Stochastic gradient descent for hybrid quantum-classical optimization

Ryan Sweke1, Frederik Wilde1, Johannes Meyer1, Maria Schuld2,3, Paul K. Faehrmann1, Barthélémy Meynard-Piganeau4, and Jens Eisert1,5,6

1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
2Xanadu, 777 Bay Street, Toronto, Ontario, Canada
3Quantum Research Group, University of KwaZulu-Natal, 4000 Durban, South Africa
4Department of Physics, Ecole Polytechnique, Palaiseau, France
5Helmholtz Center Berlin, 14109 Berlin, Germany
6Department of Mathematics and Computer Science, Freie Universität Berlin, D-14195 Berlin

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Within the context of hybrid quantum-classical optimization, gradient descent based optimizers typically require the evaluation of expectation values with respect to the outcome of parameterized quantum circuits. In this work, we explore the consequences of the prior observation that estimation of these quantities on quantum hardware results in a form of $stochastic$ gradient descent optimization. We formalize this notion, which allows us to show that in many relevant cases, including VQE, QAOA and certain quantum classifiers, estimating expectation values with $k$ measurement outcomes results in optimization algorithms whose convergence properties can be rigorously well understood, for any value of $k$. In fact, even using single measurement outcomes for the estimation of expectation values is sufficient. Moreover, in many settings the required gradients can be expressed as linear combinations of expectation values -- originating, e.g., from a sum over local terms of a Hamiltonian, a parameter shift rule, or a sum over data-set instances -- and we show that in these cases $k$-shot expectation value estimation can be combined with sampling over terms of the linear combination, to obtain ``doubly stochastic'' gradient descent optimizers. For all algorithms we prove convergence guarantees, providing a framework for the derivation of rigorous optimization results in the context of near-term quantum devices. Additionally, we explore numerically these methods on benchmark VQE, QAOA and quantum-enhanced machine learning tasks and show that treating the stochastic settings as hyper-parameters allows for state-of-the-art results with significantly fewer circuit executions and measurements.

► BibTeX data

► References

[1] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New J. Phys., 18: 23023, 2016. 10.1088/​1367-2630/​18/​2/​023023.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

[2] J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, August 2018. 10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[3] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Comm., 5 (1), 2014. 10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

[4] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm. arXiv:1411.4028, 2014.
arXiv:1411.4028

[5] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe. Circuit-centric quantum classifiers. Physical Review A, 101 (3): 032308, 2020. 10.1103/​PhysRevA.101.032308.
https:/​/​doi.org/​10.1103/​PhysRevA.101.032308

[6] E. Farhi and H. Neven. Classification with quantum neural networks on near term processors. 2018. arxiv:1802.06002.
arXiv:1802.06002

[7] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini. Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4 (4): 043001, 2019. 10.1088/​2058-9565/​ab4eb5.
https:/​/​doi.org/​10.1088/​2058-9565/​ab4eb5

[8] D. Zhu, N. M. Linke, M. Benedetti, K. A. Landsman, N. H. Nguyen, C. H. Alderete, A. Perdomo-Ortiz, N. Korda, A. Garfoot, C. Brecque, et al. Training of quantum circuits on a hybrid quantum computer. Science advances, 5 (10): eaaw9918, 2019. 10.1126/​sciadv.aaw9918.
https:/​/​doi.org/​10.1126/​sciadv.aaw9918

[9] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:/​/​www.deeplearningbook.org.
http:/​/​www.deeplearningbook.org

[10] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242–246, 2017a. 10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[11] A. Harrow and J. Napp. Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms. arXiv:1901.05374, 2019.
arXiv:1901.05374

[12] A. Gilyén, S. Arunachalam, and N. Wiebe. Optimizing quantum optimization algorithms via faster quantum gradient computation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1425–1444. SIAM, 2019. 10.1137/​1.9781611975482.87.
https:/​/​doi.org/​10.1137/​1.9781611975482.87

[13] G. Verdon, J. Pye, and M. Broughton. A universal training algorithm for quantum deep learning. 2018. arXiv:1806.09729.
arXiv:1806.09729

[14] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M. Arrazola, C. Blank, A. Delgado, S. Jahangiri, K. McKiernan, J. J. Meyer, Z. Niu, A. Száva, and N. Killoran. Pennylane: Automatic differentiation of hybrid quantum-classical computations. 2018. arXiv:1811.04968.
arXiv:1811.04968

[15] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Phys. Rev. A, 98 (3): 32309, 2018. 10.1103/​PhysRevA.98.032309.
https:/​/​doi.org/​10.1103/​PhysRevA.98.032309

[16] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran. Evaluating analytic gradients on quantum hardware. Phys. Rev. A, 99 (3): 32331, 2019. 10.1103/​PhysRevA.99.032331.
https:/​/​doi.org/​10.1103/​PhysRevA.99.032331

[17] A. Kandala, A. Mezzcapo, K. Temme, M. Takita, M. Brink, J. W. Chow, and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549: 242, 2017b. 10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[18] V. Leyton-Ortega, A. Perdomo-Ortiz, and O. Perdomo. Robust implementation of generative modeling with parametrized quantum circuits. arXiv:1901.08047, 2019.
arXiv:1901.08047

[19] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567 (7747): 209–212, 2019. 10.1038/​s41586-019-0980-2.
https:/​/​doi.org/​10.1038/​s41586-019-0980-2

[20] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms. Cambridge University Press, New York, NY, USA, 2014. ISBN 1107057132, 9781107057135.

[21] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016. 10.1007/​978-3-319-46128-1_50.
https:/​/​doi.org/​10.1007/​978-3-319-46128-1_50

[22] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pages 177–186. Springer, 2010. 10.1007/​978-3-7908-2604-3_16.
https:/​/​doi.org/​10.1007/​978-3-7908-2604-3_16

[23] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in neural information processing systems, pages 161–168, 2008.

