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Crosstalk occurs in most quantum com-
puting systems with more than one qubit.
It can cause a variety of correlated and
nonlocal crosstalk errors that can be es-
pecially harmful to fault-tolerant quan-
tum error correction, which generally re-
lies on errors being local and relatively
predictable. Mitigating crosstalk errors
requires understanding, modeling, and de-
tecting them. In this paper, we introduce
a comprehensive framework for crosstalk
errors and a protocol for detecting and
localizing them. We give a rigorous def-
inition of crosstalk errors that captures
a wide range of disparate physical phe-
nomena that have been called “crosstalk”,
and a concrete model for crosstalk-free
quantum processors. Errors that violate
this model are crosstalk errors. Next,
we give an equivalent but purely oper-
ational (model-independent) definition of
crosstalk errors. Using this definition, we
construct a protocol for detecting a large
class of crosstalk errors in a multi-qubit
processor by finding conditional dependen-
cies between observed experimental prob-
abilities. It is highly efficient, in the sense
that the number of unique experiments re-
quired scales at most cubically, and very
often quadratically, with the number of
qubits. We demonstrate the protocol using
simulations of 2-qubit and 6-qubit proces-
sors.

1 Introduction

Quantum computing has grown from a theoretical
concept into a nascent technology. Cloud-accessible
quantum information processors (QIPs) with 20+
qubits exist today, and ones with around 100 qubits
may appear in the next few years [45]. Fundamen-
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tal operations — gates, state preparation and measure-
ments (SPAM) — are approaching the demanding er-
ror rates required by the theory of fault-tolerance on
a number of physical platforms, including supercon-
ducting qubits and trapped ions [29]. However, as ex-
perimentalists and engineers have begun to build sys-
tems of 10-20 qubits, it is becoming clear that emer-
gent failure modes may be an even bigger problem
than errors in elementary operations. The most obvi-
ous failure mode that emerges at scale is crosstalk.

“Crosstalk” describes a wide range of physical
phenomena that vary significantly across physical
platforms used for quantum computing. We will fo-
cus, instead, on the visible effects of crosstalk on the
quantum logical behavior of a physical system that is
used and treated like a quantum computer. We refer
to these hardware-agnostic effects as crosstalk errors
—deviations from the ideal behavior of quantum gates
and circuits, which can be formalized and captured in
an architecture-independent way. Crosstalk errors vi-
olate either of two key assumptions that go into any
well-behaved model of QIP dynamics: spatial local-
ity, and independence of operations. Gates and other
operations are supposed to act non-trivially only in a
specific “target” region of the QIP, and their action on
that region is supposed to be independent of the con-
text in which they are applied. These assumptions
enable tractable models for quantum computing, and
crosstalk errors violate them. Here, we give a rigor-
ous definition of crosstalk errors that captures the ef-
fects of crosstalk, while avoiding the need to engage
deeply with the physical phenomena themselves.

We begin in Sec. 2 and Sec. 3 by defining what it
means for a quantum processor to be “crosstalk-free”
at the quantum logic level. In Sec. 4, we construct
an explicit error model for Markovian crosstalk-free
behavior. Markovian dynamics that are not consis-
tent with that model constitute crosstalk errors. Then
in Sec. 5 we discuss the difficulty of detecting ar-
bitrary unknown crosstalk errors and define a class
of low-weight crosstalk errors that can be efficiently
detected. In Sec. 6 and Sec. 7, we take an opera-
tional approach and show how to detect low-weight
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crosstalk errors using only correlations between ex-
perimental variables — the settings and the outcomes
of experiments. The protocol we develop specifies a
set of at most O(n?), and often O(n?), experiments
for detecting crosstalk on an n-qubit QIP. The analy-
sis of the data from these experiments uses techniques
adapted from causal inference on probabilistic graph-
ical models [27, 52].

Much recent work has been published on de-
tecting, quantifying, and modeling crosstalk and
crosstalk errors in quantum computing devices [6, 42,
18, 44, 51, 39, 16, 23, 49, 50, 48, 17, 2, 19, 21, 11,
35]. Variants of Ramsey sequences have been used to
detect and quantify coherent coupling between qubits
[2]. This technique is very hardware-specific and
typically limited to detecting crosstalk in the form
of unwanted Hamiltonian couplings of known form.
Several groups have also demonstrated mitigation of
crosstalk in readout lines by detailed characteriza-
tion and compensation [23, 49, 11, 35] (see also
Supplementary Information in Refs. [6, 42, 16, 19,
21]). A very different approach, which is platform-
independent and model-free like the work we present
here, is the simultaneous randomized benchmark-
ing (SRB) technique for detecting and quantifying
crosstalk between pairs of qubits [18, 51]. The
crosstalk detection protocol we present here is simi-
lar in motivation to SRB, and is meant to be used as a
light-weight diagnostic for the presence of crosstalk.
It is specifically designed to be run efficiently on
many-qubit QIPs and identify the crosstalk struc-
ture (i.e., which qubits have crosstalk errors between
them), whereas we are not aware of an application
of SRB that reveals crosstalk structure in a many-
qubit QIP as efficiently. Moreover, our protocol is de-
signed to detect a wide range of crosstalk errors and is
more flexible in terms of the experiments that are per-
formed, allowing it to be tailored towards detection
of certain types of crosstalk errors. However, SRB
has at least one clear advantage over our protocol; it
measures the quantitative rate of certain crosstalk er-
rors, whereas our protocol is just designed to detect
and localize them, and has limited quantitative abil-
ity. Finally, we note that in a previous paper [50] we
gave a protocol for detecting context dependence, in-
cluding crosstalk, that can be seen as a precursor to
the protocol given here.

2 Crosstalk and crosstalk errors

Before we embark on defining things precisely, a
brief discussion of exactly what we are defining
is apropos. In particular, the distinction between
“crosstalk” and “crosstalk errors” needs further ex-
planation.

Crosstalk is an imprecise but widely used term that
appears primarily in electrical engineering and com-
munication theory, and generally refers to “unwanted
coupling between signal paths” [38]. In experimen-
tal quantum computing, the word has been adapted
to describe a range of physical phenomena in which
some subsystem of an experimental device — a qubit,
field, control line, resonator, photodetector, etc. — un-
intentionally affects another subsystem.

A specific quantum computing device will gener-
ally display more than one such effect. For example, a
transmon-based quantum processor might experience

e Residual coherent couplings between transmons
that should be uncoupled,

e Traditional electromagnetic (EM) crosstalk be-
tween microwave lines,

e Stray on-chip EM fields due to imperfect mi-
crowave hygiene,

e Coupling between readout resonators attached
to distinct qubits,

e 60Hz line noise that influences all the qubits.

Any and all of these phenomena could legitimately
be termed crosstalk. All of them are architecture-
specific; a trapped-ion processor would have its own
endemic crosstalk effects, some analogous to these
and some not.

Our goal is to understand and address crosstalk in
a platform-independent way that facilitates compar-
isons between quantum processors without reference
to the underlying physics. This is clearly inconsistent
with the established use of the term crosstalk to de-
scribe specific physics phenomena. There is no rea-
sonable direct comparison between an unwanted 2-
transmon coupling (measured in MHz) and the inten-
sity of a control laser spillover in a trapped-ion setup
(measured in W/m?). But we can legitimately com-
pare their effects at the quantum logic level of abstrac-
tion, where each device is required to behave like a
quantum computer, performing quantum logic gates
and quantum circuits.
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We introduce the new term “crosstalk errors” for
this purpose. It means any observable effect at the
quantum logic level (qubits, gates, quantum circuits,
and their associated probabilities) that stems uniquely
from some form of physical crosstalk. Some forms
of physical crosstalk may result in purely local er-
rors — e.g., independent bit flips — at the quantum
logic level; these are not crosstalk errors (despite their
source) because they could have been produced by
local noise. Similarly, if physical crosstalk exists but
has no effect at the quantum logic level (perhaps be-
cause of intentional mitigation) then we say that the
system is “crosstalk-free”.

3 Definition of crosstalk errors

Crosstalk errors are undesired dynamics that violate
either (or both) of two principles: locality and in-
dependence. In an ideal QIP, each qubit is com-
pletely isolated from the rest of the universe, and
evolves independently of it, except when an operation
is applied. Operations, including gates and measure-
ments, couple qubits to other systems, such as exter-
nal control fields and/or other qubits. This coupling
is supposed to be precise and limited in scope.

Unfortunately, real QIPs are not ideal. They expe-
rience all manner of noise and errors. Of course, not
all errors constitute crosstalk errors. Errors can cause
deviations from ideal behavior yet still respect local-
ity and independence. Unwanted dynamics that do
violate locality or independence constitute crosstalk
errors. We now make this precise by defining locality
and independence.

Locality of operations: A QIP has local operations if
and only if the physical implementation of any quan-
tum circuit does not create correlation between any
qubits, or disjoint subsets of qubits, unless that cir-
cuit contains multiqubit operations that intentionally
couple them.

If a processor obeys locality, then it makes sense
to talk about the action of operations on their target
qubits, and we can go further and define indepen-
dence. If locality is violated, then operations do not
necessarily have well-defined actions on their targets,
and independence may not be well-defined.

Independence of local operations: When an oper-
ation (gate, measurement, etc) appears in a quantum
circuit acting on target qubits ¢ at time ¢, the dynam-
ical evolution of ¢ at time ¢ does not depend on what
other operations (acting on disjoint qubits) appear in
the circuit at the same time ¢.

Defintion 1: A QIP’s behavior is crosstalk-free if
its behavior, when implementing arbitrary circuits,
satisfies locality and independence.

4 An explicit error model for crosstalk-
free processors

The definitions in the previous section are abstract.
They neither rely upon nor define a concrete model
for crosstalk errors or for crosstalk-free processors.
In this section, we specialize to Markovian proces-
sors and construct an explicit model for crosstalk-
free Markovian processors. By assuming Markovian-
ity we are able to rule out many conceivable failures
and define a model in which only finitely many things
can go wrong. By defining crosstalk-free within this
framework, we get a division of Markovian errors
into crosstalk-free or local, independent errors, and
everything else (i.e., crosstalk errors).

4.1 Defining crosstalk-free for Markovian QIPs

We place Markovianity in context within a hierarchy
of models for quantum hardware, based on increas-
ing levels of modularity (see Fig. 1): stable quantum
circuit, Markovian quantum circuit, and Markovian,
crosstalk-free quantum circuit. We define each layer
in this hierarchy in the following.

4.1.1 Stable QIPs

We call a QIP stable if every circuit’s outcome prob-
ability distribution (over n-bit strings) is independent
of external contexts [58]. Contexts on which these
probabilities might depend include the time at which
the circuit is run, the identity of the circuit that was
run before it, or even the phase of the moon. Sta-
bility is the weakest notion of modularity: a stable
QIP is modular only in the sense that its output dis-
tribution is independent of any external contexts, so
that each circuit run on the QIP forms a “module”.
If a QIP is not stable, then modeling or probing its
behavior becomes much more difficult. Importantly
for this work, protocols for detecting crosstalk will
likely be corrupted by this instability, and any results
will be unreliable or inconclusive. Fortunately, ex-
plicit stability tests for QIPs can often be applied di-
rectly to data from other characterization protocols
with only minimal modifications to the experiment
design. For instance, by repeating a characterization
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Figure 1: A hierarchy of modularity for QIPs. The dot-
ted lines indicate the modular components in each layer
of the hierarchy. (a) A quantum circuit is specified by a
schedule of quantum gates on target qubits. It is stable
if the associated measurement outcome distribution does
not depend on any external context. (b) The dynamics
of a stable QIP are Markovian if each layer in the cir-
cuit, including state preparation and measurement, can
be represented by a CPTP map that depends only on
the operations that comprise that layer, and not on any
external context. For example, the two shaded circuit
layers are identical and therefore must be represented by
the same CPTP map. (c) The dynamics are Markovian
and crosstalk-free if the gate operations are modular:
the CPTP map describing a given circuit layer can be
written as a tensor product of CPTP maps describing
each of the component gates (locality), and these com-
ponent maps do not depend on the other gates in the
layer (independence). For example, each appearance of
the shaded X, CNOT, or H gates must be represented
by the same CPTP maps.

protocol in at least two different contexts, the tech-
niques from Ref. [50] can verify whether the asso-
ciated data sets are statistically consistent with one
another. To check for the presence of drift, Ref. [46]
applies Fourier analysis methods to the timestamped
output data for each quantum circuit and checks if
the resulting spectra are consistent with a stable mea-
surement outcome distribution. Taken together, these
approaches can help establish trust that a device is
stable, or provide evidence that it is not.

4.1.2 Markovian QIPs

We need a stronger notion of modularity to predict
how a QIP will perform on new quantum circuits
that have not been run before. Circuits have a well-
defined notion of time, which usually defines a nat-
ural division into consecutive layers  of parallel op-
erations (gates, state preparations or measurements).
See Fig. 1 for an example circuit with 9 layers that we
notate Lo, ..., Lg. Operations within a single layer are
effectively simultaneous. A layer is uniquely defined
by the list of operations applied to each qubit during
that layer, where “operations” can include idles, mea-
surements, and initialiation/reset operations as well
as elementary gates. Figure 1(b) shows a circuit par-
titioned into layers.

We call the QIP Markovian if we can describe and
model each unique layer by a CPTP map acting on
all n qubits in the system. We use a broad defi-
nition of CPTP map here, in which the input and
output spaces need not be the same, and can in-
clude classical systems. Typically, an initialization
operation is represented by a density matrix, which
is a CPTP map from a trivial (1-dimensional) state
space to a d’-dimensional vector in quantum state
space (Hilbert-Schmidt space); here d = 2". El-
ementary gates are represented by “square” CPTP
maps from a quantum state space to itself. Terminat-
ing measurements are represented by POVMs, which
are CPTP maps that map a d?-dimensional quantum
state to a d-outcome classical distribution. Interme-
diate measurements are represented by quantum in-
struments [15], which are CPTP maps that map a
d?-dimensional quantum state to a d’-dimensional
quantum state and a d-dimensional classical distribu-
tion. Layers involving multiple kinds of operations
are represented by CPTP maps whose input and out-
put spaces correspond to the tensor product of the in-
put/output spaces of all the component operations.

