Quantum Algorithms for Simulating the Lattice Schwinger Model

Alexander F. Shaw1,5, Pavel Lougovski1, Jesse R. Stryker2, and Nathan Wiebe3,4

1Quantum Information Science Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.
2Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, U.S.A.
3Department of Physics, University of Washington, Seattle, WA 98195, U.S.A.
4Pacific Northwest National Laboratory, Richland, WA 99354, U.S.A.
5Department of Physics, University of Maryland, College Park, Maryland 20742, U.S.A.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The Schwinger model (quantum electrodynamics in 1+1 dimensions) is a testbed for the study of quantum gauge field theories. We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings. In particular, we perform a tight analysis of low-order Trotter formula simulations of the Schwinger model, using recently derived commutator bounds, and give upper bounds on the resources needed for simulations in both scenarios. In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x^{-1/2}$ and electric field cutoff $x^{-1/2}\Lambda$ can be simulated on a quantum computer for time $2xT$ using a number of $T$-gates or CNOTs in $\widetilde{O}( N^{3/2} T^{3/2} \sqrt{x} \Lambda )$ for fixed operator error. This scaling with the truncation $\Lambda$ is better than that expected from algorithms such as qubitization or QDRIFT. Furthermore, we give scalable measurement schemes and algorithms to estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable–the mean pair density. Finally, we bound the root-mean-square error in estimating this observable via simulation as a function of the diamond distance between the ideal and actual CNOT channels. This work provides a rigorous analysis of simulating the Schwinger model, while also providing benchmarks against which subsequent simulation algorithms can be tested.

► BibTeX data

► References

[1] D Aharonov. Quantum circuits with mixed states. In Proc. 30th Annual ACM Symposium on Theory of Computing, 1998. ACM Press, 1998. 10.1145/​276698.276708.
https:/​/​doi.org/​10.1145/​276698.276708

[2] Dorit Aharonov, Amnon Ta-Shma, and Amnon Ta-Shma. Adiabatic quantum state generation and statistical zero knowledge. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 20–29. ACM, 2003. 10.1145/​780542.780546.
https:/​/​doi.org/​10.1145/​780542.780546

[3] Andrei Alexandru, Paulo F. Bedaque, Siddhartha Harmalkar, Henry Lamm, Scott Lawrence, and Neill C. Warrington. Gluon field digitization for quantum computers. Phys. Rev. D, 100: 114501, Dec 2019. 10.1103/​PhysRevD.100.114501.
https:/​/​doi.org/​10.1103/​PhysRevD.100.114501

[4] A. Avkhadiev, P. E. Shanahan, and R. D. Young. Accelerating lattice quantum field theory calculations via interpolator optimization using noisy intermediate-scale quantum computing. Phys. Rev. Lett., 124: 080501, Feb 2020. 10.1103/​PhysRevLett.124.080501.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.080501

[5] Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, and Nathan Wiebe. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Physical Review A, 91 (2): 022311, 2015. 10.1103/​PhysRevA.91.022311.
https:/​/​doi.org/​10.1103/​PhysRevA.91.022311

[6] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, Uwe-Jens Wiese, and P. Zoller. Atomic Quantum Simulation of ${{\mathrm{U}(N)}}$ and ${{\mathrm{SU}(N)}}$ Non-Abelian Lattice Gauge Theories. Phys. Rev. Lett., 110 (12): 125303, Mar 2013. 10.1103/​PhysRevLett.110.125303.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.125303

[7] T. Banks, Leonard Susskind, and John Kogut. Strong-coupling calculations of lattice gauge theories: (1 + 1)-dimensional exercises. Physical Review D, 13 (4): 1043–1053, Feb 1976. 10.1103/​PhysRevD.13.1043.
https:/​/​doi.org/​10.1103/​PhysRevD.13.1043

[8] Mari Carmen Bañuls, Rainer Blatt, Jacopo Catani, Alessio Celi, Juan Ignacio Cirac, Marcello Dalmonte, Leonardo Fallani, Karl Jansen, Maciej Lewenstein, Simone Montangero, Christine A. Muschik, Benni Reznik, Enrique Rico, Luca Tagliacozzo, Karel Van Acoleyen, Frank Verstraete, Uwe-Jens Wiese, Matthew Wingate, Jakub Zakrzewski, and Peter Zoller. Simulating lattice gauge theories within quantum technologies. The European Physical Journal D, 74 (8): 165, Aug 2020. ISSN 1434-6079. 10.1140/​epjd/​e2020-100571-8.
https:/​/​doi.org/​10.1140/​epjd/​e2020-100571-8