[24] R. Kleinberg, Y. Li, and Y. Yuan. An alternative view: When does sgd escape local minima? 2018. arXiv:1802.06175.
arXiv:1802.06175

[25] S. Ruder. An overview of gradient descent optimization algorithms. arXiv:1609.04747, 2016.
arXiv:1609.04747

[26] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. F. Balcan, and L. Song. Scalable kernel methods via doubly stochastic gradients. In Advances in Neural Information Processing Systems, pages 3041–3049, 2014.

[27] C.-L. Li and B. Póczos. Utilize old coordinates: Faster doubly stochastic gradients for kernel methods. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI’16, page 467–476, Arlington, Virginia, USA, 2016. AUAI Press. ISBN 9780996643115.

[28] J. M. Kübler, A. Arrasmith, L. Cincio, and P. J. Coles. An adaptive optimizer for measurement-frugal variational algorithms. Quantum, 4: 263, 2020. 10.22331/​q-2020-05-11-263.
https:/​/​doi.org/​10.22331/​q-2020-05-11-263

[29] L. Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-N\imes, 91 (8): 12, 1991.

[30] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient descent. In Advances in neural information processing systems, pages 2595–2603, 2010.

[31] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Advances in neural information processing systems, pages 693–701, 2011.

[32] X. Li and F. Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of Machine Learning Research, volume 89 of Proceedings of Machine Learning Research, pages 983–992. PMLR, 16–18 Apr 2019. URL http:/​/​proceedings.mlr.press/​v89/​li19c.html.
http:/​/​proceedings.mlr.press/​v89/​li19c.html

[33] E. Campbell. Random compiler for fast hamiltonian simulation. Phys. Rev. Lett., 123: 70503, 2019. 10.1103/​PhysRevLett.123.070503.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.070503

[34] P. Gokhale, O. Angiuli, Y. Ding, K. Gui, T. Tomesh, M. Suchara, M. Martonosi, and F. T. Chong. Minimizing state preparations in variational quantum eigensolver by partitioning into commuting families. 2019. arXiv:1907.13623.
arXiv:1907.13623

[35] S. Raeisi, N. Wiebe, and B. C. Sanders. Quantum-circuit design for efficient simulations of many-body quantum dynamics. New J. Phys., 14: 103017, 2012. 10.1088/​1367-2630/​14/​10/​103017.
https:/​/​doi.org/​10.1088/​1367-2630/​14/​10/​103017

[36] A. J. Lee. U-statistics: Theory and Practice. Routledge, 2019.

[37] J. Chen and R. Luss. Stochastic gradient descent with biased but consistent gradient estimators. arXiv:1807.11880, 2018.
arXiv:1807.11880

[38] P. H. Nguyen, L. M. Nguyen, and M. van Dijk. Tight dimension independent lower bound on optimal expected convergence rate for diminishing step sizes in sgd. 2018. arXiv:1810.04723.
arXiv:1810.04723

[39] M. M. Wolf. Mathematical foundations of supervised learning. https:/​/​www-m5.ma.tum.de/​foswiki/​pub/​M5/​Allgemeines/​MA4801_2018S/​ML_notes_main.pdf [Online; accessed 27-September-2019].
https:/​/​www-m5.ma.tum.de/​foswiki/​pub/​M5/​Allgemeines/​MA4801_2018S/​ML_notes_main.pdf

[40] H. H. Sohrab. Basic real analysis, volume 231. Birkhäuser, Basel, 2003. 10.1007/​978-1-4939-1841-6.
https:/​/​doi.org/​10.1007/​978-1-4939-1841-6

[41] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.
arXiv:1412.6980

[42] https:/​/​github.com/​frederikwilde/​qradient.
https:/​/​github.com/​frederikwilde/​qradient

[43] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac. Entropy scaling and simulability by matrix product states. Phys. Rev. Lett., 100: 30504, January 2008. 10.1103/​PhysRevLett.100.030504.
https:/​/​doi.org/​10.1103/​PhysRevLett.100.030504

[44] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le. Don't decay the learning rate, increase the batch size. arXiv:1711.00489, 2017.
arXiv:1711.00489

[45] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer Publishing Company, Incorporated, 4th edition, 2007. ISBN 3540718435.

[46] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Physical Review X, 10 (2): 021067, 2020. 10.1103/​PhysRevX.10.021067.
https:/​/​doi.org/​10.1103/​PhysRevX.10.021067

[47] M. Schuld and F. Petruccione. Supervised learning with quantum computers, volume 17. Springer, 2018. 10.1007/​978-3-319-96424-9.
https:/​/​doi.org/​10.1007/​978-3-319-96424-9

[48] L. Gentini, A. Cuccoli, S. Pirandola, P. Verrucchi, and L. Banchi. Noise-assisted variational hybrid quantum-classical optimization. arXiv:1912.06744, 2019.
arXiv:1912.06744

[49] E. Conover. Google moves toward quantum supremacy with 72-qubit computer. ScienceNews, 193: 13, 2018.

[50] C. Vu. IBM announces advances to IBM quantum systems and ecosystem, November 2017. IBM press release.