There are many ways to violate the Markovian
condition. For example, a layer might appear multi-
ple times in the circuit, and act differently each time.
But if a QIP is Markovian, then the CPTP map rep-
resenting each layer depends only on the identity of
the layer, not on any external context (e.g., the time,
or which layers occurred previously). Hereafter, we
will only consider Markovian QIPs. The abstract def-
initions of locality and independence can presumably

!The word “cycle” (i.e., clock cycle) has been used for
the same concept. We use “layer” to describe a slice of
a circuit, and reserve “cycle” to describe what a specific
quantum processor actually does in a unit of time.
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be instantiated in a non-Markovian model, but since
no general model for non-Markovian processors is
known we leave this for future work.

We use L to denote a CPTP map describing a given
circuit layer. To specify which layer L describes, we
will either index its position in the circuit or specify
its component operations explicitly. For example, in
Fig. 1(b), layers 1 and 3 (highlighted) are identical;
each involves an X gate on qubit 0, a CNOT gate
from qubit 2 to qubit 1, and a Hadamard gate on qubit
3. So we denote the CPTP map for this layer by:

L, = L3 = L(Xo, CNOT. o, Hs). (1)

The probabilities of the measurement outcomes
for a quantum circuit are determined entirely by
the CPTP maps describing the circuit’s layers. For
a depth-N circuit that begins with an initialization
layer p, ends with a POVM measurement layer {M; },
and includes N —2 gate layers in the middle, the prob-
ability of the ith possible result is

Pr(i) = tr [MjLy_20---oLaoLy(p)]. (2)

Here i is an n-bit string denoting the measurement
result.

Markovianity ensures that the QIP’s behavior is
modular in time. It is the layers that are modular;
each layer’s effect on the QIP’s state must be well-
defined, only dependent on identity, and independent
of temporal or other contexts. This is a powerful
assumption. It makes modeling possible — we can
now predict the results of new circuits as long as they
are composed of layers that we have characterized al-
ready.

But efficient modeling of n-qubit circuits requires
a stronger modularity condition. Representing every
possible layer by an n-qubit CPTP map is neither
compact nor tractable. Exponentially many layers
need to be described, and each one requires O(16™)
real numbers. Even storing that model is impractical
for large n, and learning it from data becomes infea-
sible for as few as three qubits. Stronger modularity
assumptions, like the absence of crosstalk errors, en-
able efficient models like the one we present below.

Although general n-qubit Markovian models are
intractable to reconstruct, Markovianity (like sta-
bility) can be tested. Published protocols include
those in Refs. [12, 8, 59, 3, 32, 60]. Violations
of the Markovian model — generally termed non-
Markovianity — may result from a number of under-
lying causes, including time-dependence, persistent
bath memories, or even serial context dependence,

where the performance of a layer operation is in-
fluenced by the layers that immediately precede (or
even follow) it due to the finite bandwidth of control
pulses.

We expect that all QIPs are at least a little bit non-
Markovian, but we also expect that our Markovian
model for crosstalk errors will (like the Markovian
CPTP map model itself) fail gracefully, and continue
to work well for slightly non-Markovian QIPs. How-
ever, our experience is that crosstalk detection proto-
cols (including the one we develop in the second half
of the paper) can confuse violations of Markovianity
for crosstalk. So, in practice, it is important to test
for non-Markovian effects before (or simultaneously
with) testing for crosstalk.

4.1.3 Crosstalk-free Markovian QIPs

Whereas Markovianity allows modularity in time, a
processor without crosstalk is modular in space —
i.e., across qubits and regions. Layer operations can
reliably be composed by combining even smaller op-
erations, that act locally and independently. Earlier,
we said that a processor is crosstalk-free if it obeys
locality and independence. If it is also Markovian,
then the conditions for locality and independence can
be stated as explicit conditions on the CPTP maps de-
scribing circuit layers.

Each ideal circuit layer defines a locality (tensor
product) structure that partitions the qubits into dis-
joint and uncoupled target subsets. A Markovian QIP
satisfies locality if and only if the CPTP map describ-
ing each layer obeys that structure. (The proof is triv-
ial: for any bipartite system AB and operation G 45,
there exists an initial product state p4 ® pp such that
Gaplpa ® pp| is correlated — i.e., not a product state
—if and only if G4 is not a tensor product of opera-
tions).

Therefore, a Markovian model obeys locality if
and only if each layer can be represented by a ten-
sor product of local operations. For such a model,
independence is well-defined. A local, Markovian
QIP satisfies independence of operations if and only
if each local operation (gate, initialization, measure-
ment) is represented by the same local CPTP map in
every layer where it appears. (No proof is needed —
this is just a restatement of the definition of indepen-
dence above in terms of CPTP maps).

If a Markovian model satisfies both of these con-
ditions, then we say it is crosstalk-free. Its behavior
is consistent with the absence of physical crosstalk,
and its dynamics contain no crosstalk errors. Con-
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versely, any violation of these conditions constitutes
a crosstalk error.

If a QIP satisfies Condition 1 (locality), then each
layer’s CPTP map is a tensor product over the target
subsets implied by that layer. The CPTP map for the
layer described above, in the example of Markovian-
ity, would be

L(Xo,CNOT2,H3) =
G(Xp) ® G(CNOT12) ® G(Hs), (3)

where G, indexed by the gate operation and qubit tar-
get, represents a component CPTP map for that gate.

To satisfy Condition 2 (independence), a gate that
appears in multiple layers must act identically in each
of them. For example, in Fig. 1, layers 1, 3, 5, and
7 all contain a Hadamard gate acting on the fourth
qubit. So the CPTP map describing layer 5 then must
take the form

Ls = L(H3) = G(Ip) ® G(11) ® G(I) @ G(Hs), (4)

where G(Hg3) is the same local map that appeared
in the other layers (although this map does not have
to be the same as the same gate on another qubit,
e.g., G(Hy)).

Initialization and measurement operations must
obey the same structure. For the four-qubit QIP
shown in Fig. 1, this means that:

p=po®p1® p2® p3 (5)
Mi = MO,io & Mlﬂ'l ® M2,i2 & MB,’is? (6)

where M ;. is the POVM effect operator for outcome
¢j on qubit j. If the initial state is correlated, or the
output bit on one qubit depends on another qubit’s
state, then the QIP is not crosstalk-free.

4.2 Discussion of the crosstalk-free QIP model

In classical systems, crosstalk usually refers to a sig-
nal in one channel influencing the signal on another
channel. For example, inductive coupling between
adjacent copper telephone wires may cause a con-
versation on one line to be heard on another. Anal-
ogous effects occur in QIPs — laser beams have fi-
nite width and may illuminate neighboring ions, su-
perconducting transmission line resonators may ca-
pacitively couple to each other, or qubits themselves
may interact directly. These interactions can be mod-
eled by coupling Hamiltonians. So it is tempting
to say that “crosstalk” is nothing more than a cou-
pling Hamiltonian, and the complex abstraction that
we have introduced is unnecessary.

But this misses three key points. First, those
Hamiltonians appear in low-level device modeling,
and are specific to particular physical implementa-
tions. Second, like all low-level device Hamiltoni-
ans, they fluctuate in time and with the state of the
environment. Third, the systems that they couple are
often ancillary ones — control wires, ambient fields,
etc — that would not normally appear in an effective
description of the processor and its qubits. Defining,
detecting, and modeling crosstalk at this low level is
possible — and even desirable for device physicists —
but not portable across many devices.

We have presented a high-level, hardware-agnostic
effective model. This approach is common. It is
present when qubits are described as 2-dimensional
Hilbert spaces, when elementary gates are described
by CPTP maps, and when errors are modeled as de-
polarization or 7 processes. Our model, like all of
those techniques, trades the conceptual simplicity of
Hamiltonian dynamics on very large system-specific
Hilbert spaces for the practical tractability of an ef-
fective model on n qubits. The CPTP map formalism
strikes a good balance between rigorous, low-level
device models and cross-platform, high-level abstrac-
tion — but as a picture of the underlying physics, it
is coarse-grained and can sometimes be counterintu-
itive.

For example, consider two qubits in a magnetic
field along the Z axis whose strength varies slowly
in time, see Fig. 2. The field causes both qubit states
to rotate around the Z axis. Clearly, there is neither
coupling nor communication between the qubits. So,
if we include the magnetic field in our model, then it
seems that there should be no crosstalk between the
qubits. But if we only model the two qubits, and in-
tegrate out the field, then the CPTP map describing
the effective dynamics of the two qubits violates the
crosstalk free model — they experience correlated Z
errors, which violate locality. This may appear coun-
terintuitive, since the qubits are not coupled, and nei-
ther has any causal effect on the other. But it reflects
the fact that there is crosstalk in the system, between
each qubit and the magnetic field. Even when the
field is eliminated from the model, it still mediates
an effect that creates unexpected correlations between
the qubits. Crosstalk errors can occur at the coarse-
grained level even between two qubits that are not
directly coupled by the underlying physics.

The stable/Markovian/crosstalk-free hierarchy of
models given above is based on strict criteria that, as
stated, are either true or false. One might object that
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Figure 2: Two qubits influenced by the same fluctuating

—

magnetic field (B). (a) If the field's state is modeled
and tracked, then there is no crosstalk between the two
qubits the correlations between their states and errors
are fully explained by the field and its coupling to them.
(b) But if we do not track the field, focusing on the two
qubits only then there is crosstalk between the qubits,
in the form of correlated stochastic errors mediated by
the (untracked) magnetic field.

these conditions are practically useless — no processor
is perfectly Markovian or crosstalk-free, and could
not be proven so even if it were. While this objec-
tion is strictly speaking true, it dismisses the utility of
idealized models. No operation is perfectly unitary,
yet unitary dynamics is both well-defined and highly
useful as an ideal. In the same way, what matters is
not whether a QIP is perfectly crosstalk-free, but how
close it is to the ideal. The definitions given above lay
the groundwork for metrics that quantify that close-
ness, and thus for measuring how much crosstalk is
present.

Similarly, perfect Markovianity is not required. In
a real and slightly non-Markovian QIP, we can con-
fidently detect crosstalk as long as the violations of
Markovianity (or stability) are small compared to the
violations of the crosstalk-free conditions. An exper-
iment to detect crosstalk has a certain duration and a
certain statistical power. If it detects crosstalk, that
conclusion is reliable as long as the QIP’s instability
and non-Markovianity do not rise above the experi-
ment’s level of sensitivity over its duration.

Finally, note that the CPTP maps describing ex-
perimental operations are only unique up to a gauge
freedom [7, 47, 37]. In multiqubit QIPs, this gauge
freedom is non-local. Gauge transformations — which
simply change the description of the QIP, and have
no observable consequences — can change the tensor
product structure of operations, transforming a CPTP
map that respects a tensor product structure to one
that does not, and vice versa. This raises the question
of whether the “crosstalk-freeness” of a model is real
and experimentally testable, since it appears to be not
gauge-invariant.

Fortunately, there is a simple resolution: a stable,

Markovian QIP is crosstalk-free if there exists some
gauge in which Conditions 1-2 hold. This is directly
analogous to the definition of a perfectly error-free
gate set. An ideal target set of operations can be writ-
ten down in many gauges. In all but one of them, the
CPTP maps appear to be different from the original
“ideal” ones. But this is the nature of gauge theo-
ries. What matters are the observable probabilities
predicted from the theory. Those are identical in all
gauges. So if there exists any gauge in which a gate
set coincides with its ideal target, then no experiment
(with this gate set) will ever detect any error. Sim-
ilarly, if there exists any gauge in which a set of n-
qubit operations is crosstalk-free, then no experiment
(with this gate set) will detect evidence of crosstalk.
A processor is crosstalk-free if and only if it admits
some crosstalk-free model.

4.3 Examples

We now consider some examples of crosstalk phe-
nomena, and the crosstalk errors they induce. All the
examples in this section involve a QIP with just two
qubits, which we label A and B. The examples can be
generalized easily to more qubits.

1. Pulse spillover: Quantum gates should act
only on their target qubits, but control pulses may
spill over onto neighboring qubits and affect them.
This is the most widely discussed form of crosstalk,
e.g., [57, 44, 43, 10, 34]. For example, consider two
qubits that experience no errors when both are idle.
But whenever an X gate is applied to qubit A, the
control field spills over onto qubit B and induces a
small X rotation. Each layer still respects the tensor
product structure of the two qubits, so locality is not
violated. However, the effect of the idle operation on
qubit B depends on whether an idle or an X, gate was
applied to qubit A at the same time, so this scenario
violates independence.

2. Always-on Hamiltonian: Suppose that
when both qubits are idle, they experience an un-
wanted X X Hamiltonian. Thus, if A is in the |+)
(respectively, |—)) state, B undergoes a slow rota-
tion around the +X (respectively, —X) axis. Each
qubit is influenced by the state of the other. This
example violates locality, because the map describ-
ing the global idle is an entangling unitary opera-
tion, which is not a tensor product of two single-qubit
CPTP maps.

3.  Correlated stochastic errors from
common causes: Correlated dynamics caused by
a common influence can violate locality. For example

Accepted in { Yuantum 2020-09-07, click title to verify. Published under CC-BY 4.0. 7



(see Fig. 2), suppose both qubits interact with a com-
mon magnetic field along the quantization axis, and
that field undergoes white-noise fluctuations. This
produces correlated (weight-2) dephasing or ZZ er-
rors while the qubits are idle. This is not a tensor
product map, and violates locality. Note that a con-
stant field would only cause local unitary rotations,
which respect the tensor product structure and does
note result in crosstalk errors.

4. Detection crosstalk: Measurements of a
qubit’s state may be influenced by the state of neigh-
boring qubits. As an example, consider measuring
trapped-ion qubits A and B simultaneously using res-
onance fluorescence. If light scattered from qubit B
spills over onto the detector for qubit A, then the re-
sult of measuring qubit A will depend on the state
of qubit B. We refer to this type of crosstalk error
as detection (or readout) crosstalk, because it specif-
ically affects measurement results. This example vi-
olates locality — the POVM describing the measure-
ment does not respect the QIP’s tensor product struc-
ture, because the marginal effects corresponding to
“0” and “1” on qubit A act nontrivially on qubit B.

