZ case, as the Hamiltonian supports the
mirror symmetry, we can still design the circuit using
this constraint, i.e. θi = −θN−i+1. To go beyond
this symmetry, we now consider the spin chain Kondo
Hamiltonian [6, 74, 75] as one of the key models in
impurity physics. The Hamiltonian can be written as

HKondo = J

(
J ′σ1 · σ2 +

N−1∑
i=2

σi · σi+1

)
, (11)

where the dimensionless parameter J ′ < 1 determines
the first qubit as the impurity. The Kondo Hamilto-
nian commutes with Sz but obviously does not have
mirror symmetry. In order to simulate the ground
state of this Hamiltonian using the VQE algorithm,
we again exploit the circuit of Fig. 3(a) with the dif-
ference that the coupling between the qubits 1 and 2 is
different and the local rotations do not follow the mir-
ror symmetry rule, i.e. θi = −θN−i+1. Due to this,
the number of parameters to be optimized increases.

In Fig. 8(a) we plot the average energy 〈H〉 as a
function of COI for a system length of N = 10 and
different circuit layers using the random initialization
strategy. As shown from the figure, increasing the
depth of the circuit one can fairly get closer to the
ground state energy of the system. To observe this
in more detail, in Fig. 8(b), we plot the fidelity as a
function of COI for the case of 4 layers. As evident,
in the absence of the mirror symmetry, the ground
state can still be simulated with high fidelity. We
now attempt to compare the above strategy with the
layer recursive one. In Fig. 8(c), we plot the average
energy 〈H〉 as a function of COI for different circuit
layers. As the figure shows, the convergence of the
average energy is clearly accelerated for equals circuit
depth. Finally, in Fig. 8(d) we plot the fidelity as a
function of COI for the case of 4 layers, showing that
the threshold fidelity of 0.95 is reached faster than the
random strategy case.

The results presented above, i.e. simulating the
ground state of the XYZ and Kondo Hamiltonian,
show that not only our VQE algorithm works well
under more general Hamiltonians but also that the
layer recursive strategy can still be applied to accel-
erate the optimization procedure.
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Figure 9: Average obtainable fidelity, and its corresponding
error bars, as a function of COI for the XYZ Hamiltonian
in a chain of length N = 10. (a) Simulating the ground
state energy of the system using the random strategy in the
presence of mirror symmetry. (b) Same simulation in the
absence of the mirror symmetry rule. In panels (c) and (d),
we compute the ground state energy using the layer recursive
strategy in the presence and in the absence of the mirror
symmetry rule, respectively.

8 The role of mirror symmetry

As mentioned before, the presence of mirror symme-
try can simplify the circuit through reducing the num-
ber of parameters for the local rotations. This has
been implemented by the specific choice of rotation
angles, i.e. θi = −θN−i+1. The use of mirror sym-
metry in designing the circuit has clear advantages as
reducing the number of parameters implies the need of
less number of measurements for computing the gra-
dient in the optimization procedure. However, one
may argue that having a larger parameter space may
provide a shorter route to the global minimum. To in-
vestigate this, we compare the VQE algorithm for the
XYZ Hamiltonian in the presence and in the absence
of the mirror symmetry. In Fig. 9(a), we plot the fi-
delity as a function of COI when the mirror symmetry
is employed in our random strategy. While the fidelity
improves by increasing the iterations, the final fidelity
is not very high. In Fig. 9(b), we plot the same quan-
tity, still using the random strategy, when no mir-
ror symmetry is employed in the circuit and thus the
parameter space is larger. Surprisingly, the fidelity
shows significant improvement showing that the mir-
ror symmetry may make the convergence slower. To
see the performance of our layer recursive strategy, in
Fig. 9(c) and (d) we plot the same quantity as a func-
tion of iterations in the presence and in the absence
of mirror symmetry. Both figures show significant im-
provement in contrast to the case of random strategy.
However, the remarkable observation is that even in
the layer recursive strategy still the absence of mir-
ror symmetry in our circuit can reduce the number of
iterations.

It is, however, not easy to conclude that the mirror
symmetry is not useful. We have to emphasize that in
practical situations for obtaining the gradient of 〈H〉
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Figure 10: (a) The obtainable VQE fidelity as a function of
disorder strength h when the CNOT gates suffer a unitary
error, given in Eq. (12). (b) The obtainable VQE fidelity as
a function of dephasing rate γ∆t. In both cases the system
size is N = 10.

with respect to the parameters of the system demands
one measurement setup (with thousands of repeata-
tions) for every single parameter. Therefore, from an
experimental perspective, exploiting the mirror sym-
metry is beneficial. In addition, if the parameters
are too many, the classical optimization may indeed
fail. Based on this, although for smaller system sizes,
not using the mirror symmetry may demand less it-
erations, in larger systems it will be more useful to
implement such symmetry in the circuit.