[51] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller. Self-verifying variational quantum simulation of the lattice schwinger model. Nature, 569: 355, 2019. 10.1038/​s41586-019-1177-4.
https:/​/​doi.org/​10.1038/​s41586-019-1177-4

[52] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551: 579–584, 2017. 10.1038/​nature24622.
https:/​/​doi.org/​10.1038/​nature24622

[53] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature, 551: 601–604, 2017. 10.1038/​nature24654.
https:/​/​doi.org/​10.1038/​nature24654

[54] M. J. Bremner, A. Montanaro, and D. J. Shepherd. Average-case complexity versus approximate simulation of commuting quantum computations. Phys. Rev. Lett., 117: 80501, August 2016. 10.1103/​PhysRevLett.117.080501.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.080501

[55] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 333–342, 2011. 10.1145/​1993636.1993682.
https:/​/​doi.org/​10.1145/​1993636.1993682

[56] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, R. Barends, B. Burkett, Y. Chen, and Z. Chen. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 360: 195–199, 2018. 10.1126/​science.aao4309.
https:/​/​doi.org/​10.1126/​science.aao4309

[57] J. Bermejo-Vega, D. Hangleiter, M. Schwarz, R. Raussendorf, and J. Eisert. Architectures for quantum simulation showing a quantum speedup. Phys. Rev. X, 8: 21010, 2018. 10.1103/​PhysRevX.8.021010.
https:/​/​doi.org/​10.1103/​PhysRevX.8.021010

[58] X. Gao, S.-T. Wang, and L.-M. Duan. Quantum supremacy for simulating a translation-invariant ising spin model. Phys. Rev. Lett., 118: 40502, 2017. 10.1103/​PhysRevLett.118.040502.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.040502

[59] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574 (7779): 505–510, 2019. 10.1038/​s41586-019-1666-5.
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[60] Scientific co2nduct. online. URL https:/​/​scientific-conduct.github.io.
https:/​/​scientific-conduct.github.io

Cited by

[1] He-Liang Huang, Yuxuan Du, Ming Gong, Youwei Zhao, Yulin Wu, Chaoyue Wang, Shaowei Li, Futian Liang, Jin Lin, Yu Xu, Rui Yang, Tongliang Liu, Min-Hsiu Hsieh, Hui Deng, Hao Rong, Cheng-Zhi Peng, Chao-Yang Lu, Yu-Ao Chen, Dacheng Tao, Xiaobo Zhu, and Jian-Wei Pan, "Experimental Quantum Generative Adversarial Networks for Image Generation", Physical Review Applied 16 2, 024051 (2021).

[2] Koray Özsoy, Bekir Aksoy, and Hilmi Cenk Bayrakçı, "Optimization of Thermal Modeling Using Machine Learning Techniques in Fused Deposition Modeling 3-D Printing", Journal of Testing and Evaluation 50 1, 613 (2022).

[3] Ijaz Ahamed Mohammad, Matej Pivoluska, and Martin Plesch, "Meta-optimization of resources on quantum computers", Scientific Reports 14 1, 10312 (2024).

[4] Hiroshi C. Watanabe, Rudy Raymond, Yu-Ya Ohnishi, Eriko Kaminishi, and Michihiko Sugawara, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 100 (2021) ISBN:978-1-6654-1691-7.

[5] Yifeng Xiong, Soon Xin Ng, and Lajos Hanzo, "The Accuracy vs. Sampling Overhead Trade-off in Quantum Error Mitigation Using Monte Carlo-Based Channel Inversion", IEEE Transactions on Communications 70 3, 1943 (2022).

[6] Andrew Arrasmith, Zoë Holmes, M Cerezo, and Patrick J Coles, "Equivalence of quantum barren plateaus to cost concentration and narrow gorges", Quantum Science and Technology 7 4, 045015 (2022).

[7] Samuel Duffield, Marcello Benedetti, and Matthias Rosenkranz, "Bayesian learning of parameterised quantum circuits", Machine Learning: Science and Technology 4 2, 025007 (2023).

[8] Nicola Mariella and Andrea Simonetto, "A Quantum Algorithm for the Sub-graph Isomorphism Problem", ACM Transactions on Quantum Computing 4 2, 1 (2023).

[9] Hiroshi Ohno, "Quantum Bayesian inference for parameter estimation using quantum generative model", Quantum Information Processing 22 1, 52 (2023).

[10] He-Liang Huang, Xiao-Yue Xu, Chu Guo, Guojing Tian, Shi-Jie Wei, Xiaoming Sun, Wan-Su Bao, and Gui-Lu Long, "Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation", Science China Physics, Mechanics & Astronomy 66 5, 250302 (2023).

[11] Srikar Kasi and Kyle Jamieson, Proceedings of the 26th Annual International Conference on Mobile Computing and Networking 1 (2020) ISBN:9781450370851.

[12] Carlos Bravo-Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles, "Variational Quantum Linear Solver", Quantum 7, 1188 (2023).

[13] Ljubomir Budinski, "Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method", Quantum Information Processing 20 2, 57 (2021).

[14] Bernhard Jobst, Adam Smith, and Frank Pollmann, "Finite-depth scaling of infinite quantum circuits for quantum critical points", Physical Review Research 4 3, 033118 (2022).

[15] Zelin Zhang, Xianqi Huang, Qi Yan, Yani Lin, Enbin Liu, Yingchang Mi, Shi Liang, Hao Wang, Jun Xu, and Kun Ru, "The Diagnosis of Chronic Myeloid Leukemia with Deep Adversarial Learning", The American Journal of Pathology 192 7, 1083 (2022).

[16] Roeland Wiersema, Dylan Lewis, David Wierichs, Juan Carrasquilla, and Nathan Killoran, "Here comes the SU(N): multivariate quantum gates and gradients", Quantum 8, 1275 (2024).

[17] Yan Zhu, Ge Bai, Yuexuan Wang, Tongyang Li, and Giulio Chiribella, "Quantum autoencoders for communication-efficient cloud computing", Quantum Machine Intelligence 5 2, 27 (2023).

[18] YanXuan LÜ, Qing GAO, JinHu LÜ, Yu PAN, and DaoYi DONG, "Recent advances of quantum neural networks on the near term quantum processor", SCIENTIA SINICA Technologica 52 4, 547 (2022).

[19] Yuto Takaki, Kosuke Mitarai, Makoto Negoro, Keisuke Fujii, and Masahiro Kitagawa, "Learning temporal data with a variational quantum recurrent neural network", Physical Review A 103 5, 052414 (2021).

[20] Philip Mocz and Aaron Szasz, "Toward Cosmological Simulations of Dark Matter on Quantum Computers", The Astrophysical Journal 910 1, 29 (2021).