5. Correlated state preparation: Corre-
lated errors in the controls used to prepare the qubits
can create correlated, or even entangled, initial states.
This violates locality. For example, consider initial-
izing qubits A and B to the |0) state using a common
control field. Occasionally, some noise in the com-
mon control field may increase the state preparation
error for both qubits. For any single trial, the result-
ing state would be a product state, but when averaged
over many initializations the density matrix describ-
ing the initial state can no longer be factorized, so
locality is violated.

This list of examples is not exhaustive, but we hope
it helps to connect common notions of crosstalk to the
conditions that define the crosstalk-free model.

4.4 Useful terminology for crosstalk errors

Any violation of the crosstalk-free model results in
crosstalk errors, but there are many ways to violate
the model. Some of them are quite distinct from oth-
ers, both in the physical phenomena that typically
produce them, and in their consequences and behav-
ior. It is useful to identify the most common cat-
egories and give them names, if only to facilitate
answering the question “What kind of crosstalk do
you see?” We suggest some useful categories here,
based on our experience examining data and model-
ing noise.

First, we observe a fundamental difference be-
tween errors that violate locality, and those that only
violate independence. Any violation of locality can
be traced to at least one specific layer operation
that creates unexpected correlations. We call these
crosstalk errors absolute. In contrast, violations of
independence cannot be isolated to a specific layer
operation. Some local operation just behaves dif-
ferently in different layers, and no one layer defines
the correct behavior of that operation. We call these
crosstalk errors relative.

In addition to these terms, which are relatively rig-
orous, we have found the following less-precise cate-
gories to be useful. These categories are not intended
to be exhaustive, and may not prove over time to be
the most useful classification. For example, the “cor-
related state preparation” example given in the previ-
ous section does not fall into any of these categories
(it could define another category, but it is not clear
that it is sufficiently common or important). Other
violations of the crosstalk-free model can be invented
that fall into none of these three categories, or bridge
them. Furthermore, we do not yet have specific pro-
tocols for rigorously distinguishing these categories.
Nonetheless, we have found them useful, and so we
propose them to the research community.

Idle crosstalk is any violation of locality when all
qubits are idle. The unique layer in which no nontriv-
ial operations are performed corresponds to a CPTP
map that we call the global idle, and if the global idle
is not a tensor product of 1-qubit CPTP maps, then
we say there is idle crosstalk. Any error occurring
during the global idle that produces correlation be-
tween qubits (an error of weight 2 or higher) is an
idle crosstalk error. Examples 2 and 3 in the pre-
vious section are examples of idle crosstalk errors.
The same physical phenomena (always-on Hamilto-
nians, correlated decoherence, efc.) can also cause
high-weight errors during nontrivial gates, but their
effects are usually strongest and easiest to detect dur-
ing the global idle.

Operation crosstalk refers to violations of inde-
pendence caused by particular elementary operations.
A QIP displays operation crosstalk if the act of per-
forming an operation on qubits in region A changes
the dynamics of qubits in a disjoint region B. It
is not always possible to unambiguously ascribe a
crosstalk error to an operation (i.e., to define opera-
tion crosstalk orthogonally to idle crosstalk), but we
have found it useful to have terminology for crosstalk
errors that change as (non-idle) operations are ap-
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plied to a QIP. Operation crosstalk is a special case
of relative crosstalk, corresponding to cases where
the change in region B’s dynamics can confidently
be blamed on a particular operation.

Detection crosstalk refers to violations of local-
ity in the outcomes or results of measurement opera-
tions. If the result of a measurement on one qubit de-
pends on the pre-measurement state of another qubit,
that is detection crosstalk. We avoid the term “mea-
surement crosstalk” because it is ambiguous; it could
also refer to errors on spectator qubits that are caused
by measuring a target qubit in the middle of a circuit,
which would be an instance of operation crosstalk in-
stead of detection crosstalk. Example 4 in the previ-
ous section is an instance of detection crosstalk.

5 Crosstalk errors are too diverse to
detect without assumptions

Having given a definition of crosstalk errors, we
would like to be able to test a QIP to detect their
presence, and for further characterization purposes,
reveal the structure of crosstalk in the QIP (i.e., map
out which qubits are most impacted by the crosstalk
errors so as to focus the next level of detailed charac-
terization on this subset).

5.1 Detecting arbitrary crosstalk errors is hard

Comprehensive characterization of crosstalk errors
is extraordinarily demanding. Even just detecting
any possible crosstalk error is hard (it requires re-
sources that scale super-polynomially with the num-
ber of qubits). Let us demonstrate this. To begin,
we need to define and exclude “weak” errors that
can be arbitrarily hard to detect. We say that an ex-
periment E detects crosstalk in a stable, Markovian
model M if performing F on a QIP described by M
has a high probability of producing data that rules
out every crosstalk-free model with high confidence.
Crosstalk in a model M is “strong” if it can be de-
tected by an experiment using a small number of lay-
ers, and “weak” if all the experiments that detect it
require a large number of layers. (These concepts are
easy to state quantitatively, but it is tedious and not
necessary here).

Even detecting strong crosstalk errors is hard be-
cause crosstalk models M are combinatorially di-
verse. Each given one can be detected easily by a
tailored experiment, but no small set of experiments
can detect them all efficiently. To illustrate this, we

consider two examples, one for relative crosstalk and
one for absolute crosstalk.

To see that arbitrary relative crosstalk is hard to
detect, consider a QIP that allows any parallel com-
bination of either an X rotation or I (the identity)
on each qubit. Index these possible layers by n-bit
strings, where “0” and “1” on the kth bit indicate (re-
spectively) that I or X should be performed on the
kth qubit. Let s be a randomly selected n-bit string,
and suppose that every layer except the one indexed
by s acts perfectly, while applying the one indexed
by s depolarizes all qubits. While each layer respects
locality, this model has strong violation of indepen-
dence because on each qubit there is a gate that causes
an error if (and only if) the other n — 1 qubits are con-
trolled in a particular way.

This crosstalk error is hard to detect because it
only occurs if a particular layer (out of exponentially
many possible layers) is performed — but it constitutes
strong crosstalk because it is easy to demonstrate by
using that layer.

A second example illustrates an analogous prob-
lem for absolute crosstalk. Consider the “idle layer”,
where no gates are performed on the qubits. It should
act as the n-qubit identity channel. Again, let s be a
randomly selected n-bit string, and let the idle layer
act as the unitary that applies a phase —1 to |s) and
acts trivially on its complement. This unitary can eas-
ily correlate qubits, so it violates locality. It is strong,
because if s is known, then the correlation can be de-
tected using just a few very short circuits. But it is
also, of course, a Grover oracle for the unknown s.
Detecting that it is not the identity is known to be as
hard as finding s, which requires O( v/2") uses of the
layer [5].

This sort of crosstalk is hard to detect because it is
very weak on almost all input states. It only mani-
fests as a significant effect if the input state has high
overlap with |s). So there is a bit of a catch-22: this
crosstalk is strong because it could have a dramatic
impact on a particular input state, but hard to detect
because it has almost no effect on most input states.

Detecting arbitrary strong crosstalk errors is im-
possible to do efficiently, because it requires testing
an exponential number of configurations. Going fur-
ther, and characterizing those errors (even partially)
is strictly harder. Designing a protocol to detect
crosstalk errors and learn something about them re-
quires specifying something more about the kind of
errors to be detected, and accepting that other kinds
of errors may not be detected.

Accepted in { Yuantum 2020-09-07, click title to verify. Published under CC-BY 4.0. 9



5.2 Low-weight crosstalk errors

We expect characterizing crosstalk in QIPs to require
device-specific protocols, informed both by theoreti-
cal models of a specific QIP’s behavior and the spe-
cific tasks or applications that it will run. But generic
protocols are also important. They provide cross-
platform benchmarks, and may detect unexpected er-
rors that tailored protocols miss because of their de-
sign. In the next section, we present a candidate pro-
tocol of this type, whose purpose is to (1) detect a
significant (but not universal) class of crosstalk er-
rors, and (2) localize those errors, by characterizing
which qubits they affect (but not how they act on
those qubits). Since no efficient protocol can be com-
pletely generic, some sort of assumptions are neces-
sary to limit the diversity of crosstalk errors.

Our protocol targets low-weight crosstalk errors —
ones that result from interactions of just a few sub-
systems that are supposed to be independent. In a
processor that is crosstalk-free, distinct subsystems
never interact or develop correlations (note that by
“distinct” we mean “not intentionally” coupled — two
qubits undergoing a 2-qubit gate form a single sub-
system for this purpose). So if the weight of a
crosstalk error is (informally) defined as the number
of distinct subsystems that it couples together, then
all the errors in a crosstalk-free QIP have weight 1.

In contrast, the two examples in the previous sub-
section illustrated high-weight crosstalk errors. Each
example constructs an input/output function that de-
pends on all of its inputs. In the first example, that
function was the map from layer specifications (rep-
resented as n-bit strings) to CPTP maps. In the sec-
ond example, that function was the CPTP map for a
single layer, which applied a phase that depended in-
extricably on every qubit of the input state. Functions
or maps that depend on all their inputs in arbitrary
ways are (demonstrably) too diverse, allowing even
strong crosstalk to be hidden from efficient detection.

Defining “weight” precisely for an absolute
crosstalk error, which appears in a specific layer z,
is straightforward. That layer’s action is represented
by a CPTP map L(z). Its ideal error-free action can
be represented by a CPTP map Lo(x), and so the error
in that layer is represented by £(z) = Lo(z)~'L(z).
The layer’s ideal behavior defines a decomposition
into distinct subsystems 71 ® 72 & ... that should not
interact. An error map has weight & if it can be writ-
ten as a convex combination of maps that act trivially
(as the identity) on all but k of those subsystems, and
cannot be written this way for any smaller k.

Typical error maps are not exactly weight-k for
any finite k — e.g., a tensor product of local weak er-
ror channels has terms of every weight — but can be
approximated very well by low-weight channels, be-
cause the magnitude of the weight-k terms declines
exponentially with k£ above some value. Henceforth
we will take this for granted, and by “low-weight er-
ror map”, we will mean “error map that can be ap-
proximated to high precision by a sum of low-weight
terms.”

Quantifying the weight of relative crosstalk er-
rors is slightly more technical. To do so, we con-
sider a larger state space describing a register of n
qubits Q@ = & @; and a register of n classical digits
C = @ C;. Each C; specifies what operation is to be
performed on the corresponding ();. Every possible
layer is represented by a distinct state of C, and an
entire stable Markovian model can be represented by
a single operation M acting on C ® @, of the form

M= Y eeol@e ()

possible layer specs ©

This is simply a conditional operation, which applies
CPTP map L(x) to the qubits, conditional on the clas-
sical control register being in state x.

Now, as above, we can write M = Mp& x4 so that

Em =) la)zle ® E(x)o (8)

is the entire model’s error operation, and perform the
same decomposition into weight-k terms. Now the
ith subsystem is not just ¢); but C; ® ();, and a rel-
ative crosstalk error that causes (); to evolve differ-
ently conditional on another qubit’s control line C; is
represented by a weight-2 term in £ 2.

Many natural and expected forms of crosstalk have
low weight. Note that low weight does not mean that
a single qubit is not perturbed by many other qubits
or control lines — it just means that it is perturbed
independently by them. So low-weight crosstalk
encompasses many simultaneous few-body interac-
tions. Moreover, low-weight crosstalk errors are not
very diverse. Simple counting shows that there are

?We note that it is arguably more elegant to represent
error maps including Ea¢ by their logarithms or genera-
tors, and apply the same weight decomposition to them.
The logarithm of a tensor product & ® &2 is a sum of
weight-1 terms, log(&£1) ®1+1®log(E2). So the error gener-
ator of a crosstalk-free model is ezactly weight-1, whereas
the error map itself is only approximately weight-1. How-
ever, this representation is less common and requires more
machinery that seems unjustified for our purposes here.
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only O(n)" errors of weight at most k on 7 qubits, so
we can hope to detect any low-weight crosstalk error
without devoting exponential resources to the task.
We do not expect that all crosstalk errors will have
low weight, but we expect that high-weight errors
will stem directly from specific features of the QIP
(especially its control architecture, where classical
correlations can flourish and induce highly complex
dependencies), and are best addressed by tailored,
device-specific protocols. Because low-weight errors
are plausible in almost any architecture, a generic
protocol to detect and localize them is desirable.

6 An operational protocol for detect-
ing crosstalk errors

We now return to the abstract definitions of locality
and independence presented in Sec. 3 to build a pro-
tocol for detecting crosstalk errors, based on the fact
that violations of these conditions can be observed
directly from operational phenomena.

In Sec. 6.1 we present the model-free and opera-
tional definition of crosstalk-free QIPs that forms the
basis of the protocol. In Sec. 6.2-6.4 we develop the
ingredients of the protocol, including an efficient set
of experiments to be performed and tractable data
analysis based on statistical tools originally devel-
oped for inference on probabilistic graphical models.
In Sec. 6.5 we discuss in detail the assumptions be-
hind our protocol and its limitations, especially the
crosstalk errors it can and cannot detect. Finally, in
Sec. 6.6 we present some guidance on how to choose
the parameters that define our crosstalk detection pro-
tocol based on the physics of the QIP under test.