9 Designing the VQE circuit
The key step for the success of the VQE algorithm
is to design a proper circuit such that explores the
right part of the Hilbert space which contains the
state of interest. In addition, due to practical con-
straints, e.g. imperfect gates and decoherence, the
designed circuit has to be as shallow as possible. In-
terestingly, the adiabatic circuits can always be con-
sidered as a special case of the VQE such that each
layer changes the quantum state minimally (as ∆t is
typically small). Motivated by this, one can always
adapt the adiabatic circuit, either first or second or-
der Suzuki-Trotter, and add local rotations to all the
qubits of each layer, see Fig. 3(a). By properly opti-
mizing the local rotations and the parameters of the
entangling gates, one can make the operation of each
layer significantly different from identity and thus re-
duce the number of layers. In other words, the adia-
batic circuit is an inefficient realization of the VQE,
with no local rotations and small action of the entan-
gling gates. Consequently, the operation of each layer
in adiabatic circuit is close to identity. Therefore, one
can conclude that the VQE always outperforms the
adiabatic evolution with respect to the circuit com-
plexity.

10 Decoherence
In the NISQ era, the quantum simulators are noisy
and their performance is affected by the presence of
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decoherence. There are several attempts to simulate
the effect of noise in existing digital quantum simula-
tors [8, 21, 41, 42, 46, 50, 63, 77]. Here, although in
a very simplistic and rather naive fashion, we model
some errors that can serve as a first glimpse into a
more realistic scenario.

We consider two types of errors: (i) unitary ones
due to imperfect gate pulses; and (ii) non-unitary er-
rors due to decoherence. Regarding the gate errors,
the operations of single qubit rotations are very pre-
cise. The performance of CNOT gates, however, may
not be as perfect as it expected due to imperfect pulses
which couples the two qubits. To see the quality of
such errors we consider a particular realization of the
CNOT gate through Ising type interaction of the two
qubits

ŨCX(φ) =
√
iĤ2e

iσz1σ
z
2 (π/4+φ)e−iσ

z
1π/4e−iσ

z
2π/4Ĥ2

(12)
where Ĥ2 = (σx2 +σz2)/

√
2 is the Hadamard gate, and

φ should ideally be zero but due to imperfect pulses in
the device is a random number uniformly distributed
over the interval [−h,+h] with zero average. To see
the impact of this error, we consider a VQE circuit for
a chain of length N = 10 withMV QE = 3 layers using
optimized parameters, obtained for the ideal case. In
reality each CNOT gate will have a random phase φ
in the circuit. We consider 100 different realization
of such random phases and average the final fidelity
for each value of h, as the noise strength. The aver-
age fidelity, using 100 different random realizations,
versus noise strength h is plotted in Fig. 10(a). As
the figures shows even for a relatively strong noise of
h = 0.1 the fidelity still remains above 0.8.

A more serious form of noise in NISQ simulators is
dephasing which appears as a non-unitary operation
and destroys the superposition of quantum states. De-
phasing cannot be digitalized and thus it is difficult to
incorporate it in our circuit picture. However, in order
to have an approximation of its effect, after each layer
of gates we evolve the system according to a Lindblad
master equation for a certain time ∆t which is equal
to the time needed to perform the gates in the pre-
vious layer. Thus the output of the system after M
layers will be

ρ(M) = eL∆t ◦ U (M)[ρ(M−1)] (13)

where, ρ(M) (ρ(M−1)) represents the density matrix
of the system at the output of the layer M (M −
1), U (M) represents the unitary operation of all the
gates in layerM and L represents the Lindblad master
equation ∂tρ = L(ρ) with

L(ρ) = γ

N∑
k=1

(ρ− σzkρσzk). (14)

The coefficient γ shows the strength of the decoher-
ence. In Fig. 10(b), we plot the fidelity as a func-
tion of γ∆t for a VQE circuit of length N = 10 and

depth MV QE = 3 with all the parameters already op-
timized. As the figure shows up to γ∆t = 0.0125 the
fidelity remains above 0.5 which reveals considerable
contribution of the ground state in the output of the
quantum simulator.

11 Conclusion

In this paper, we have investigated two different
strategies, namely the adiabatic evolution and the
VQE, for simulating the ground state of many-body
systems on digital quantum simulators. Our results
are multifold. First, for implementing the adiabatic
algorithm on a digital quantum simulator, our re-
sults show that the second order Suzuki-Trotter cir-
cuit demonstrates a clear superiority over the first or-
der by demanding significantly less number of CNOT
gates for delivering the same fidelity. Second, we
demonstrate that the VQE approach demands shal-
lower circuits with significantly less number of two-
qubit entangling gates in comparison with the adia-
batic evolution. This makes the VQE more suitable
for the NISQ simulators. However, the simplicity in
the VQE circuit comes with the price of the neces-
sity for a classical optimizer which may demand a
significant amount of iterations to succeed. Third, as
our main results, we have developed two approaches,
namely qubit and layer recursive methods, for acceler-
ating the convergence of the classical optimizer. Both
of these approaches, try to start the optimization pro-
cedure with an initial guess close to the global mini-
mum and thus reduce the total number of iterations
as well as the chance of getting trapped in local min-
imums. These strategies, indeed, significantly reduce
the COI required for the convergence of the VQE al-
gorithms.

The protocols for accelerating the optimization are
very general and work perfectly well for a wide range
of Hamiltonians. This includes the Hamiltonians
which do not preserve the number of excitations, such
as the XYZ, and the ones without the mirror inversion
symmetry, such as the single impurity Kondo model.
In addition, we have provided a detailed analysis for
exploiting symmetries in designing the VQE circuit
as well as the destructive role of decoherence. All the
codes can be found in [49].
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