[21] Manpreet Singh Jattana, Fengping Jin, Hans De Raedt, and Kristel Michielsen, "Improved Variational Quantum Eigensolver Via Quasidynamical Evolution", Physical Review Applied 19 2, 024047 (2023).

[22] Shu Lok Tsang, Maxwell T. West, Sarah M. Erfani, and Muhammad Usman, "Hybrid Quantum–Classical Generative Adversarial Network for High-Resolution Image Generation", IEEE Transactions on Quantum Engineering 4, 1 (2023).

[23] Hiroshi Ohno, "Boosting for quantum weak learners", Quantum Information Processing 21 6, 199 (2022).

[24] Wojciech Roga, Takafumi Ono, and Masahiro Takeoka, "Sequential minimum optimization algorithm with small sample size estimators", AVS Quantum Science 5 3, 033801 (2023).

[25] Donghwa Lee, Jinil Lee, Seongjin Hong, Hyang-Tag Lim, Young-Wook Cho, Sang-Wook Han, Hyundong Shin, Junaid ur Rehman, and Yong-Su Kim, "Error-mitigated photonic variational quantum eigensolver using a single-photon ququart", Optica 9 1, 88 (2022).

[26] Alfonso Rojas-Domínguez, S. Ivvan Valdez, Manuel Ornelas-Rodríguez, and Martín Carpio, "Improved training of deep convolutional networks via minimum-variance regularized adaptive sampling", Soft Computing 27 18, 13237 (2023).

[27] Enrico Blanzieri, Davide Pastorello, Valter Cavecchia, Alexander Rumyantsev, and Mariia Maltseva, "Evaluating the convergence of tabu enhanced hybrid quantum optimization", Quantum Information Processing 22 5, 205 (2023).

[28] Guoming Wang, Dax Enshan Koh, Peter D. Johnson, and Yudong Cao, "Minimizing Estimation Runtime on Noisy Quantum Computers", PRX Quantum 2 1, 010346 (2021).

[29] Jindi Wu, Tianjie Hu, and Qun Li, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 208 (2023) ISBN:979-8-3503-4323-6.

[30] Jiahao Huang, Min Zhuang, Jungeng Zhou, Yi Shen, and Chaohong Lee, "Quantum Metrology Assisted by Machine Learning", Advanced Quantum Technologies 2300329 (2024).

[31] Amira Abbas, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner, "The power of quantum neural networks", Nature Computational Science 1 6, 403 (2021).

[32] Cheng Chu, Lei Jiang, and Fan Chen, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 1231 (2023) ISBN:979-8-3503-4323-6.

[33] Lirandë Pira and Chris Ferrie, "An invitation to distributed quantum neural networks", Quantum Machine Intelligence 5 2, 23 (2023).

[34] Noureen Talpur, Said Jadid Abdulkadir, Hitham Alhussian, ·Mohd Hilmi Hasan, Norshakirah Aziz, and Alwi Bamhdi, "A comprehensive review of deep neuro-fuzzy system architectures and their optimization methods", Neural Computing and Applications 34 3, 1837 (2022).

[35] Rui Huang, Xiaoqing Tan, and Qingshan Xu, "Variational quantum tensor networks classifiers", Neurocomputing 452, 89 (2021).

[36] Bálint Koczor and Simon C. Benjamin, "Quantum natural gradient generalized to noisy and nonunitary circuits", Physical Review A 106 6, 062416 (2022).

[37] Kosuke Mitarai, Yasunari Suzuki, Wataru Mizukami, Yuya O. Nakagawa, and Keisuke Fujii, "Quadratic Clifford expansion for efficient benchmarking and initialization of variational quantum algorithms", Physical Review Research 4 3, 033012 (2022).

[38] Tyler Volkoff and Patrick J Coles, "Large gradients via correlation in random parameterized quantum circuits", Quantum Science and Technology 6 2, 025008 (2021).

[39] Pranshav Gajjar, Zhenyu Zuo, Yanghepu Li, and Liang Zhao, Lecture Notes in Networks and Systems 613, 789 (2023) ISBN:978-981-19-9378-7.

[40] Andrea Mari, Thomas R. Bromley, and Nathan Killoran, "Estimating the gradient and higher-order derivatives on quantum hardware", Physical Review A 103 1, 012405 (2021).

[41] Bálint Koczor and Simon C. Benjamin, "Quantum analytic descent", Physical Review Research 4 2, 023017 (2022).

[42] Jonas M. Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J. Coles, "An Adaptive Optimizer for Measurement-Frugal Variational Algorithms", Quantum 4, 263 (2020).

[43] Thomas Hubregtsen, Josef Pichlmeier, Patrick Stecher, and Koen Bertels, "Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability", Quantum Machine Intelligence 3 1, 9 (2021).

[44] Paula García-Molina, Javier Rodríguez-Mediavilla, and Juan José García-Ripoll, "Quantum Fourier analysis for multivariate functions and applications to a class of Schrödinger-type partial differential equations", Physical Review A 105 1, 012433 (2022).

[45] Frédéric Sauvage and Florian Mintert, "Optimal Quantum Control with Poor Statistics", PRX Quantum 1 2, 020322 (2020).

[46] Kosuke Ito, Wataru Mizukami, and Keisuke Fujii, "Universal noise-precision relations in variational quantum algorithms", Physical Review Research 5 2, 023025 (2023).

[47] Shraddha Mishra and Chi-Yi Tsai, "QSurfNet: a hybrid quantum convolutional neural network for surface defect recognition", Quantum Information Processing 22 5, 179 (2023).

[48] Oleksandr Kyriienko, Annie E. Paine, and Vincent E. Elfving, "Solving nonlinear differential equations with differentiable quantum circuits", Physical Review A 103 5, 052416 (2021).