[9] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Physical review A, 52 (5): 3457, 1995. 10.1103/​PhysRevA.52.3457.
https:/​/​doi.org/​10.1103/​PhysRevA.52.3457

[10] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H. W. Lin, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, and A. Walker-Loud. Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics. Phys. Rev. Lett., 109: 172001, 2012. 10.1103/​PhysRevLett.109.172001.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.172001

[11] S. R. Beane, E. Chang, S. D. Cohen, William Detmold, H. W. Lin, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, and A. Walker-Loud. Light Nuclei and Hypernuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry. Phys. Rev. D, 87 (3): 034506, 2013. 10.1103/​PhysRevD.87.034506.
https:/​/​doi.org/​10.1103/​PhysRevD.87.034506

[12] Dominic W Berry, Graeme Ahokas, Richard Cleve, and Barry C Sanders. Efficient quantum algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics, 270 (2): 359–371, 2007. 10.1007/​s00220-006-0150-x.
https:/​/​doi.org/​10.1007/​s00220-006-0150-x

[13] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D Somma. Simulating hamiltonian dynamics with a truncated taylor series. Physical Review Letters, 114 (9): 090502, 2015. 10.1103/​PhysRevLett.114.090502.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.090502

[14] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan Wiebe. Time-dependent Hamiltonian simulation with $L^1$-norm scaling. Quantum, 4: 254, Apr 2020. ISSN 2521-327X. 10.22331/​q-2020-04-20-254.
https:/​/​doi.org/​10.22331/​q-2020-04-20-254

[15] Alex Bocharov, Martin Roetteler, and Krysta M Svore. Efficient synthesis of universal repeat-until-success quantum circuits. Physical Review Letters, 114 (8): 080502, 2015. 10.1103/​PhysRevLett.114.080502.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.080502

[16] Bruce M Boghosian and Washington Taylor IV. Simulating quantum mechanics on a quantum computer. Physica D: Nonlinear Phenomena, 120 (1-2): 30–42, 1998. 10.1016/​S0167-2789(98)00042-6.
https:/​/​doi.org/​10.1016/​S0167-2789(98)00042-6

[17] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation. Contemporary Mathematics, 305: 53–74, 2002. 10.1090/​conm/​305/​05215.
https:/​/​doi.org/​10.1090/​conm/​305/​05215

[18] Sergey Bravyi and Jeongwan Haah. Magic-state distillation with low overhead. Physical Review A, 86 (5): 052329, 2012. 10.1103/​PhysRevA.86.052329.
https:/​/​doi.org/​10.1103/​PhysRevA.86.052329

[19] Tim Byrnes and Yoshihisa Yamamoto. Simulating Lattice Gauge Theories on a Quantum Computer. Phys. Rev. A, 73 (2): 022328, Feb 2006. 10.1103/​PhysRevA.73.022328.
https:/​/​doi.org/​10.1103/​PhysRevA.73.022328

[20] Earl Campbell. Random compiler for fast Hamiltonian simulation. Physical Review Letters, 123 (7): 070503, 2019. 10.1103/​PhysRevLett.123.070503.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.070503

[21] Andrew M Childs and Robin Kothari. Simulating sparse Hamiltonians with star decompositions. In Conference on Quantum Computation, Communication, and Cryptography, pages 94–103. Springer, 2010. 10.1007/​978-3-642-18073-6_8.
https:/​/​doi.org/​10.1007/​978-3-642-18073-6_8

[22] Andrew M Childs and Nathan Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Information & Computation, 12 (11-12): 901–924, 2012.

[23] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115 (38): 9456–9461, 2018. 10.1073/​pnas.1801723115.
https:/​/​doi.org/​10.1073/​pnas.1801723115

[24] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu. A theory of trotter error. arXiv:1912.08854, 2019.
arXiv:1912.08854

[25] L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, and U. van Kolck. Ground-state properties of $^{4}$He and $^{16}$O extrapolated from lattice QCD with pionless EFT. Phys. Lett. B, 772: 839–848, 2017. 10.1016/​j.physletb.2017.07.048.
https:/​/​doi.org/​10.1016/​j.physletb.2017.07.048

[26] Michael Creutz. Monte Carlo study of quantized SU (2) gauge theory. Phys. Rev. D, 21 (8): 2308, 1980. 10.1103/​PhysRevD.21.2308.
https:/​/​doi.org/​10.1103/​PhysRevD.21.2308

[27] Zohreh Davoudi, Mohammad Hafezi, Christopher Monroe, Guido Pagano, Alireza Seif, and Andrew Shaw. Towards analog quantum simulations of lattice gauge theories with trapped ions. Phys. Rev. Research, 2: 023015, Apr 2020. 10.1103/​PhysRevResearch.2.023015.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023015

[28] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. A logarithmic-depth quantum carry-lookahead adder. Quantum Info. Comput., 6 (4): 351–369, Jul 2006. ISSN 1533-7146.