6.1 Model-free framework and definitions

Consider a QIP comprising n qubits. Let r be a
partition of the n qubits into M < n disjoint sub-
sets, r; C {0,..,n — 1}, which we call regions,
and let n(r;) be the number of qubits in region ;.
We assume no model, only that for each region r;
we (1) apply operations that ideally should only af-
fect qubits in r; and should not affect qubits in any
other region, and (2) make measurements whose re-
sults should only depend on the state of qubits in
r;. We will define crosstalk errors in terms of the
settings that denote the operations applied to a re-
gion, and the results of measurements on qubits in
a region. An experiment is defined by a tuple ) =
(SrosSris s Sra_ 15 Regy Reys ooy Rey, 1), Where S;,

Region Results
o oy —{x} 0| & 7= Ry
o) & A=
g | | | R,
) {r} i !

ra

Figure 3: lllustration of the type of circuits used in our
protocol. A 4-qubit QIP is partitioned into three regions,
labeled 7o, 71,72, and the goal is to detect crosstalk er-
rors between these regions. To do so, we perform cir-
cuits that only apply coupling operations between qubits
within a region, never between regions (across the red
lines in the figure). The random variable outcome from
measuring the qubits in region 7; is denoted R,,. In
this example R,, and R,, are 1-bit-valued while R,, is
2-bit-valued.

are the settings assigned to the qubits in region r;
and R, are the measurement results from the qubits
in region r;. We treat each member of this tuple as
a random variable drawn from some sample space,
Sy, € SRy, € Ry,. Itis clear that the results are
random variables; they are the results of measure-
ments on quantum systems, which are always random
variables. We also treat the settings as random vari-
ables, but for a different reason. In a large QIP, it is
not feasible to perform an exhaustive set of experi-
ments that enumerates all the possible experimental
settings. So, in practice, observed data constitute a
sample over all the possible settings. As we shall see,
a random sampling over settings often yields good
results. The random variable R, takes values that
are bit strings of length n(r;), obtained by measuring
all qubits in region r; in some basis. More compli-
cated scenarios, e.g., involving detection of leakage,
are possible but we restrict ourselves to the simplest
case here. Fig. 3 illustrates these definitions.

The settings S, are random variables that describe
(i) what state is prepared natively on the qubits in r;,
(i1) what gates are applied to the qubits in r;, and (iii)
what basis the qubits in 7; are measured in. So S,,
labels a quantum circuit for that region (defined here
as the state preparation, applied gates and measure-
ment basis choice for a region). We note that most
quantum computing architectures have only one qubit
state that is natively prepared (e.g., the ground state)
and only one measurement basis (e.g., the Z basis).
Therefore the only setting that can be varied is the
gates applied to the qubits in between state prepara-
tion and measurement. Hence in most quantum com-
puting architectures, the settings will be synonymous
with “gates applied to qubits in 7;”.
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Definition 2: We say that a region r; is free of
crosstalk errors to/from other regions if conditional
distributions over the measurement results on this re-
gion satisfy:

P(R"'i‘STNT) = P(R"'i‘sri)7 with

This means that the distribution of measurement re-
sults on region r; depends only on the settings for
r;; conditioned on those settings, it is independent of
all the other random variables in {2. Any violation of
these conditions is a witness to some kind of crosstalk
erTor.

It is preferable to define the crosstalk-free con-
dition in terms of conditional independence as op-
posed to marginal independence —i.e., P(R,,,S;;) =
P(R;,)P(S;;) — because it is more robust to con-
founding by hidden (or intentional) correlations in
settings, which can become an issue when detecting
crosstalk errors in large QIPs. Appendix A discusses
this further.

This model-free definition of crosstalk errors is
equivalent to our model-based definition of crosstalk
errors (Definition 1) stated in Sec. 3; see Appendix
B for proof. The two definitions capture the same
notions of locality and independence of quantum
operations — the model-based definition does so in
terms of conditions on models of quantum operations
(i.e., CPTP maps), while the model-free definition
does so in terms of conditions on operational random
variables that arise naturally in a QIP.

Example. Here is an example to illustrate the nota-
tion introduced above. We wish to detect crosstalk er-
rors induced by single qubit operations on a QIP with
3 qubits, partitioned into two regions 79 = {0} and
r1 = 79 = {1,2}. The following elementary single-
qubit operations can be performed: initialization in
|0); initialization in |+); idle gate (i.e., do nothing
for one clock cycle); X /o gate; Z; /o gate; and mea-
surement in the computational basis. Circuits can be
performed that comprise (1) parallel initialization of
all 3 qubits, (2) a sequence of k layers built from arbi-
trary single-qubit gates on each qubit in parallel, and
(3) measurement of all qubits in the computational
basis. Then the sample space of settings on region 7¢
— which includes only qubit 0 — is

Sy =S, X S
= {Prepyq), Prep|,y} x {Gr,Gx,Gz}"

where we have distinguished prep settings (S,) and
gate settings (S4). Only one measurement layer is

allowed and the only measurement basis accessible
is the computational basis, so there are no measure-
ment settings. The space of settings for region 7
is isomorphic to two copies of the settings for rg:
Sy, = Sy X Spy. The spaces of possible results for
each of the two regions are simply R,,, = {0,1} and
R,, = {0,1}2 In this example, each experiment is
labeled by the following tuple of nine random vari-
ables,

(STO ’ Srl ’ RTO? er )

= ((PO’ GO)? ((Pla Gl)? (P27 GQ))’ Ry, (Rlv R2))7
(10)

where P; € S),,G; € Sy and R; € {0, 1} label (re-
spectively) the preparation, sequence of gates, and
measurements results for qubit ¢.

The model-free definition given by Eq. (9)
leads directly to practical tests for crosstalk, be-
cause if we draw a circuit at random from the
distribution defined by P(S,,,Sr,,...,;Sr,,_,) and
perform it on the QIP, the result is a sample
from the joint probability distribution P(Q) =
P(Sy0,Srys s Sray1sRegs Reys s Ryyy ). These
samples can be used to statistically test the condi-
tions implied by Eq. (9). This is, in fact, a general
procedure for detecting crosstalk errors. There is al-
ways some partitioning of the QIP into regions, some
circuit family that can be executed, and some data
sample size that will detect any crosstalk error using
this method. However, as discussed in Sec. 5, de-
tecting any possible crosstalk error requires exponen-
tial resources, and thus is not a scalable goal. There-
fore, our aim is to use this model-independent def-
inition to formulate an efficient protocol that targets
low-weight crosstalk errors.

Developing this protocol requires three ingredi-
ents: (i) defining a set of region partitions for a
QIP, (ii) defining a set of experiments to perform
on the QIP, and (iii) defining an analysis technique
on the data produced by these experiments to detect
crosstalk using Definition 2. The following subsec-
tions tackle each of these ingredients.

6.2 Defining regions

Our crosstalk detection protocol looks for correla-
tions between regions of a QIP that should be uncou-
pled. This requires partitioning the QIP into disjoint
regions. No single partition into regions will suffice
— for example, we might need to test whether the
2-qubit region {1,2} has crosstalk with the 2-qubit
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region {3,4}, but also whether {2, 3} has crosstalk
with {4,5}. So we need multiple partitions, and for
each one, we will define a set of circuits that respect
it.

We cannot test every possible partition — the to-
tal number of ways to partition n qubits is B, the
nth Bell number, which scales super-exponentially in
n. However, testing all possible partitions is unnec-
essary. Crosstalk errors are associated with individ-
ual layers of elementary operations. In almost every
QIP architecture, each elementary operation targets
only 1 or 2 qubits. So, since we focus on low-weight
crosstalk errors, it is sufficient to consider partitions
into disjoint one- and two-qubit regions. These allow
us to ask (and detect) whether correlations emerge
between any two such regions, in circuits that never
couple them intentionally.

Let us first set some terminology. We refer to a re-
gion containing exactly k qubits as a k-region, and a
partition of the entire QIP into regions that each con-
tain k or fewer qubits as a k-partition. We say that
a region is allowed if it is possible to define circuits
that couple all the qubits within that region, without
involving any other qubits. So a 2-region is allowed
only if the QIP has a 2-qubit gate directly between
those qubits. We say that a region is in a given par-
tition if it is one of the regions making up the par-
tition — e.g., region {1, 2} is in the 6-qubit partition
{{1,2},{3,4},{5,6}}. Further, a tuple of regions is
in a given partition if each region in the tuple is in the
partition — e.g., the pair {1,2},{5,6} is also in the
above partition.

There is exactly one unique 1-partition of an n-
qubit QIP. So if we wish to detect crosstalk errors as-
sociated with single-qubit gates, this is the only par-
tition we need to use.

However, we must also detect crosstalk errors
associated with 2-qubit gates, which requires 2-
partitions. The number of possible 2-partitions scales
exponentially with n; the number of ways to parti-
tion n elements into distinct sets of size k£ (assuming

k divides n) is #(n, k) = W'(n/k),, and hence

#(n,2) =~ (\/n/e)", via the Stirling approximation.
This assumes that two-qubit operations are possible
between any two qubits in the QIP, however even in
the more realistic case of limited connectivity, the
number of 2-regions grows exponentially in n. So
it is impractical to even test all 2-partitions exhaus-
tively. Fortunately, since we are focused on detecting
low-weight crosstalk errors, it suffices to detect pair-
wise crosstalk between 2-regions (see Sec. 6.5 for a

discussion of the resulting limitations), and doing this
only requires that we guarantee that every pair of 2-
regions is in at least one 2-partition of the QIP that is
tested.

Since there are at most n(n — 1)/2 allowed 2-
regions, there are O(n*) pairs of 2-regions. There-
fore, it is easy to define a set of O(n?) 2-partitions
that contain every such pair (e.g., for each of the
O(n*) possible pairs of 2-regions, define a partition
by starting with those two 2-regions and then arbitrar-
ily partitioning the remaining qubits into 2-regions).
This requires only poly(n) resources, but is clearly
wasteful. If we are satisfied with a high probability
guarantee, a randomized partitioning strategy is more
efficient.

Theorem 1 Given an n-qubit QIP, let r;, 0 < i <
R = %, be a labeling of all 2-regions in the
QIP, and let P be a set of independent and uniformly
sampled random 2-partitions of the QIP. For any
0 < e < 1, the probability that any pair of distinct 2-
regions is in at least one 2-partition is bounded below

by (1 —€) if [P| > n?(2log(R) — log(e)).

Proof: We will follow the logic of the proof of Theo-
rem 3.1 in Ref. [36]. Let p be a lower bound on the
probability that any 2-partition of the QIP contains
a pair of 2-regions (we will see below this bound is
the same for any pair). Then, the probability that this
pair of 2-regions is not in |P| random 2-partitions is at
most (1—p)!Pl. By applying the union bound, we see
that the probability that any one of the R(R — 1)/2
possible pairs of 2-regions in the QIP is not in any
partition in P is at most @ (1—p)!Pl. We would
like this probability to be at most e,

R(Rz_ D pyPl <

oz )
= [Pz log(1 —p)
= |P|>p '(2log(R) — log(e)),

where we have used the fact that —p > log(1 — p).
It remains to compute the lower bound p in terms of
the system parameters. The probability that any pair
of 2-regions is in a 2-partition is given by the ratio
% since there are #(n — 4,2) possible par-
titions of the remaining n — 4 qubits once the four
qubits in the pair of 2-regions have been removed.
Computing this ratio, we get Wl(n*i’»)’ and hence a
lower bound on this probability is p > n% Substitut-
ing this into the above bound on |P| gives the desired
result. O
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Either of these approaches — the brute-force array
of O(n?) partitions, or the O(n? log(n)) randomized
strategy — defines a list of poly(n) partitions of the
QIP that will detect pairwise crosstalk between any
pair of 2-regions with high probability.

We note that in QIPs with local connectivity re-
strictions, e.g., a planar array of qubits where inten-
tional coupling operations are only possible between
nearest neighbors qubits, p~! = O(n), and therefore
the scaling of the randomized strategy is improved to
O(nlog(n)). Similarly, the scaling of the brute-force
partitioning improves to O(n?) under local connec-
tivity.

6.3 Lightweight experiment design

Given a partition of a QIP into regions, we must de-
fine a set of circuits to run on the QIP that consti-
tute the crosstalk detection experiment. We only con-
sider circuits that do not (intentionally) couple re-
gions, which means that for each region there is a
well-defined subcircuit comprising all operations ap-
plied to it. We also assume, for the sake of simplic-
ity, that the QIP has unique initialization and mea-
surement operations (in [0)*" and the {(0|, (1]|}®"
basis). Thus, the settings for a region correspond pre-
cisely to the gates in the subcircuit on that region.

Each possible circuit on the QIP is composed of
the parallel application of multiple subcircuits, one
on each region. The simplest approach is to choose
a collection of N subcircuits for each region, and
then perform all combinations of those subcircuits.
We refer to this collection of subcircuits as the “bag”
of circuits applied to a region. (We postpone the
question of what subcircuits to place in the bag to the
end of this subsection). We call this the exhaustive ex-
periment, in which each subcircuit on region r; gets
performed in an exhaustive variety of different con-
texts — i.e., in parallel with all N circuits on other
regions — and so violations of independence are easy
to detect in the data. Unfortunately, this experiment
defines a hypercube containing N/ _ distinct circuits,
which grows too rapidly with M (the number of re-
gions) to be feasible.

However, we observe that in the exhaustive experi-
ment, each subcircuit on every region 7; is performed
in exponentially many distinct contexts (defined by
the settings on the other regions r; # r;). This is
arduous and overkill; since crosstalk errors are not
likely to only be present in one or few of this expo-
nential number of contexts (this is discussed further
in Sec. 6.5), we can subsample from this exhaustive

experiment. So we will choose a sparse subset of the
experiments in the hypercube defining the exhaustive
experiment, with the goal of defining a small set of
experiments that allow low-weight crosstalk errors to
be detected.

6.3.1 An explicit construction

The sparse sampling of the hypercube should main-
tain two important properties of the exhaustive ex-
periment. First, each subcircuit in the bag for each
region r; must appear in multiple contexts (but not
exponentially many). Second, that set of contexts in
which each subcircuit gets performed must vary on
each of the other regions. These properties ensure
that — whatever subcircuits we select for each region’s
bag — the data will reveal whether the local results of
those subcircuits are significantly influenced by the
settings (choice of subcircuit) on any other region.

The construction we outline now ensures that these
properties are preserved, even with much fewer ex-
periments. It is defined by three adjustable integer
parameters:

e [ is the length or depth of all the subcircuits.
Subcircuits on different regions are applied in
parallel, so they must all be the same length, so
L must be chosen and fixed.

o Ny is the number of circuits in the bag for each
region. This number can be chosen to be a con-
stant (independent of n), as we argue below.

e N on 18 the number of random contexts in which
each subcircuit will be tested.

First, we choose a bag of N, depth-L subcircuits
for each of the M regions (see below for their con-
struction). Now, for each region m € [0... M — 1]
and each of the subcircuits " in that region’s bag,
we define N, different circuits that perform v in
different contexts, by choosing a subcircuit for each
of the other regions at random from the correspond-
ing bag, and performing all those subcircuits (includ-
ing v™) in parallel. This circuit selection procedure
is illustrated in Fig. 4.