[49] Adam Glos, Aleksandra Krawiec, and Zoltán Zimborás, "Space-efficient binary optimization for variational quantum computing", npj Quantum Information 8 1, 39 (2022).

[50] Yifeng Xiong, Daryus Chandra, Soon Xin Ng, and Lajos Hanzo, "Circuit Symmetry Verification Mitigates Quantum-Domain Impairments", IEEE Transactions on Signal Processing 71, 477 (2023).

[51] Eneko Osaba, Esther Villar-Rodriguez, Izaskun Oregi, and Aitor Moreno-Fernandez-de-Leceta, Proceedings of the Genetic and Evolutionary Computation Conference Companion 1476 (2021) ISBN:9781450383516.

[52] Bin-Lin Chen and Dan-Bo Zhang, "Variational Quantum Eigensolver with Mutual Variance-Hamiltonian Optimization", Chinese Physics Letters 40 1, 010303 (2023).

[53] Yuxuan Du, Zhuozhuo Tu, Xiao Yuan, and Dacheng Tao, "Efficient Measure for the Expressivity of Variational Quantum Algorithms", Physical Review Letters 128 8, 080506 (2022).

[54] Alistair W R Smith, A J Paige, and M S Kim, "Faster variational quantum algorithms with quantum kernel-based surrogate models", Quantum Science and Technology 8 4, 045016 (2023).

[55] David Amaro, Carlo Modica, Matthias Rosenkranz, Mattia Fiorentini, Marcello Benedetti, and Michael Lubasch, "Filtering variational quantum algorithms for combinatorial optimization", Quantum Science and Technology 7 1, 015021 (2022).

[56] Jinyang Li, Zhepeng Wang, Zhirui Hu, Prasanna Date, Ang Li, and Weiwen Jiang, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 272 (2023) ISBN:979-8-3503-4323-6.

[57] Charles Moussa, Max Hunter Gordon, Michal Baczyk, M Cerezo, Lukasz Cincio, and Patrick J Coles, "Resource frugal optimizer for quantum machine learning", Quantum Science and Technology 8 4, 045019 (2023).

[58] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, and Dacheng Tao, "Erratum: Learnability of Quantum Neural Networks [PRX QUANTUM 2 , 040337 (2021)]", PRX Quantum 3 3, 030901 (2022).

[59] Maria Schuld and Francesco Petruccione, Encyclopedia of Machine Learning and Data Science 1 (2023) ISBN:978-1-4899-7502-7.

[60] Sebastian Brandhofer, Simon Devitt, and Ilia Polian, 2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 1 (2021) ISBN:978-1-6654-0959-9.

[61] C. Huerta Alderete, Max Hunter Gordon, Frédéric Sauvage, Akira Sone, Andrew T. Sornborger, Patrick J. Coles, and M. Cerezo, "Inference-Based Quantum Sensing", Physical Review Letters 129 19, 190501 (2022).

[62] Maiyuren Srikumar, Charles D Hill, and Lloyd C L Hollenberg, "Clustering and enhanced classification using a hybrid quantum autoencoder", Quantum Science and Technology 7 1, 015020 (2022).

[63] Johannes Jakob Meyer, Johannes Borregaard, and Jens Eisert, "A variational toolbox for quantum multi-parameter estimation", npj Quantum Information 7 1, 89 (2021).

[64] Yu Pan, Yifan Tong, Shibei Xue, and Guofeng Zhang, "Efficient depth selection for the implementation of noisy quantum approximate optimization algorithm", Journal of the Franklin Institute 359 18, 11273 (2022).

[65] Abhinav Anand, Lasse Bjørn Kristensen, Felix Frohnert, Sukin Sim, and Alán Aspuru-Guzik, "Information flow in parameterized quantum circuits", Quantum Science and Technology 9 3, 035025 (2024).

[66] M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles, "Variational quantum state eigensolver", npj Quantum Information 8 1, 113 (2022).

[67] Junhong Li, Kang Xiao, Juping Gu, and Liang Hua, "Parameter estimation of multiple‐input single‐output Hammerstein controlled autoregressive system based on improved adaptive moment estimation algorithm", International Journal of Robust and Nonlinear Control 33 12, 7094 (2023).

[68] Anindya Apriliyanti Pravitasari, Nur Iriawan, Ulfa Siti Nuraini, and Dwilaksana Abdullah Rasyid, Brain Tumor MRI Image Segmentation Using Deep Learning Techniques 197 (2022) ISBN:9780323911719.

[69] Hiroshi Ohno, "Grover’s search with learning oracle for constrained binary optimization problems", Quantum Machine Intelligence 6 1, 12 (2024).

[70] David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin, "General parameter-shift rules for quantum gradients", Quantum 6, 677 (2022).

[71] Raphael César de Souza Pimenta and Anibal Thiago Bezerra, "Revisiting semiconductor bulk hamiltonians using quantum computers", Physica Scripta 98 4, 045804 (2023).

[72] Wang Fang, Mingsheng Ying, and Xiaodi Wu, "Differentiable Quantum Programming with Unbounded Loops", ACM Transactions on Software Engineering and Methodology 33 1, 1 (2024).

[73] Yutaka Shikano, Hiroshi C. Watanabe, Ken M. Nakanishi, and Yu-ya Ohnishi, "Post-Hartree–Fock method in quantum chemistry for quantum computer", The European Physical Journal Special Topics 230 4, 1037 (2021).

[74] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles, "Variational quantum algorithms", Nature Reviews Physics 3 9, 625 (2021).

[75] Omer A. Alawi, Haslinda Mohamed Kamar, Raad Z. Homod, and Zaher Mundher Yaseen, "Incorporating artificial intelligence-powered prediction models for exergy efficiency evaluation in parabolic trough collectors", Renewable Energy 225, 120348 (2024).

[76] Christiane P. Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, Steffen J. Glaser, Ronnie Kosloff, Simone Montangero, Thomas Schulte-Herbrüggen, Dominique Sugny, and Frank K. Wilhelm, "Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe", EPJ Quantum Technology 9 1, 19 (2022).