[29] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quantum gate sets. Physical Review Letters, 102 (11): 110502, 2009. 10.1103/​PhysRevLett.102.110502.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.110502

[30] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21 (6): 467–488, June 1982. ISSN 1572-9575. 10.1007/​BF02650179.
https:/​/​doi.org/​10.1007/​BF02650179

[31] Craig Gidney. Halving the cost of quantum addition. Quantum, 2 (74): 10–22331, 2018. 10.22331/​q-2018-06-18-74.
https:/​/​doi.org/​10.22331/​q-2018-06-18-74

[32] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 193–204. ACM, 2019. 10.1145/​3313276.3316366.
https:/​/​doi.org/​10.1145/​3313276.3316366

[33] Jeongwan Haah, Matthew Hastings, Robin Kothari, and Guang Hao Low. Quantum algorithm for simulating real time evolution of lattice hamiltonians. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 350–360. IEEE, 2018. 10.1109/​FOCS.2018.00041.
https:/​/​doi.org/​10.1109/​FOCS.2018.00041

[34] Siddhartha Harmalkar, Henry Lamm, and Scott Lawrence. Quantum Simulation of Field Theories Without State Preparation. arXiv:2001.11490 [hep-lat, physics:quant-ph], Jan 2020.
arXiv:2001.11490

[35] Jacky Huyghebaert and Hans De Raedt. Product formula methods for time-dependent Schrodinger problems. Journal of Physics A: Mathematical and General, 23 (24): 5777, 1990. 10.1088/​0305-4470/​23/​24/​019.
https:/​/​doi.org/​10.1088/​0305-4470/​23/​24/​019

[36] Takashi Inoue, Sinya Aoki, Bruno Charron, Takumi Doi, Tetsuo Hatsuda, Yoichi Ikeda, Noriyoshi Ishii, Keiko Murano, Hidekatsu Nemura, and Kenji Sasaki. Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD. Phys. Rev. C, 91 (1): 011001, 2015. 10.1103/​PhysRevC.91.011001.
https:/​/​doi.org/​10.1103/​PhysRevC.91.011001

[37] Takumi Iritani, Sinya Aoki, Takumi Doi, Shinya Gongyo, Tetsuo Hatsuda, Yoichi Ikeda, Takashi Inoue, Noriyoshi Ishii, Hidekatsu Nemura, and Kenji Sasaki. Systematics of the HAL QCD potential at low energies in lattice QCD. Phys. Rev. D, 99: 014514, Jan 2019. 10.1103/​PhysRevD.99.014514.
https:/​/​doi.org/​10.1103/​PhysRevD.99.014514

[38] Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Physical Review A, 87 (2): 022328, 2013. 10.1103/​PhysRevA.87.022328.
https:/​/​doi.org/​10.1103/​PhysRevA.87.022328

[39] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum algorithms for quantum field theories. Science, 336 (6085): 1130–1133, Jun 2012. ISSN 0036-8075, 1095-9203. 10.1126/​science.1217069.
https:/​/​doi.org/​10.1126/​science.1217069

[40] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum computation of scattering in scalar quantum field theories. Quantum Info. Comput., 14 (11-12): 1014–1080, Sep 2014. ISSN 1533-7146.

[41] Johannes Kirscher, Nir Barnea, Doron Gazit, Francesco Pederiva, and Ubirajara van Kolck. Spectra and Scattering of Light Lattice Nuclei from Effective Field Theory. Phys. Rev. C, 92 (5): 054002, 2015. 10.1103/​PhysRevC.92.054002.
https:/​/​doi.org/​10.1103/​PhysRevC.92.054002

[42] Ian D Kivlichan, Nathan Wiebe, Ryan Babbush, and Alán Aspuru-Guzik. Bounding the costs of quantum simulation of many-body physics in real space. Journal of Physics A: Mathematical and Theoretical, 50 (30): 305301, 2017. 10.1088/​1751-8121/​aa77b8.
https:/​/​doi.org/​10.1088/​1751-8121/​aa77b8