This design ensures that (1) for each region, ap-
proximately N different subcircuits are studied in
detail, (2) each of these subcircuits is performed in
Ncon different contexts, and (3) those contexts vary
independently across all the other regions.

We have found that a small refinement improves
the protocol in practice. Often, the idle gate is less
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Figure 4: lllustration of the circuits performed in the
lightweight crosstalk error detection experiment design.
The QIP is partitioned into M non-overlapping regions,
and subcircuits of fixed length L are applied to each
region. This diagram represents one “epoch”, during
which the N5 subcircuits in the bag for region 0 (de-
noted v%) are iterated over. Each v' is repeated Neon
times on region 0, and in each instance (each line in
the diagram) the subcircuits on the other M — 1 regions
are randomly sampled (with replacement) from the sub-
circuits in the bag for that region. In the diagram ;"
denotes the subcircuit applied to region m in the jth
context when v is applied to region 0. The experi-
ment design prescribes M such epochs; in epoch m the
Neires subcircuits in the bag for region m are iterated
over while the subcircuits for all the other regions are
randomly sampled. It is assumed that all qubits are ini-
tialized in their ground states, and the measurements
after each of the prescribed circuits are performed si-
multaneously on all qubits in the computational basis.
Finally, each of the experiments is repeated N,¢, times
in order to collect statistics.

noisy than others, and the depth-L idle circuit is
the least noisy depth-L circuit and most sensitive to
crosstalk. We have found it useful to artificially boost
the probability of sampling all-idle circuits when the
random contexts are defined (nor when v™ is drawn).
To do this, we sample context subcircuits normally,
but replace each sample by the depth-L idle circuit
with probability p;q1e. This experiment design is also
described by pseudocode in Appendix C.

Two additional variations are useful in some cir-
cumstances. First, in certain regimes, we find that
crosstalk can be comprehensively detected without
testing all N, subcircuits in each region’s bag. Iter-
ating v over a randomly chosen subset is sufficient.
Second, it is sometimes easier to sample the subcir-
cuits ™ at random (with replacement) — just as the
contexts are sampled randomly — than to iterate over
them.

The experiment defined above can be seen as a
sparse filling of the hypercube defined by the exhaus-
tive experiment, as long as N, does not grow expo-
nentially with M. Ideally, it should not grow with M
at all. In practice, we find a constant Ny, (with re-
spect to M) to be sufficient to detect crosstalk errors.
The protocol also requires specifying both N, and
how to construct the subcircuits, which we discuss at
the end of this section. The total number of experi-
mental configurations to be performed for any fixed
length L is Nexp = M X Neire X Neon 4 which scales
linearly in the number of regions, M = O(n).

Each of the circuits prescribed for this protocol
should be repeated N,c, times to collect statistics.
Each repetition yields a single datum, comprising a
label for the circuit applied to each region (S,,) and
a bit string describing the measurement results from
each region (R,,). This is a single sample from the
distribution over settings and results P({2) that we
seek to test for correlations that signal crosstalk er-
TOrS.

As much as possible, the repetitions of the vari-
ous circuits should be distributed uniformly over the
entire time of the experiment — not performed all at
once in a single chunk. They may be rasterized (each
circuit is performed once, in succession, and this is
repeated Nyp, times), or randomized (all the circuit
repetitions are shuffled and performed in completely
random order). This minimizes the probability of
systematic false positives caused by drift. If behav-
ior of the device (e.g., error rates) is correlated with
time — i.e., it drifts — then if the settings are also corre-
lated with time, this will produce spurious evidence
of correlation between settings and results. Time is
an unobserved, or latent, variable; e.g., in the sim-
plest case an unobserved classical degree of freedom
(e.g., a two-state fluctuator) may cause drift by pro-
viding a fluctuating local potential. When a variable
that is a common cause for multiple other variables

9This is an approximately equal to and not a strict
equality because any accidentally duplicate circuits gen-
erated during the sampling of contexts are removed.
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18 not observed, it can create a fictitious conditional
dependence between these variables [24]. Random-
ization and rasterization reduce or destroy correla-
tions between the settings and time, reducing the risk
of conflation; see also related discussion about con-
flation in Sec. 6.4.2. Finally, we note that rasteriz-
ing also facilitates concurrent drift detection with the
same data [46].

We saw above that the number of distinct experi-
ments required to detect crosstalk errors for one par-
tition of the QIP is O(n). This is multiplied by the
number of partitions to get the overall cost of detect-
ing crosstalk errors for the QIP. As discussed above,
the number of required partitions for a QIP scales as
O(n?log(n)) in the worst case. Therefore the num-
ber of distinct experiments required for crosstalk de-
tection with our protocol scales as O(n? log(n)) (this
reduces to O(n?log(n)) if qubits are only coupled
locally).

6.3.2 Choosing the subcircuits for each region's
bag

Exactly what subcircuits to choose or define for each
region is a critical component. We have left it open
for now for a simple reason: there are many reason-
able, yet very different, possible choices. For the sake
of concreteness, we specify particular circuits here.
But we also expect that new, creative, and perhaps
objectively better choices can be usefully explored.

The subcircuits run on each region have two pur-
poses: to manifest crosstalk, and to detect crosstalk.
It may be that only certain circuits, when run on r;,
cause or amplify errors on r;. And it may also be that
certain circuits on r; are more sensitive to these ef-
fects. Our goal is to detect whatever crosstalk errors
exist. Therefore, in principle, the subcircuits chosen
for each region’s bag should be those that (1) cause
the greatest effects on other regions, and (2) are the
most sensitive to effects caused by other regions.

Given a specific physical model of crosstalk, it
is possible to design subcircuits with these proper-
ties. Or, given a parameterized model of the sorts of
crosstalk that might occur, it is possible to design a
rather larger set of subcircuits that collectively am-
plify all the effects appearing in that model. (This is
how the circuits for gate set tomography (GST) are
chosen).

An entirely different approach is to switch from
trying to detect all low-weight crosstalk errors to fo-
cusing on the crosstalk errors that impact a specific
application. This motivates choosing subcircuits that

are representative of the subroutines that appear in
specific algorithms, and would emphasize detection
of crosstalk errors that impact execution of those par-
ticular algorithms. There is no obvious general way
to doing this since most algorithms will couple many
qubits and not respect the region boundaries defined
for crosstalk detection. However, if there are certain
subcircuits, or circuit motifs, that occur repeatedly in
an algorithm or application, these can be used to de-
fine regions and subcircuits for crosstalk detection. It
should be noted though that this approach will not de-
tect crosstalk errors that might occur only when these
circuit motifs are all put together into an application
circuit. Detecting such errors requires an application-
or architecture-specific test.

But we have intentionally assumed no specific
model and no specific application. In the absence of
any other guidance, random circuits — like those used
in randomized benchmarking — are a sensible choice.
These have certain known drawbacks; they are less
sensitive than periodic circuits (e.g., those used in
GST or robust phase estimation) to some forms of
noise because they twirl it [14, 20, 7]. But random
circuits are both common and hard to fool — their sen-
sitivity to noise is not always high, but it is reliable.
Therefore, we propose that the bag for each region be
constructed by choosing N, subcircuits uniformly
at random from an ensemble of random sequences
of the processor’s elementary gates. The simulations
presented in Sec. 7 use this construction.

6.4 Analyzing data to detect crosstalk errors

The experiment described in Sec. 6.3 generates
data, which can be analyzed to detect and quantify
crosstalk errors in a QIP. In this section we explain
how to do this.

Running the circuits described above gener-
ates samples from a joint probability distribu-
tion of settings and results over the M regions,
P(Sr0,Sr1s,Sra 15 Regs Reps s Ry ). Testing
this joint distribution for violations of the condi-
tions in Eq. (9) enables detecting whether where are
crosstalk errors between any of the regions in the QIP.
But we can go further, by determining the structure of
the crosstalk errors — i.e., which pairs of regions ex-
perience crosstalk errors. This can be achieved using
techniques from causal inference that discover con-
ditional dependence relationships between the 2M
variables in this distribution. Specifically, we show
how to adapt techniques developed to learn causal
structure in Bayesian networks [41, 27], to detect the
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structure of crosstalk errors.

A Bayesian network is a directed graph where each
node represents a random variable and the edges rep-
resent joint probabilistic relationships between the
variables. It is a concise representation of the joint
distribution over the variables, with an edge indicat-
ing a conditional dependence between the variables
— an edge from node 7 to node j indicates that vari-
able j is dependent on variable ¢, when conditioned
on the other variables in the graph. This is notated
(1 £ j) | A, where A is a set representing all other
nodes/variables in the graph.

Identifying causal network structure from data is
an active and rapidly evolving area of research in the
field of causal inference, and there are many algo-
rithms available to do such causal network discovery
[55]. These algorithms fall into two broad classes.
The first, termed search-and-score methods, enumer-
ate or search through graph structures (each of which
corresponds to a particular form of the joint distribu-
tion over the variables) and evaluates the how well
each fits the data according to a score (which is often
its likelihood ). The second class of algorithms, re-
ferred to as constraint-based methods, operate by re-
constructing a graph that is consistent with the condi-
tional dependencies seen in the data by performing a
series of hypothesis tests. Search-and-score methods
are typically very computationally expensive, espe-
cially for datasets with a large number of variables, so
we focus on constraint-based algorithms in this work.

Any constraint-based algorithm for causal network
structure discovery can be split into two parts: (i) a
statistical test that tests for conditional independence
(CI) of some sets of random variables, given samples
and at a level of statistical significance, and (ii) a net-
work discovery algorithm that repeatedly applies this
CI test to determine the edges in the network. The
keys to developing a “good” network learning algo-
rithm are to formulate a CI test that is efficient and
powerful, and to formulate a network discovery al-
gorithm that is efficient, in the sense of needing to
applying as few CI tests as possible. Given the ma-
ture body of research in this field, we seek to ap-
ply a previously developed network discovery algo-

4In practice one uses an information criterion as op-
posed to just the likelihood in order to avoid overfitting
the data.

rithm to reveal the conditional dependence structure
between the random variables we have in the context
of crosstalk error detection. In the following subsec-
tions we present specific choices for the CI test and
network discovery algorithm.

We emphasize that although we are using tools tra-
ditionally used in causal inference, we are not making
claims about causality. Specifically, an edge between
nodes S,, and Rrj (or R, and RTJ.) for i # j does
not imply a direct causal relationship between the re-
gions 7; and 7, just that there is some crosstalk error
between these regions. This is an important caveat.
Even in the context of classical physics, it is well
known that statistical causal discovery algorithms are
only heuristics for revealing causal relationships (es-
pecially in the presence of latent, or unobserved, vari-
ables) [54, 27, 55]. In quantum theory, even defin-
ing causality and a definite causal order between ran-
dom variables is thorny [9, 61]. So we emphasize
that we are simply using causal inference tools to
efficiently assess conditional independence relation-
ships that form the basis of our model-free definition
of crosstalk errors.

6.4.1 Statistical tests for conditional indepen-
dence

There are many statistical tests for conditional inde-
pendence. In the protocol described in Sec. 6.3 the
random variables of interest represent experimental
settings and measurement outcomes. Both are drawn
from a finite set. Therefore, all random variables in a
data set resulting from such experiments will be cate-
gorical. For such variables, a well-motivated test for
conditional independence is the log-likelihood ratio
test, or G2 test [4].

To describe the test statistic associated with this
test, let us first describe the data. The dataset consists
of samples from K random variables X = {X; }1'
some of which represent experimental settings (S;.,)
and some of which represent measurement outcomes
(the R;,). We assume that each X}, takes values from
a finite set X}, of size |Xj|. Then the G? test statis-
tic that tests for the conditional dependence between
variable X; and X;, conditioned on the variables in
the set A C X is defined as [4]
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where n;;4(x;, x5, x4) is the frequency of the ran-
dom variables (X;,X;,X4) taking on the values
(@i, xj, z 4) in the dataset, and similarly for the other
quantities. Note that X 4 is a composite random vari-
able since one may want to condition on several vari-
ables, i.e., |A| > 1. Under the null hypothesis, where
(Xi L X;) | A, this test statistic is asymptotically
distributed as chi-squared with degrees of freedom
df = (1% — 1)(|1%X;] — 1)(|X4|). This test statis-
tic is a scaled version of the empirical estimate of the
conditional mutual information between variables X;
and X;, given A. Thus this quantity also has a conve-
nient information theoretic interpretation [4].
Finally, we note that in the simplest case where the
conditioning set is null, A = (), this statistical test is
often referred to as a homogeneity or independence
test (with df = (|X;] — 1)(|X;| — 1)) since it tests
whether the distribution of variable ¢ is the same (ho-
mogeneous) regardless of the value of the variable j.

6.4.2 Network discovery algorithms

The second part of a constraint-based causal network
structure learning algorithm applies a CI test on data
to reconstruct a network consistent with the data. The
PC algorithm by Spirtes and Glymour [53] is a popu-
lar network discovery algorithm that has been widely
implemented and tested. Appendix D has a detailed
description of the algorithm, but here we outline its
basic steps. The PC algorithm starts with a com-
plete undirected graph with edges between all nodes
(each of which represents a variable in the dataset).
Then each edge is tested for conditional indepen-
dence, given some conditioning set A comprising
neighbors of the nodes connected by the edge, for
conditioning sets of increasing size (starting from an
empty set). The resulting undirected graph is called
the skeleton, and the last step applies certain edge ori-
entation rules in order to estimate a directed acyclic
graph (DAG) representing the causal relations in the
data.

For crosstalk error detection, we will omit the last,
edge orientation, step of the PC algorithm and will fo-
cus on the graph skeleton. We do this because we are
not interested in identifying causal relationships (for

nia(zi,za)nja(zj,za)’

reasons mentioned at the beginning of the section)
and simply wish to detect conditional dependence re-
lationships that signal violation of the crosstalk-free
model.