[77] Shiro Tamiya and Hayata Yamasaki, "Stochastic gradient line Bayesian optimization for efficient noise-robust optimization of parameterized quantum circuits", npj Quantum Information 8 1, 90 (2022).

[78] Julian Berberich, Daniel Fink, and Christian Holm, "Robustness of quantum algorithms against coherent control errors", Physical Review A 109 1, 012417 (2024).

[79] Mohamed Torky, Aida A. Nasr, and Aboul Ella Hassanien, "Recognizing Beehives’ Health Abnormalities Based on Mobile Net Deep Learning Model", International Journal of Computational Intelligence Systems 16 1, 135 (2023).

[80] Hiroshi C. Watanabe, Rudy Raymond, Yu-Ya Ohnishi, Eriko Kaminishi, and Michihiko Sugawara, "Optimizing Parameterized Quantum Circuits With Free-Axis Single-Qubit Gates", IEEE Transactions on Quantum Engineering 4, 1 (2023).

[81] Stefano Markidis, "Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies", Entropy 25 4, 694 (2023).

[82] Paulson Eberechukwu N, Minsoo Jeong, Hyunwoo Park, Sang Won Choi, and Sunwoo Kim, "Fingerprinting-Based Indoor Localization With Hybrid Quantum-Deep Neural Network", IEEE Access 11, 142276 (2023).

[83] Jogi Suda Neto, Lluis Quiles Ardila, Thiago Nascimento Nogueira, Felipe Albuquerque, João Paulo Papa, Rodrigo Capobianco Guido, and Felipe Fernandes Fanchini, "Quantum neural networks successfully calibrate language models", Quantum Machine Intelligence 6 1, 8 (2024).

[84] M. Garcia de Andoin and J. Echanobe, "Implementable hybrid quantum ant colony optimization algorithm", Quantum Machine Intelligence 4 2, 12 (2022).

[85] Ju-Young Ryu, Eyuel Elala, and June-Koo Kevin Rhee, "Quantum Graph Neural Network Models for Materials Search", Materials 16 12, 4300 (2023).

[86] Aram W. Harrow and John C. Napp, "Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms", Physical Review Letters 126 14, 140502 (2021).

[87] Muhammad Ali Shafique, Arslan Munir, and Imran Latif, "Quantum Computing: Circuits, Algorithms, and Applications", IEEE Access 12, 22296 (2024).

[88] Andrew Patterson, Hongxiang Chen, Leonard Wossnig, Simone Severini, Dan Browne, and Ivan Rungger, "Quantum state discrimination using noisy quantum neural networks", Physical Review Research 3 1, 013063 (2021).

[89] Michael L. Wall and Giuseppe D'Aguanno, "Tree-tensor-network classifiers for machine learning: From quantum inspired to quantum assisted", Physical Review A 104 4, 042408 (2021).

[90] Yu-Cheng Lin, Chuan-Chi Wang, Chia-Heng Tu, and Shih-Hao Hung, Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing 1487 (2024) ISBN:9798400702433.

[91] Yu Pan, Yifan Tong, and Yi Yang, "Automatic depth optimization for a quantum approximate optimization algorithm", Physical Review A 105 3, 032433 (2022).

[92] Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao Li, Komal Pandya, and Alessandro Summer, "A review on Quantum Approximate Optimization Algorithm and its variants", Physics Reports 1068, 1 (2024).

[93] Weikang Li and Dong-Ling Deng, "Recent advances for quantum classifiers", Science China Physics, Mechanics & Astronomy 65 2, 220301 (2022).

[94] Yoshiyuki Saito, Xinwei Lee, Dongsheng Cai, Jungpil Shin, and Nobuyoshi Asai, Lecture Notes in Networks and Systems 727, 15 (2023) ISBN:978-981-99-3877-3.

[95] Yuki Ishiyama, Ryutaro Nagai, Shunsuke Mieda, Yuki Takei, Yuichiro Minato, and Yutaka Natsume, "Noise-robust optimization of quantum machine learning models for polymer properties using a simulator and validated on the IonQ quantum computer", Scientific Reports 12 1, 19003 (2022).

[96] Maria Schuld and Francesco Petruccione, Quantum Science and Technology 177 (2021) ISBN:978-3-030-83097-7.

[97] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and Dacheng Tao, "Quantum circuit architecture search for variational quantum algorithms", npj Quantum Information 8 1, 62 (2022).

[98] Roqayah H. Kadi, Khadijah A. Altammar, Mohamed M. Hassan, Abdullah F. Shater, Fayez M. Saleh, Hattan Gattan, Bassam M. Al-ahmadi, Qwait AlGabbani, and Zuhair M. Mohammedsaleh, "Potential Therapeutic Candidates against Chlamydia pneumonia Discovered and Developed In Silico Using Core Proteomics and Molecular Docking and Simulation-Based Approaches", International Journal of Environmental Research and Public Health 19 12, 7306 (2022).

[99] M. Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and Patrick J. Coles, "Challenges and opportunities in quantum machine learning", Nature Computational Science 2 9, 567 (2022).

[100] Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan Baker, James Ang, and Ang Li, Proceedings of the 49th Annual International Symposium on Computer Architecture 59 (2022) ISBN:9781450386104.

[101] Yudai Suzuki, Hiroshi Yano, Rudy Raymond, and Naoki Yamamoto, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 1 (2021) ISBN:978-1-6654-1691-7.

[102] Jonathan Foldager, Arthur Pesah, and Lars Kai Hansen, "Noise-assisted variational quantum thermalization", Scientific Reports 12 1, 3862 (2022).

[103] Nishant Jain, Brian Coyle, Elham Kashefi, and Niraj Kumar, "Graph neural network initialisation of quantum approximate optimisation", Quantum 6, 861 (2022).