[43] Ian D Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Kin-Lic Chan, and Ryan Babbush. Quantum simulation of electronic structure with linear depth and connectivity. Physical Review Letters, 120 (11): 110501, 2018. 10.1103/​PhysRevLett.120.110501.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.110501

[44] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev., A98 (3): 032331, 2018. 10.1103/​PhysRevA.98.032331.
https:/​/​doi.org/​10.1103/​PhysRevA.98.032331

[45] Natalie Klco and Martin J. Savage. Digitization of scalar fields for quantum computing. Phys. Rev., A99 (5): 052335, 2019. 10.1103/​PhysRevA.99.052335.
https:/​/​doi.org/​10.1103/​PhysRevA.99.052335

[46] Natalie Klco, Martin J. Savage, and Jesse R. Stryker. SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers. Phys. Rev. D, 101: 074512, Apr 2020. 10.1103/​PhysRevD.101.074512.
https:/​/​doi.org/​10.1103/​PhysRevD.101.074512

[47] Martin Kliesch, Christian Gogolin, and Jens Eisert. Lieb-Robinson bounds and the simulation of time-evolution of local observables in lattice systems. In Many-Electron Approaches in Physics, Chemistry and Mathematics, pages 301–318. Springer, 2014. 10.1007/​978-3-319-06379-9_17.
https:/​/​doi.org/​10.1007/​978-3-319-06379-9_17

[48] John Kogut and Leonard Susskind. Hamiltonian formulation of Wilson's lattice gauge theories. Phys. Rev. D, 11: 395–408, Jan 1975. 10.1103/​PhysRevD.11.395.
https:/​/​doi.org/​10.1103/​PhysRevD.11.395

[49] Benjamin P Lanyon, James D Whitfield, Geoff G Gillett, Michael E Goggin, Marcelo P Almeida, Ivan Kassal, Jacob D Biamonte, Masoud Mohseni, Ben J Powell, Marco Barbieri, et al. Towards quantum chemistry on a quantum computer. Nature chemistry, 2 (2): 106, 2010. 10.1038/​nchem.483.
https:/​/​doi.org/​10.1038/​nchem.483

[50] Seth Lloyd. Universal quantum simulators. Science, pages 1073–1078, 1996. 10.1126/​science.273.5278.1073.
https:/​/​doi.org/​10.1126/​science.273.5278.1073

[51] Guang Hao Low and Isaac L Chuang. Hamiltonian simulation by qubitization. Quantum, 3: 163, 2019. 10.22331/​q-2019-07-12-163.
https:/​/​doi.org/​10.22331/​q-2019-07-12-163

[52] Alexandru Macridin, Panagiotis Spentzouris, James Amundson, and Roni Harnik. Electron-Phonon Systems on a Universal Quantum Computer. Phys. Rev. Lett., 121 (11): 110504, 2018. 10.1103/​PhysRevLett.121.110504.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.110504

[53] G. Magnifico, D. Vodola, E. Ercolessi, S. P. Kumar, M. Müller, and A. Bermudez. ${{{\mathbb{Z}}_{N}}}$ gauge theories coupled to topological fermions: ${{{\mathrm{QED}}}}_{2}$ with a quantum mechanical ${\theta}$ angle. Phys. Rev. B, 100: 115152, Sep 2019. 10.1103/​PhysRevB.100.115152.
https:/​/​doi.org/​10.1103/​PhysRevB.100.115152

[54] Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt. Real-Time Dynamics of Lattice Gauge Theories with a Few-Qubit Quantum Computer. Nature, 534 (7608): 516–519, Jun 2016. ISSN 1476-4687. 10.1038/​nature18318.
https:/​/​doi.org/​10.1038/​nature18318

[55] A. Mezzacapo, E. Rico, C. Sabín, I. L. Egusquiza, L. Lamata, and E. Solano. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits. Phys. Rev. Lett., 115 (24): 240502, Dec 2015. 10.1103/​PhysRevLett.115.240502.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.240502

[56] Christine Muschik, Markus Heyl, Esteban Martinez, Thomas Monz, Philipp Schindler, Berit Vogell, Marcello Dalmonte, Philipp Hauke, Rainer Blatt, and Peter Zoller. U(1) Wilson lattice gauge theories in digital quantum simulators. New J. Phys., 19 (10): 103020, 2017. ISSN 1367-2630. 10.1088/​1367-2630/​aa89ab.
https:/​/​doi.org/​10.1088/​1367-2630/​aa89ab