In the worst case, the runtime of the PC algorithm
grows exponentially with the number of variables.
However, graph sparsity greatly reduces computa-
tional cost, and the algorithm has been demonstrated
on data with hundreds and thousands of variables
[30]. Furthermore, detecting crosstalk errors is sim-
pler than general causal network learning, because
we can enforce some sparsity by encoding physically
motivated information into the graph from the start.
For example, the edge between any two experimental
settings can be removed if they are randomized ac-
cording to the experiment design outlined in Sec. 6.3.

The PC algorithm performs multiple hypothesis
tests to determine conditional independence relation-
ships between random variables. In such multiple hy-
pothesis testing scenarios one typically applies a sig-
nificance adjustment, such as the Bonferroni correc-
tion, to control the number of false positives (type-I
errors). These corrections are not done in the stan-
dard PC algorithm, because controlling the family-
wise error rate is complicated by the structure of
the PC algorithm: one does not know how many
hypothesis tests will be performed a priori. How-
ever, we note that there have been recent attempts
to incorporate statistical methods for controlling the
false discovery rate by modifying the PC algorithm
[31, 56]. Implementing this more complex algorithm
may increase the reliability and statistical rigor of
the crosstalk error detection protocol. Alternatively,
a-significance weak control of the family-wise error
rate ? can be maintained by setting the input signifi-
cance of the standard algorithm to o/ K where K is
the number of edges in the initial graph.

*Weak control of the family-wise error rate with a sig-
nificance level of o means that the probability of rejecting
one or more null hypothesis is at most a when all the
null hypotheses are true. It is more common to demand
strong control of the family-wise error rate at significance
«a, meaning that the probability of rejecting one or more
true null hypothesis is at most « regardless of which of
the hypotheses are true.
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6.4.3 Quantifying crosstalk errors

Applying the PC algorithm to a dataset reporting the
experimental settings and measurement outcomes for
regions will reconstruct a graph whose edges can be
used to detect crosstalk errors at a specified signifi-
cance level. However, we can also use this analysis
to statistically quantify the amount of crosstalk error
across any edge that represents crosstalk.

Let the edge that represents crosstalk in a re-
constructed graph be between variables X and Y,
i.e., X — Y. Recall that X takes values in the set
{wo, ...z %1} and Y takes values in {yo, ...yy|—1}-
We compute the following total variation distance
(TVD) estimates

X—=Y
Yv|—1
B Z nxy(xiwz) _ niby(xj?’z)
B Yly|-1 Yv|—1 >

z2=yo 2=Yo ”:L‘y(xia 2) z=yo MNay (1:]'7 z)

for 0 < 4,5 < |X| — 1. This quantity is a measure
of the difference between the distribution of Y when
X = z; and when X = x;. We quantify the amount
of crosstalk error across the edge X — Y as the max-
imum over all 7, 7, since this represents the maximum
deviation in the distribution of Y when X is varied:

Cx_y = max déﬁY. (12)
Often, we also calculate the median over these TVDs
to understand how much of an outlier the maximum
is.

One has to be a little careful with this definition
when Y is a result random variable and X is a setting
random variable. To see this, suppose X = S; and
Y = Rs. Then, the most sensible thing is to compare
the distributions of Ry generated by the same setting
So, as Sy is varied. This requires that So take on a
value s when S; = 4 and So = j in the above defi-
nition. In this case, we calculate the above TVD for
every such common setting Sy for a pair S; = 4 and
So = j, and maximize over these. If no such com-
mon settings exist (which can happen for example, in
the experiment specified in Sec. 6.3 since it is a ran-
domized design), then we fail to compute a TVD for
that edge.

6.5 Discussion and limitations

The crosstalk error detection protocol developed in
the previous subsections is efficient in terms of ex-
periment number and has tractable post-processing

complexity for QIPs with hundreds of qubits [30].
However, we have made several assumptions and re-
strictions in order to obtain this efficiency. Our as-
sumptions stem from the fact that we are targeting
low-weight crosstalk errors, see Sec. 5. This greatly
restricts the set of realistic crosstalk errors, and we
concentrate on detecting these. Here we discuss the
implications of our assumptions, and the associated
limitations of the protocol.

Given a circuit layer in an n-qubit Markovian QIP
that has crosstalk errors (or a family of layers for rel-
ative crosstalk), the question of whether our protocol
will detect it or not is dictated by the following fac-
tors:

1. The partition of the QIP into regions, since the
protocol detects crosstalk errors across regions.

2. Whether the particular layer(s) that exhibit
the crosstalk error is (are) sampled in the
lightweight experiment design.

3. Whether the detection procedure, using a net-
work discovery algorithm and pairwise condi-
tional independence tests is sufficient to detect
the error.

4. Statistical power; do we collect enough samples
to determine the signal from noise?

In the following, we will discuss each of these in turn.

Factor 1: We partition a QIP into regions based on
the elementary operations in the device and this im-
plies a poly(n) number of necessary partitions. Such
a partitioning ignores regions of larger size that are
composed of k > 2 qubits. Operations on such re-
gions will be composed out of one- and two-qubit op-
erations, and therefore any crosstalk error would still
be generated by the elementary operations. The as-
sumption behind ignoring partitions with such “com-
posite” regions is that any crosstalk error present be-
tween such regions will also be present between some
set of regions composed of £ < 2 qubits.

More fundamentally, a crosstalk error that exists
between a region with £ — 1 qubits and another with
one qubit, and does not exist when the k£ — 1-qubit re-
gion is sub-partitioned in any way, must be a weight-
k crosstalk error. Given this, by choosing regions of
size at most 2 as suggested above, we are accepting
that we have no guarantee of detecting crosstalk er-
rors of weight 4 or higher.

Factor 2: Since the lightweight experiment de-
sign is based on random sampling, L, N, and
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Ncon dictate the probability that any particular layer
will be present in the crosstalk detection experiment.
There are an exponential number of possible layers —
if there are g elementary gates that can be applied
to each region in an M-region QIP, this results in
gM possible layers that can be executed in this QIP.
Therefore, in order to guarantee that any possible
layer is included in the experiment with high prob-
ability, L or N are required to scale exponentially
in M. Our lightweight experiment does not provide
this guarantee. However, such a guarantee of includ-
ing every possible layer should be unnecessary for
realistic quantum computing architectures, where if
crosstalk is present in one layer it is also present in
many others since the source of the crosstalk is one
or several of the operations within a layer, and these
are present in exponentially many layers. It is easy
to imagine adversarial crosstalk error models that do
not fit this bill — e.g., there are crosstalk errors on
qubit 1 if and only if there is an X, gate is applied
on all the other qubits. Our protocol would almost
certainly not detect this crosstalk error because of
the low probability of sampling this particular layer.
However, this is an adversarial error model that is
high-weight (since the operation on qubit 1 is con-
ditioned on the classical register recording the oper-
ation applied to all the other qubits). We sacrifice
detecting such crosstalk errors in order to derive an
efficient protocol.

Factor 3: Using the PC algorithm to identify
crosstalk structure in a QIP implies some subtle as-
sumptions about the crosstalk errors. To clarify these,
we first note that the PC algorithm is known to fail
to detect causal network structure when the proba-
bility distribution being sampled from is not faith-
ful to the underlying causal graph [54, 26, 55]. In
our context, faithfulness means that if there exists
crosstalk between regions r; and r;, then there ex-
ist at least some random variables in r; that exhibit
dependence to some random variables r;, vice versa,
or both. The classic example [28, 26] where the faith-
fulness assumption is violated and the PC algorithm
fails is with three random variables X, Xo, X3, that
are pairwise independent; e.g., if X;, X9, X3 are bi-
nary, and X3 = X; @ Xo. This means that X; 1L X;,
for any 4, 7, but (X; X X;) | X, (fori # j # k).
So each pair X; and X; are conditionally dependent,
but marginally independent. The PC algorithm’s first
step tests each pair of variables for marginal indepen-
dence [54]. This step would indicate that all pairs
are marginally independent, and therefore all edges

would be removed and the algorithm would termi-
nate. Therefore the PC algorithm evaluated on sam-
ples from this distribution (even in the infinite sam-
ple size limit) would yield a graph with three nodes
and no edges, despite the fact that these variables
are clearly dependent. An analogue of this example
in the context of crosstalk detection in QIPs is the
following: suppose one is trying to detect crosstalk
caused by single qubit gates in an n-qubit QIP. The
regions are composed of single qubits, and suppose
that the crosstalk errors are such that with the circuits
that are tested, one ends up preparing an entangled
state of the n qubits with any two-local marginal den-
sity matrix that is completely mixed (e.g., multiparty
data hiding states [22]). Then the results of measur-
ing any qubit will be uncorrelated with the results
from any other qubit (if all other measurement results
are ignored) and the PC algorithm would not indicate
any crosstalk between regions. The basic problem is
that the marginal/local states do not produce distribu-
tions over measurement outcomes that are faithful to
the underlying dependence (and correlation) between
local subsystems. Testing the dependence (or corre-
lation) between a large number of subsystems would
reveal strong dependence. But the PC algorithm or-
ders its tests by increasing number of variables (in-
creasing size of conditioning set) for efficiency, and
declares two variables to be independent as soon as
it fails to detect a dependence. Therefore, it would
never perform the necessary tests to reveal the depen-
dence, which is also the root cause of the failure in the
pairwise independent, three variable example given
above.

Fortunately, producing unfaithful distributions
over the random variables in the crosstalk error detec-
tion setting appears to be extremely artificial. Every
case where we have been able to manufacture such
distributions requires either (i) high-weight crosstalk
errors acting non-trivially on several regions, (ii) ex-
tremely large crosstalk errors (e.g., errors causing 7 -
rotations), or (iii) fine-tuned crosstalk that cancels or
adds up in precise ways. Moreover, we have not en-
countered this issue in any of the physically-relevant
crosstalk error models that we have simulated. There-
fore, we note it as an issue to be aware of when using
the PC algorithm, but something that does not seem
to practically affect the performance of the crosstalk
detection protocol developed here. Moreover, we
note that the PC algorithm is not the only option for
the graph discovery portion of the protocol; it is pos-
sible to apply other approaches to detect the condi-

Accepted in { Yuantum 2020-09-07, click title to verify. Published under CC-BY 4.0. 20



tional dependency relationships between the opera-
tional variables [55], although we have not explored
these.

Factor 4: 1f the experiment design and data anal-
ysis technique are sufficient to detect the faulty
layer, the statistical power of each of the hypothe-
sis tests underlying the network discovery algorithm
increases with Vyep, (i.e., the distribution of the test
statistic narrow with sample size). However, as men-
tioned above, since the overall analysis involves an a
priori unknown number of hypothesis tests, it is dif-
ficult to estimate the detection accuracy of the whole
procedure as a function of sample size. Hence, we
simply advice as large an N, as possible to mini-
mize statistical error.

6.6 Guidance for selecting protocol parameters

This protocol has several user-adjustable parameters.
Their values can be chosen, but not arbitrarily — they
control the reliability and power of the experiment.
Here, we provide some heuristic guidance on how to
choose them.

1. Niep is the number of repetitions of each exper-
iment. Increasing [V, reduces statistical noise,
at the cost of requiring more time to take data.
We suggest that this should be as large as possi-
ble, and no less than 1000.

2. L is the the length or depth of the circuits, and
two useful rules of thumb suggest what L should
be. The first is that longer circuits (all else being
equal) can exhibit increased crosstalk effects and
therefore permit more sensitive detection. How-
ever, once L becomes greater than 1/e, where
€ 1s the rate of stochastic errors or decoherence,
generic noise tends to swamp the effect sought.
Therefore, L should be as large as feasible, but
no greater than O(1/e).

3. Ncirc is the number of circuits in each region’s
bag, which in turn are randomly selected from
the population of all depth-L subcircuits on each
region. This parameter can be chosen to be a
constant, independent of M, of order 10 — 30.
At a minimum, it needs to be large enough to
guarantee that all possible elementary gates that
can be performed in a region appear in at least
one of the subcircuits chosen for that region.

4. Ncon is the number of random contexts in which
each subcircuit is intentionally performed. Em-
pirically, we find that it should be O(N¢ires) —

but the best value for this parameter depends on
the relative strength of crosstalk errors and lo-
cal errors, which we refer to as signal-to-noise
ratio. When crosstalk errors are comparable
to local errors (low signal-to-noise), we require
Neon ~ Neires/2. But if crosstalk errors domi-
nate (high signal-to-noise), we find that Ngop ~
Neires/4 is sufficient.

5. pidle is the probability of sampling the length L
idle circuit on any of the M — 1 regions when
constructing a context. The recommended value
of piqle depends on whether the idle operation
has a significantly lower local error rate than
other operations. If it does, then we recommend
choosing piqie ~ 1/M, so that there is probabil-
ity ~ (M —1)/M = 1 for large M that the idle
circuit is among the contexts provided. Other-
wise, pidle should be smaller — but even in this
case, we find that piqie > 0 is often advanta-
geous, although we do not have a good rule of
thumb for how the optimal value varies with the
idle error rate.

As mentioned, the guidance for these parameters is
based on empirical studies (except for the guidance
for L, which is fairly standard in quantum bench-
marking). It might be possible to develop more rigor-
ous estimates for these parameters based on an anal-
ysis of the statistical convergence of the PC algo-
rithm. However, the complexity of the PC algorithm
makes analysis of its convergence difficult [25, 56],
and hence we leave this as an avenue for potential
future work.

is fairly standard, the guidance for No, and pqie
is

7 Simulations

In this section we illustrate the crosstalk error detec-
tion and quantification procedure developed above by
simulation. The analysis of simulated data is per-
formed using crosstalk error detection routines in the
pyGSTi package [1] that implement the PC algorithm
as described above.

7.1 Two-qubit simulations

We first simulate several kinds of crosstalk error on
a two-qubit system, with qubits (which form the re-
gions in this case) labeled 0 and 1. The settings for
each qubit enumerate the subcircuits applied (which
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are just gate sequences in this case since each region
is composed of a single qubit), and the experiments
simulated correspond to the experiment design out-
lined in Sec. 6.3. In addition to the crosstalk error
models, we also simulate local errors through a lo-
cal depolarization channel (after every gate, includ-
ing the idle) with depolarization rate pjgca1. To illus-
trate the efficacy of the technique, in all the simu-
lations below, we operate in the low signal-to-noise
regime where the local error rates are comparable or
larger than the crosstalk error rates. This is where
we expect that it is most challenging to detect the
crosstalk errors.