[104] Yuhan Huang, Qingyu Li, Xiaokai Hou, Rebing Wu, Man-Hong Yung, Abolfazl Bayat, and Xiaoting Wang, "Robust resource-efficient quantum variational ansatz through an evolutionary algorithm", Physical Review A 105 5, 052414 (2022).

[105] Enrico Fontana, M. Cerezo, Andrew Arrasmith, Ivan Rungger, and Patrick J. Coles, "Non-trivial symmetries in quantum landscapes and their resilience to quantum noise", Quantum 6, 804 (2022).

[106] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).

[107] Sharu Theresa Jose and Osvaldo Simeone, "Error-Mitigation-Aided Optimization of Parameterized Quantum Circuits: Convergence Analysis", IEEE Transactions on Quantum Engineering 3, 1 (2022).

[108] Andrew Zhao, Nicholas C. Rubin, and Akimasa Miyake, "Fermionic Partial Tomography via Classical Shadows", Physical Review Letters 127 11, 110504 (2021).

[109] Rach Dawson, Carolyn O’Dwyer, Edward Irwin, Marcin S. Mrozowski, Dominic Hunter, Stuart Ingleby, Erling Riis, and Paul F. Griffin, "Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer", Sensors 23 8, 4007 (2023).

[110] Andrew Arrasmith, M. Cerezo, Piotr Czarnik, Lukasz Cincio, and Patrick J. Coles, "Effect of barren plateaus on gradient-free optimization", Quantum 5, 558 (2021).

[111] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng, "Quantum Continual Learning Overcoming Catastrophic Forgetting", Chinese Physics Letters 39 5, 050303 (2022).

[112] Yuegang Song and Ruibing Wu, "Analysing human-computer interaction behaviour in human resource management system based on artificial intelligence technology", Knowledge Management Research & Practice 1 (2021).

[113] Jindi Wu, Zeyi Tao, and Qun Li, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 38 (2022) ISBN:978-1-6654-9113-6.

[114] Shyambabu Pandey, Nihar Jyoti Basisth, Tushar Sachan, Neha Kumari, and Partha Pakray, "Quantum machine learning for natural language processing application", Physica A: Statistical Mechanics and its Applications 627, 129123 (2023).

[115] Thomas Hubregtsen, Frederik Wilde, Shozab Qasim, and Jens Eisert, "Single-component gradient rules for variational quantum algorithms", Quantum Science and Technology 7 3, 035008 (2022).

[116] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, and Dacheng Tao, "Learnability of Quantum Neural Networks", PRX Quantum 2 4, 040337 (2021).

[117] Takafumi Ono, Wojciech Roga, Kentaro Wakui, Mikio Fujiwara, Shigehito Miki, Hirotaka Terai, and Masahiro Takeoka, "Demonstration of a Bosonic Quantum Classifier with Data Reuploading", Physical Review Letters 131 1, 013601 (2023).

[118] Rui Huang, Xiaoqing Tan, and Qingshan Xu, "Quantum Federated Learning With Decentralized Data", IEEE Journal of Selected Topics in Quantum Electronics 28 4, 1 (2022).

[119] André Sequeira, Luis Paulo Santos, and Luis Soares Barbosa, "Policy gradients using variational quantum circuits", Quantum Machine Intelligence 5 1, 18 (2023).

[120] Shi Jin and Xiantao Li, "A Partially Random Trotter Algorithm for Quantum Hamiltonian Simulations", Communications on Applied Mathematics and Computation (2023).

[121] Johannes Weidenfeller, Lucia C. Valor, Julien Gacon, Caroline Tornow, Luciano Bello, Stefan Woerner, and Daniel J. Egger, "Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware", Quantum 6, 870 (2022).

[122] Minsung Kim, Srikar Kasi, P. Aaron Lott, Davide Venturelli, John Kaewell, and Kyle Jamieson, "Heuristic Quantum Optimization for 6G Wireless Communications", IEEE Network 35 4, 8 (2021).

[123] Fangyu Huang, Xiaoqing Tan, Rui Huang, and Qingshan Xu, "Variational convolutional neural networks classifiers", Physica A: Statistical Mechanics and its Applications 605, 128067 (2022).

[124] Johannes Jakob Meyer, "Gradients just got more flexible", Quantum Views 5, 50 (2021).

[125] Gregory Boyd and Bálint Koczor, "Training Variational Quantum Circuits with CoVaR: Covariance Root Finding with Classical Shadows", Physical Review X 12 4, 041022 (2022).

[126] Leonardo Banchi and Gavin E. Crooks, "Measuring Analytic Gradients of General Quantum Evolution with the Stochastic Parameter Shift Rule", Quantum 5, 386 (2021).

[127] Ryan Shaffer, Lucas Kocia, and Mohan Sarovar, "Surrogate-based optimization for variational quantum algorithms", Physical Review A 107 3, 032415 (2023).

[128] Laura Gentini, Alessandro Cuccoli, Stefano Pirandola, Paola Verrucchi, and Leonardo Banchi, "Noise-resilient variational hybrid quantum-classical optimization", Physical Review A 102 5, 052414 (2020).

[129] Qingyu Li, Chiranjib Mukhopadhyay, and Abolfazl Bayat, "Fermionic simulators for enhanced scalability of variational quantum simulation", Physical Review Research 5 4, 043175 (2023).

[130] Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew Arrasmith, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Long-time simulations for fixed input states on quantum hardware", npj Quantum Information 8 1, 135 (2022).

[131] Sultan M. Zangi, Atta ur Rahman, Zhao-Xo Ji, Hazrat Ali, and Huan-Guo Zhang, "Decoherence Effects in a Three-Level System under Gaussian Process", Symmetry 14 12, 2480 (2022).

[132] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan, "Quantum computational chemistry", Reviews of Modern Physics 92 1, 015003 (2020).