The elementary one-qubit gates are assumed to be
X2y Yr/2, 1, where I is an idle or identity gate that
takes the same time as the other gates. The native
state preparation is always ideally the |0) state for
both qubits, and the measurements are in the compu-
tational basis. The gate sequences are determined ac-
cording to the experiment design outlined in Sec. 6.3.
In all of the simulated experiments, we follow the
guidance in Sec. 6.6 and use the suggested value
Ncon = Neires/2 (since the parameters chosen are
in the low signal-to-noise regime). The values of
Neires, Nrep, L and piqie vary and are specified below
for each case.

Finally, since the regions in this case are com-
posed of single qubits, in this section we simplify
notation and dispense with the additional r subscript
when denoting results and settings; i.e., S,, — S; and
RTi — Ri.

7.1.1 Operation crosstalk error 1

The first error model we simulate is what we refer
to as operation crosstalk error, and is also sometimes
termed classical, or control line, crosstalk in litera-
ture. An X, /o gate on qubit 0 induces a depolariza-
tion channel on qubit 1 with depolarization rate p, i.e.,

Xﬂ./z ®I—>Xﬂ/2®pp, (13)
where X7 5(p) = e "% pe'I% denotes a super-
operator representation of a X, /2 unitary rotation,
Z denotes an identity superoperator, and D,(p) =
(1 — p)p + pI denotes a depolarization channel with
depolarization probability p.

Fig. 5(a) shows the reconstructed crosstalk graph
for this error model. The error model parameters used
are: p = 1072, procal = 1072. The parameters defin-
ing the simulated experiment are L = 30, Nejres =
10, pigie = 0.1, Niep = 10%. The maximum number

of unique circuits i8S Nexp = M X Nejres X % =
100. Finally, the significance level of the hypothesis
tests used to test for conditional independence was
set to « = 0.01. The red edge between settings in
region 0 and results in region 1 in the graph signals
the crosstalk between the qubits.

7.1.2 Operation crosstalk error 2

The next error model we simulate is an example of
what is sometimes called coherent, or Hamiltonian,
crosstalk. We model an X /5 gate on qubit 0 as in-
ducing the desired rotation on qubit 0, but with an
additional small two-qubit Z ® Z Hamiltonian rota-
tion as well, i.e.,

Xpp® I — exp (—; EX®I+;Z®ZD.
(14)

Fig. 5(b) shows the reconstructed crosstalk graph
for this error model. The error model parameters
used are: € = 2 - 1072, plocal = 1072. The pa-
rameters defining the simulated experiment are L =
30, Neires = 10, piqte = 0, Nyep = 10° (therefore,
Nexp = 100), and the significance level of the hy-
pothesis tests was set to @ = 0.01. Note that the
coherent crosstalk error shows up at ~ €2 in the
measurement probabilities since we are using random
gate sequences, and this is why more samples are re-
quired to detect this crosstalk error.

The red edges in the crosstalk graph indicate
crosstalk errors between the qubits. In this case there
are conditional dependencies between settings and
results in different regions, and also between the re-
sults in different regions. There is no clear causal di-
rection for this type of crosstalk error (and one can
show using a model of this kind of crosstalk error
and calculations such as in Appendix B that condi-
tional dependencies between results are expected for
this kind of crosstalk error).

7.1.3 Detection crosstalk error

The final error model we simulate is a model of
crosstalk during the qubit measurement process. The
measurement effects, indexed by the outcome values,
are:

FEoo = |00) (00|
Eo1 = 101) (01
E1p = (1 = pm) [10) (10] + pm [11) (11|
Bir = (1~ pm) [11) (11] + pua 10} (10)
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Figure 5: Reconstructed graphs for various crosstalk error models in a systems of two qubits; see Sec. 7.1 for details
of error models. The regions in this case are composed on one qubit each. R; represents the measurement result on
qubit 7 and SEO) represents the setting on qubit ¢ (the superscript (0) indexes the settings for a region — in all our
examples there is only one setting per region since only the applied gate sequence is varied). The blue edges indicate
conditional dependencies between variables that are expected (i.e., both variables belong to the same region). The
red edges indicate conditional dependencies between variables in different regions, and these represent crosstalk. The
red edges are labeled with the maximum TVD (and median TVD in parentheses) for that conditional dependence

(see main text for definitions of these quantities).

In other words, if the measured value for the first
qubit is 1, there is a py, probability that the measured
value of the second qubit is flipped. This could, for
example, model detection crosstalk due to scattered
photons that flip the neighboring qubit state.

Fig. 5(c) shows the reconstructed crosstalk graph
for this error model. The error model parameters
used are: py, = 1072, plocal = 1072, The parame-
ters defining the simulated experiment are L = 10,
Neires = 20,pigte = 0, Nyep = 10° (therefore,
Nexp = 400), and the significance level of the hy-
pothesis tests was set to o = 0.01. Unlike the pre-
vious crosstalk error models, the effects of this error
do not potentially build up over a gate sequence, and
thus only impact the outcome probabilities weakly.
Moreover, its effect is reduced in the experiments
where the first qubit’s outcome is O with high proba-
bility. For these reasons, we found that a larger Ny¢p
and N5 are required to detect this crosstalk error.

The reconstructed graph in this case shows a red
edge between the results on the two qubits indicating
a conditional dependence that should not exist with-
out some form of crosstalk error.

7.1.4 Crosstalk error quantification

It is important to keep in mind that the weights on the
edges of a crosstalk graph are estimated maximum
TVDs of outcome distributions, and not necessarily
physical quantities like error rates. To illustrate this,
in Fig. 6 we return to the second operation crosstalk
error model in Sec. 7.1.2 and plot the weight of the
edge from Ry to R; and Sy to Ry as the amount of

crosstalk, i.e., the magnitude of the coherent Z ® Z
coupling term, is varied. The experiment sampling
and physical parameters are the same as in Sec. 7.1.2,
except that we use N¢ies = 5. We see that while
the max TVD increases (up to statistical variation)
with increasing e for one edge, it does not for the
other. Even if the max TVD should vary monoton-
ically with some crosstalk parameter when computed
over all random circuits, in practice it is a function of
the experiments that are sampled and therefore sensi-
tive to finite sampling variations in these experiments.

Therefore, the maximum TVD quantification
should not be thought of as a direct measure of the
physical degree of crosstalk. It should instead be used
as a way to identify the regions of a multiqubit de-
vice that require the most attention in terms of need-
ing crosstalk mitigation. In addition, examining the
experimental configuration that led to this maximum
TVD often lends insight into the source of crosstalk
erTors.

7.2 Six-qubit simulations

In this section we illustrate the scalability of the
crosstalk error detection protocol by simulations on a
6-qubit device. The hypothetical device has a ladder
layout, as shown in Fig. 7(a) and we are interested in
detecting the crosstalk errors caused by single qubit
gates. So we partition the QIP into six regions with
a single qubit in each. The settings for each qubit
enumerate the gate sequences applied, and the experi-
ments simulated correspond to the experiment design
outlined in Sec. 6.3.
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Figure 6: The weight of the edge from Ry to Ry and S
to Rq versus the the physical crosstalk error magnitude,
€, for the second operation crosstalk error model detailed
in Sec. 7.1.2.

The crosstalk error model is similar to the first op-
eration crosstalk error model detailed in Sec. 7.1.1;
all single qubit gates on any of the qubits in the bot-
tom line (qubits 3,4,5) result in a depolarizing chan-
nel with depolarization rate p on the vertical neigh-
boring qubit. In addition to these crosstalk errors
we also simulate local errors through a depolariza-
tion channel with depolarization rate pjoc, after ev-
ery gate and rate p;qe after every idle clock cycle.
All other details (elementary gate set, state prepara-
tion and measurement, and form of experimental gate
sequences used) are the same as in the two-qubit sim-
ulations.

Fig. 7(b) shows the reconstructed crosstalk graph
for this error model. The parameters used were: p =
10_27plocal = 10_27pidle =5 X 10_37Nrep = 10%
The simulated experiment used | = 20, Neires = 10
(resulting in Nexp = 300), piqte = 0.1, and the
significance level of the hypothesis tests was set to
a = 0.01.

The red edges in the crosstalk graph indicate
crosstalk between the qubits that are vertical neigh-
bors, as expected. We emphasize that this accurate
crosstalk detection is achieved with just 300 distinct
experiments, which highlights the benefits of using
a technique with experimental burden that scales es-
sentially linearly with the number of qubits.

8 Conclusions

We make two contributions in this paper. First, we
provide a universal and hardware-agnostic definition
of crosstalk errors in terms of a model for QIP dy-
namics based on representations of gates, state prepa-
rations and measurements on the device. Second, we

provide a model-free definition of crosstalk in terms
of operational variables (QIP settings and measure-
ment results), and develop a protocol for detecting
crosstalk errors based on it.

The protocol is based on testing conditional inde-
pendence relations between a potentially large num-
ber of random variables, and targets detection of low-
weight crosstalk errors, which are a major concern
for existing QIPs. We have tested the protocol and
associated data processing on simulated experiments
on QIPs with up to six qubits. The technique shows
promise for crosstalk error detection on medium-
scale QIPs since it requires a number of experiments
that scales as O(n?) in the worst-case, and scales as
O(n?) in realistic scenarios where qubit connectivity
is limited.

An avenue for future research is to explore the util-
ity of alternatives to the PC algorithm for discov-
ering the crosstalk structure in a QIP. The PC al-
gorithm is arguably the most established constraint-
based algorithm for causal network structure discov-
ery, but there is an active field of study develop-
ing new approaches to causal network structure dis-
covery, e.g., the new kernel-based learning methods
in Refs. [33, 40], and it would be interesting to
study whether any of these present any advantages
when post-processing lightweight experimental data
for crosstalk error detection.

Of course, detecting crosstalk is just the first step.
One would ideally like to also characterize crosstalk
errors once detected in order to learn their form and
possibly also their origin. In future work we will
utilize the model-based definition of crosstalk devel-
oped here to construct efficient protocols for charac-
terizing crosstalk errors.
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A Conditional versus marginal independence

Our definition of crosstalk errors is based conditional independence of random variables. As mentioned in
the main text, this is motivated by the central role played by conditional independence in defining causality in
graphical models. In this Appendix we explain why we prefer to use the notion of conditional independence
over marginal independence, which might seem simpler to work with. To do this, we refer to Fig. 8, which
represents the random variables involved in a two qubit example: S1,So, Ry, Ro. Fig. 8(a) represents the true
dependence relationships between the variables. The arrow between S; and S, could be due to poor experiment
design, whereby the settings on qubit 2 are not selected independently of those on qubit 1.

Excepting statistical issues (i.e., given the underlying probability distribution over these random variables),
the dependency relationships given by the graph in Fig. 8(a) would be reconstructed by examining conditional
dependence relations. In contrast, if we only assess marginal independence between R; and So, the fact that
both random variables have a common cause (S1) would create a fictitious dependence between these variables
(see Fig. 8(b)). This is of course well known in statistics as the confounding of statistical association by an
unobserved common cause [24].

Now, a marginal independence test would be sufficient if the experiment design was suitably randomized
such that S; and S are independent. However, for quantum computing platforms with many qubits a suitably
randomized experiment design may be difficult to guarantee, and evaluation of association between random
variables in distinct regions based on conditional independence testing is more reliable.

Py

S, S,

T

(a) (b)

Figure 8: An example illustrating the difference between conditional and marginal independence between random
variables. (a) shows the true causal relationships between the settings (S1,S2) and results (R1,R3) in a two qubit
experiment. (b) shows the causal relationship inferred if a marginal independence test is performed on just variables
R; and Ss.

B Equivalence of two definitions of crosstalk

In the main text we presented two definitions of crosstalk-free QIPs, at two different layers of abstraction.
The first, Definition 1, was stated in terms of properties of quantum operations (locality and independence)
assuming a Markovian QIP, and the second, Definition 2, was stated operationally in terms of conditional
independence between of classical random variables associated with experiments. In this Appendix we prove
that these two definitions are in fact, equivalent; i.e., A QIP is crosstalk-free according to Definition 1 <— A
QIP is crosstalk-free according to Definition 2.

B.1 Conditional independence in terms of quantum operations

Before we prove this equivalence we need to define the probabilities that arise in assessing conditional inde-
pendence in terms of the quantum operations that form a model for the QIP.

We restrict ourselves to a QIP composed of two qubits for simplicity, and because it suffices to demonstrate
the points we wish to make. In this case there are four random variables in the problem: R; € {r¥ }le, 1=1,2,
the measurement results on the two qubits, and S; € {rﬁ}le,i = 1,2, the settings on the two qubits. The
settings will enumerate over some set of single-qubit gate sequences on each qubit.
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Consider the conditional independence statement P(R;|S;,S;, R;) = P(R;|S;) fori,j € {1,2},4 # j, which
captures the crosstalk-free condition between regions 1 and 2. What is this condition equivalent to in terms of
physical states, operations and measurements? To address this question, we note that for any experiment, the
Born rule dictates

P(ri, r3]st, s5) = (E(ri, m3)|M(sT, 55)|po), (15)

where | E(r%, 13)) is a POVM indexed by the measurement results, M (s%, sb) is a general two qubit CPTP map

indexed by the settings, and \ po) is the initial state of the two qubits. Note that we are using Hilbert-Schmidt
representations of all of these quantities for notational simplicity. In fact, this is the only relation we can write
down without making further assumptions about crosstalk, factorizability of operations, efc. To obtain other
probabilities we need to apply the usual conditioning and marginalization rules, e.g.,

P(ri|st, sb) = Z (E(r, )| M(sT, 5)|po)
7"1|51 ZP 7"1|51752 (5§|5]f)

—ZZ (i, 75| M(s, 53)| po) P(s3]sh). (16)

Using such relations we can write the crosstalk-free condition as

P(R1|S1,S2,R2) = P(R1|S1)
= P(ri|sk, sh, 1)) = P(ri|sh) Vi, j k.1

P
jwzzpm plsh, sTVP(sP|sh) Vi, gk,
(T2|51a52

= P(T‘177“2‘31»52 (ZP 7“1,7”2|S1,52 ) (Z P(Tiﬂ“ms’fasgl)f)(séﬂslf)) Vi, g, k,l
n,m

(17)

e (Bl ) M (st ) o) = (z (E(rf,ré)!M(s’f,slz)\po)> (z (E(ri,r?)W(s’f,sé”)\po)P(s?s’f))

z n,m

Vi, g, k,1

We can write a similar explicit equation for the condition P(R2|S1,S2, R1) = P(R2|S2).

B.2 Definition 1 = Definition 2

A crosstalk-free Markovian QIP according to model-based definition, see Sec. 4, has state preparations, gate
operations, and measurements that satisfy:

|90) = |po) ® |9)
M(S1,S2) = M1(S1) ® M2(S2)
|E(R1,R2)) = |E(R1)) ® |[E(Rz)) (18)

We proceed to show that given such a model for operations, the QIP is also crosstalk-free under Definition
2; ie., P(R;|S;,S;,R;) = P(Ri|S;), fori,5 € {1,2},i # j. To do so, we substitute the factorized forms in
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Eq. (18) into the explicit form of the condition P(R1|S1,S2,R2) = P(Ry|S1) given in Eq. (17):

. . ? .
P(Wiﬂ"é‘slf,% = (ZP 7"1a7"2|51732 ) <Z P(r},r§|s’f,sg")P(55”]s]f)>
n,m

Vi, j, k,

(B M (5] ) () | Ma (s} |po);(Z(E(r‘f)Wl(s’f)\pé)( ) Ma(sh w)

z

(2 (BGDIM () |ob) <E<rs>1M2<s?>|p3>P<s?|sf>)

n,m

Vi, ik, 1
= (BE(ri)| M (s5)|d) (B(r]) [ Ma(sh) [ p8) = (E(r))|Ma(sh)|p3) (B ()| Mi(sh)]ab), (19)

which is obviously true. To arrive at the last line we have used the properties >, (E(r*)|M(sk)|po) = 1 for
any k, pg, and 3, P(s3'|s%) = 1. We can verify that the equality P(R2|S2,S1,R1) = P(R2|S2) also holds
for quantum operations that satisfy Eq. (18). This concludes the proof that the model-based definition of a
crosstalk-free QIP implies our model-free definition of a crosstalk-free QIP.

B.3 Definition 2 = Definition 1

To prove this direction, we will actually prove its contrapositive, namely,
(mlocality) or (—independence) = violation of Definition 2. (20)

We proceed by showing that quantum operations that do not satisfy locality or independence lead to violations
of the explicit form of P(R1|S1,S2, R2) = P(R1|S1) stated in Eq. (17). The proofs straightforwardly generalize
to the violation of P(R2|S2,S1,R1) = P(R2|S2).

B.3.1 Locality

A Markovian QIP that does not satisfy the locality principle has state preparations, gate operations, or measure-
ments (or all of these) that do not factorize as in Eq. (18).

First consider the case where the initial state does not factorize, but all other operations do. Then, expanding
Eq. (17), we get:

P(T177'2‘31732 (ZP 7“177“2’31:32 ) <Z P(T11'77"§|3]19737271)P(372n’3]1€)>
n,m

Vi, j, k,l

= (E(r})| @ (BE(r})|Mi(sF) @ Ma(sh)| po) Z (Z (E(r})| @ (B(r)|Ma(sh) ® Ma(s |P0)>

z

(Z (BGD| @ (BE)IMi(sh) @ M2<s?>1po>P<s?\s§>)

n,m

Vi, j k. 1
where we have defined |p1(k)) = tro (./\/l1(slf) ® D m P(sgn]slf)./\/lg(sgb)‘po)) and |[po(k,1)) =

try (M1(s’f) ® Mg(sé)\po)). This last equality cannot be true in general since it is expressing a joint dis-

tribution over 74, 7‘% on the left hand side with a product of marginal distributions over these two variables
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on the right hand side. To see this more clearly, note that the equality must hold for all 4, j, k, [, so suppose
M (s¥) = My(sh) =1, Vk, . In this case, the condition simplifies to:

(E@)| @ (ED)|loo) = ((B@D]172)) (BGDIla) ¥, (22)

where |py(2)) = tro1y (|po)). This equality cannot be true for any state po that is not separable and therefore
we conclude that conditional independence condition is violated in the case where the initial state does not
factorize.

Next, consider the case where the gate operations do not factorize:

Ja : M(s%, sh) # My (s$)Ma(sh), VI, (23)

i.e., that the operation induced when the setting on the first qubit is a is an entangling (non-factorizable) oper-
ation between the two qubits (regardless of what the setting is on qubit 1). We assume that the initial state and
all measurement POVM elements factorize.

Then, returning to the condition in Eq. (17), and considering the case k = a,

P(T17T2|51752 (ZP 7“1a7”2|51752 ) (Z P(r’i,r?!slf,sgn)P(sgﬂs’f))
n,m

Vi, 7,1

L (B @ BEIMsE b)) @ [2) - (z (B © (B M 5h) o) © \p3>) -

z

(z (B © (B0 Mt 5)ob) @ \p%)ﬂs?”!s‘f))

n,m

Vi, j,1 (24)
Now, suppose this equality holds. Then we can perform a weighted sum over L on both sides to get

(E0)| @ (B |M(sD)|pp) @ [08) = (E(r)]|p1(a)) (B(r))||p2(a)), Vi, j,

where

ZP (sh]sH)M(s2, sb), and

’P1(2)(a)) = tro) ( (s1 fPo) ® |P0)>

Again, we have an expression with a joint distribution over ¢, rg on the left hand side and a product of marginals
over the same variables on the right hand side. This cannot be true if M(s¢, s5) does not factorize for all L,
and therefore we conclude the original assumption of Eq. (24) holding is false. Therefore, we have shown that
the model-free crosstalk-free condition is violated when gate operations violate locality and do not factorize.

Finally, the proof that violation of locality in measurements — i.e., |E(R1, R2) # |E(R1)) ® |[E(R2)) — results
in a violation of the model-free crosstalk-free conditions follows straightforwardly from the corresponding
proof for non-factorizable initial states since state preparation and measurement are dual operations.

B.3.2 Independence

Now we proceed to show that even if locality is respected by a QIP, violations of independence in the model-
based framework result in violations of the model-free definition of a crosstalk-free QIP. For simplicity we have
assumed that the only settings correspond to gate operations, and we only have one choice for state preparation
and measurement basis. Therefore violation of independence within a model that respects locality can only
manifest in one way:

Ja, b : M(s4,85) = E(s5) M1 (s8) @ Ma(sh). (25)
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In other words, for some combination of settings, the operation done on the first qubit depends on the setting
of the second qubit. Here, &£;() is some CPTP map on qubit 1.

Let us determine if this violation of independence results in a violation of the model-free condition in
Eq. (17), by assuming all other operations respect locality and independence, and considering the case
k=a,l =0

? z ,Jl.a i o.nj.a . m m|.a
P<7”1a7“2|31752) = <ZP(7“1W%’31733)> (Z P(ri,rylst, s5") P(s3 ’31)>

z

Vi, j

= (E(r)|E0(s5) M (1) o8) (E(rd) | Ma(sh) | oF) = <Z (B(r§)|E1(s3)M(s1)] o) (E(r%)Wz(SS)!p%)) '

z

n

(Z[(E(rma(szwl(s%ﬂp&( () [ Ma(s5)] ) P(shls1)

- 3 (B D) (EOD MG Pl

m#b
Vi, j
(B 7“2 ’M2 |Po)

[( (1)1 (5 M (55 o) P(sB1s) + <r§>w1<s%>rpé>(1—P<33|s'f>)] vi.J.

?

= (E(r})|€1(sh) M1 (s9)|p§) (E(r]) | Ma(s3)|p3)

where we have used the completeness property of the POVM elements to perform the sums over z and n in
the last line. The equality on the last line holds if (E(r3)|Ma(s)|p3) = 0, so consider the cases where this
quantity is non-zero (it cannot be zero for all j), and divide through both sides by this non-zero value. So for j
such that (E(r3)|Ma(s3)|p3) # 0, the condition we are evaluating becomes:

(B(r))|Ex(sy) Ma(sDob) (1= P(shlst)) =BG Mi(sDlob) (1= P(shlst)) v
(BGDIMi(sD)lob) ¥, (26)

(I~

= (E(r})|&1(s5) M (s1)|pp)

where we have assumed 1 — P(s4|s¢) # 0. Under what conditions is this last equality true when &£;(s}) # 1?
The only other way for this equality to hold is if (E(ri)|&1(s8) = (E(ri)|, Vi; i.e., all the error maps act
trivially on the measurement effects. Note that we could have written the violation of independence as a
premultiplication error map (i.e., M(s¢,s5) = My (s$)E1(s4) ® Ma(sh)), in which case the equality would
hold if the initial state is invariant under the error map. However, note that these CPTP maps represent the action
of gate sequences, and the error map & (s3) is the effective error on qubit 1 when some sequence My (s3) is
performed on qubit 2, after the desired sequence on qubit 1, M;(s{) has been factored out. These sequences
are composed of elementary gates, some subset of which violate the independence condition, which leads the
whole map to violate the independence condition. However, for a sufficiently rich set of sequences if one
sequence violates independence, then it is likely that others do as well (in other words, there are a set of (a, b)
satisfying Eq. (25). And the probability that the measurement effects are invariant under all the effective error
maps &1(s4) is extremely unlikely. Therefore we conclude that for a sufficiently rich set of settings, violation
of independence results in violation of model-free definition of a crosstalk-free QIP.

B.4 Definition 1 <= Definition 2

The above subsections prove the two directions of implication required to establish equivalence between the
model-based definition (Definition 1) and the model-free definition (Definition 2) of crosstalk-free QIPs.
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C Pseudocode for lightweight experiment design

Algorithm 1 Lightweight crosstalk detection experiment generation. The output is a set of roughly
M X Neires X Neon experiments on an M region QIP, with each experiment consisting of length L
circuits on each region.

1: procedure CROSSTALKEXPERIMENTS(M, I, Neires; Neon, Pidle)

2: for 0O<m< M-—1 do > Sample Ngjpes circuits for each region
bag,, < Sample of N5 circuits length L, composed of elementary gates on region m

Expts « {} > Initialize with empty list of experiments
for 0<m< M—-1 do
for 0 <n < Neires —1 do > For each region, iterate over the Neies circuits sampled for
that region

7: Sm 4 Circuit number n from bag,,

8: for 0 <c¢< Neon do > Generate N¢o, experiment with s, circuit on region m

9: for 0<k<M-1 do

10: if £ # m then

11: if Unif(0,1) < pigle then > With probability piqe region k gets idle circuit

12: sg < the length L idle circuit on region k

13: else

14: Sk < Sample a circuit from bagy,

15: Append to Expts the experiment defined by parallel application of s, (for 0 < n <
M — 1) to the M regions

16: Expts + RemoveDuplicates(Expts) > Remove duplicate experiments

17: return Expts

D Summary of the PC algorihtm

The PC algorithm is described in detail in references [54, 13], but we describe its main steps here, and comment
on its implementation in the crosstalk detection context.

Exhaustively checking for conditional dependence relations between /N data variables is exponential cost
in terms of computational difficulty and required dataset size. To get around this, the PC algorithm uses in-
sights from graph theory to perform a hierarchy of tests that can result in reduced costs, particularly in sparsely
connected graphs (i.e., datasets with sparse conditional dependence relations). The fundamental property ex-
ploited by the PC algorithm to reduce the number of conditional independency tests is this: two nodes (X, Y)
are conditionally independent given some subset of remaining nodes S, if and only if they are conditionally
independent given pa(X) or pa(Y’), where pa(X) are the parent nodes of X.

Algorithm 2 presents pseudocode for the PC algorithm, adapted from Ref. [54]. Each variable is represented
by a node in a graph G, and Adj(G, X) is the set of nodes adjacent to node X. The algorithm initializes by
constructing the complete undirected graph with N nodes. Then it prunes edges on this graph in a hierarchical
manner: for every edge in the graph connecting nodes (X, Y), it examines subsets of neighbors of one of the
nodes of increasing size, n, (starting from the null set, n = 0) and tests whether the two nodes are conditionally
independent given the nodes in the subset. If so, it removes the edge. This procedure is repeated for every
pair of connected nodes for increasing n, until no nodes have adjacency sets of size equal to or greater than
n. At the end of this procedure, we have a pruned undirected graph with edges between nodes that are not
conditionally independent under any conditioning set of adjacent nodes; this is often referred to as the skeleton
graph. Under the PC algorithm this undirected graph is passed to a subroutine OrientEdges that orients each
edge in the graph using several orienting rules, resulting in a directed acyclic graph. We do not execute this
portion of the algorithm for crosstalk detection and therefore do not provide details on that step. Interested
readers are referred to [54, 53].
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Algorithm 2 Pseudocode for the PC algorithm executing on a graph with IV nodes.

1. procedure PC(N)

2 G < the complete undirected graph on a vertex set of size N

3 n <0

4: repeat

5 repeat

6 (X,Y) < an ordered pair of variables that are adjacent in G such that Adj(G, X)\{Y'}

has cardinality > n

7 S < a subset of Adj(G, X)\{Y} of cardinality n

8: if (X,Y) are conditional independent given S then

9: delete edge X — Y from G

10: add S to SepSet(X) and SepSet(Y)

11: until all ordered pairs of adjacent variables (X,Y") such that |[Adj(G, X)\{Y}| > n and all

SC Adj(G, X)\{Y} such that |S| = n have been tested for conditional independence.
12: n<n+1
13: until for each order pair of adjacent vertices (X,Y), |Adj(G, X)\{Y'}| <n
14: Gorient < OrientEdges(G, SepSet(G))

15: return Gopient

The PC algorithm is stated in algorithm 2 in terms of abstract conditional independence tests. These are
implemented statistically in most implementations. Also, one might be concerned that the order in which pairs
of variables are considered will effect the resulting undirected graph, and indeed this is true. However, one can
formulate an order-independent version of the PC algorithm [13] that removes this issue, and this is the version
we use for crosstalk detection.
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