[133] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran, "Quantum embeddings for machine learning", arXiv:2001.03622, (2020).

[134] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J. Martinez, Jae Hyeon Yoo, Sergei V. Isakov, Philip Massey, Ramin Halavati, Murphy Yuezhen Niu, Alexander Zlokapa, Evan Peters, Owen Lockwood, Andrea Skolik, Sofiene Jerbi, Vedran Dunjko, Martin Leib, Michael Streif, David Von Dollen, Hongxiang Chen, Shuxiang Cao, Roeland Wiersema, Hsin-Yuan Huang, Jarrod R. McClean, Ryan Babbush, Sergio Boixo, Dave Bacon, Alan K. Ho, Hartmut Neven, and Masoud Mohseni, "TensorFlow Quantum: A Software Framework for Quantum Machine Learning", arXiv:2003.02989, (2020).

[135] Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, and Fernando G. S. L. Brandão, "Quantum algorithms: A survey of applications and end-to-end complexities", arXiv:2310.03011, (2023).

[136] A. V. Uvarov and J. D. Biamonte, "On barren plateaus and cost function locality in variational quantum algorithms", Journal of Physics A Mathematical General 54 24, 245301 (2021).

[137] Andrew Arrasmith, Lukasz Cincio, Rolando D. Somma, and Patrick J. Coles, "Operator Sampling for Shot-frugal Optimization in Variational Algorithms", arXiv:2004.06252, (2020).

[138] Bálint Koczor, Suguru Endo, Tyson Jones, Yuichiro Matsuzaki, and Simon C. Benjamin, "Variational-state quantum metrology", New Journal of Physics 22 8, 083038 (2020).

[139] Sirui Lu, Lu-Ming Duan, and Dong-Ling Deng, "Quantum adversarial machine learning", Physical Review Research 2 3, 033212 (2020).

[140] Alexey Uvarov, Jacob D. Biamonte, and Dmitry Yudin, "Variational quantum eigensolver for frustrated quantum systems", Physical Review B 102 7, 075104 (2020).

[141] Barnaby van Straaten and Bálint Koczor, "Measurement Cost of Metric-Aware Variational Quantum Algorithms", PRX Quantum 2 3, 030324 (2021).

[142] Yingkai Ouyang, David R. White, and Earl T. Campbell, "Compilation by stochastic Hamiltonian sparsification", Quantum 4, 235 (2020).

[143] Dan-Bo Zhang, Zhan-Hao Yuan, and Tao Yin, "Variational quantum eigensolvers by variance minimization", arXiv:2006.15781, (2020).

[144] Di Luo, Jiayu Shen, Rumen Dangovski, and Marin Soljačić, "QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning", arXiv:2211.01365, (2022).

[145] Richie Yeung, "Diagrammatic Design and Study of Ansätze for Quantum Machine Learning", arXiv:2011.11073, (2020).

[146] Dan-Bo Zhang and Tao Yin, "Collective optimization for variational quantum eigensolvers", Physical Review A 101 3, 032311 (2020).

[147] Dan-Bo Zhang, Bin-Lin Chen, Zhan-Hao Yuan, and Tao Yin, "Variational quantum eigensolvers by variance minimization", Chinese Physics B 31 12, 120301 (2022).

[148] Ijaz Ahamed Mohammad, Matej Pivoluska, and Martin Plesch, "Resource-efficient utilization of quantum computers", arXiv:2305.08924, (2023).

[149] Abhinav Anand, Jonathan Romero, Matthias Degroote, and Alán Aspuru-Guzik, "Noise robustness and experimental demonstration of a quantum generative adversarial network for continuous distributions", arXiv:2006.01976, (2020).

[150] Re-Bing Wu, Xi Cao, Pinchen Xie, and Yu-xi Liu, "End-To-End Quantum Machine Learning Implemented with Controlled Quantum Dynamics", Physical Review Applied 14 6, 064020 (2020).

[151] Seyed Sajad Kahani and Amin Nobakhti, "A novel framework for Shot number minimization in Quantum Variational Algorithms", arXiv:2307.04035, (2023).

[152] Frederic Sauvage and Florian Mintert, "Optimal quantum control with poor statistics", arXiv:1909.01229, (2019).

[153] Sheng-Hsuan Lin, Rohit Dilip, Andrew G. Green, Adam Smith, and Frank Pollmann, "Real- and imaginary-time evolution with compressed quantum circuits", arXiv:2008.10322, (2020).

[154] Alexey Uvarov, "Variational quantum algorithms for local Hamiltonian problems", arXiv:2208.11220, (2022).

[155] Gabriel Matos, Sonika Johri, and Zlatko Papić, "Quantifying the efficiency of state preparation via quantum variational eigensolvers", arXiv:2007.14338, (2020).

[156] Ding Liu, Zekun Yao, and Quan Zhang, "Quantum-Classical Machine learning by Hybrid Tensor Networks", arXiv:2005.09428, (2020).

[157] Zsolt Tabi, Kareem H. El-Safty, Zsófia Kallus, Péter Hága, Tamás Kozsik, Adam Glos, and Zoltán Zimborás, "Quantum Optimization for the Graph Coloring Problem with Space-Efficient Embedding", arXiv:2009.07314, (2020).

[158] Youle Wang, Guangxi Li, and Xin Wang, "A Hybrid Quantum-Classical Hamiltonian Learning Algorithm", arXiv:2103.01061, (2021).

[159] Dirk Oliver Theis, ""Proper" Shift Rules for Derivatives of Perturbed-Parametric Quantum Evolutions", Quantum 7, 1052 (2023).

[160] Srikar Kasi and Kyle Jamieson, "Towards Quantum Belief Propagation for LDPC Decoding in Wireless Networks", arXiv:2007.11069, (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-25 01:35:50) and SAO/NASA ADS (last updated successfully 2024-05-25 01:35:51). The list may be incomplete as not all publishers provide suitable and complete citation data.