[57] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information. AAPT, 2002. 10.1119/​1.1463744.
https:/​/​doi.org/​10.1119/​1.1463744

[58] NPLQCD Collaboration, Silas R. Beane, Emmanuel Chang, William Detmold, Kostas Orginos, Assumpta Parreño, Martin J. Savage, and Brian C. Tiburzi. Ab Initio Calculation of the $\mathrm{np}\rightarrow\mathrm{d}\gamma$ Radiative Capture Process. Phys. Rev. Lett., 115 (13): 132001, Sep 2015. 10.1103/​PhysRevLett.115.132001.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.132001

[59] NPLQCD Collaboration, Martin J. Savage, Phiala E. Shanahan, Brian C. Tiburzi, Michael L. Wagman, Frank Winter, Silas R. Beane, Emmanuel Chang, Zohreh Davoudi, William Detmold, and Kostas Orginos. Proton-Proton Fusion and Tritium $\beta$ Decay from Lattice Quantum Chromodynamics. Phys. Rev. Lett., 119 (6): 062002, Aug 2017. 10.1103/​PhysRevLett.119.062002.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.062002

[60] NuQS Collaboration, Henry Lamm, Scott Lawrence, and Yukari Yamauchi. General methods for digital quantum simulation of gauge theories. Phys. Rev. D, 100 (3): 034518, Aug 2019. 10.1103/​PhysRevD.100.034518.
https:/​/​doi.org/​10.1103/​PhysRevD.100.034518

[61] Maris Ozols, Martin Roetteler, and Jérémie Roland. Quantum rejection sampling. ACM Transactions on Computation Theory (TOCT), 5 (3): 1–33, 2013. 10.1145/​2493252.2493256.
https:/​/​doi.org/​10.1145/​2493252.2493256

[62] Indrakshi Raychowdhury and Jesse R Stryker. Loop, string, and hadron dynamics in SU(2) Hamiltonian lattice gauge theories. Physical Review D, 101 (11): 114502, 2020. 10.1103/​PhysRevD.101.114502.
https:/​/​doi.org/​10.1103/​PhysRevD.101.114502

[63] Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave Wecker, and Matthias Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences, 114 (29): 7555–7560, 2017. 10.1073/​pnas.1619152114.
https:/​/​doi.org/​10.1073/​pnas.1619152114

[64] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S. Montangero. Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation. Phys. Rev. Lett., 112 (20): 201601, May 2014. 10.1103/​PhysRevLett.112.201601.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.201601

[65] Christian Schweizer, Fabian Grusdt, Moritz Berngruber, Luca Barbiero, Eugene Demler, Nathan Goldman, Immanuel Bloch, and Monika Aidelsburger. Floquet Approach to $\mathbb{Z}_2$ Lattice Gauge Theories with Ultracold Atoms in Optical Lattices. Nat. Phys., 15 (11): 1168–1173, Nov 2019. ISSN 1745-2481. 10.1038/​s41567-019-0649-7.
https:/​/​doi.org/​10.1038/​s41567-019-0649-7

[66] Julian Schwinger. Gauge invariance and mass. ii. Phys. Rev., 128: 2425–2429, Dec 1962. 10.1103/​PhysRev.128.2425.
https:/​/​doi.org/​10.1103/​PhysRev.128.2425

[67] Rolando D. Somma. Quantum simulations of one dimensional quantum systems. arXiv:1503.06319, 2015.
arXiv:1503.06319

[68] Rolando D Somma. A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation. Journal of Mathematical Physics, 57 (6): 062202, 2016. 10.1063/​1.4952761.
https:/​/​doi.org/​10.1063/​1.4952761

[69] Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical physics. Journal of Mathematical Physics, 32 (2): 400–407, 1991. 10.1063/​1.529425.
https:/​/​doi.org/​10.1063/​1.529425

[70] Krysta M. Svore, Matthew B. Hastings, and Michael Freedman. Faster phase estimation. Quantum Info. Comput., 14 (3-4): 306–328, March 2014. ISSN 1533-7146.

[71] L. Tagliacozzo, A. Celi, P. Orland, M. W. Mitchell, and M. Lewenstein. Simulation of non-Abelian gauge theories with optical lattices. Nat. Commun., 4: 2615, Oct 2013. ISSN 2041-1723. 10.1038/​ncomms3615.
https:/​/​doi.org/​10.1038/​ncomms3615

[72] John Watrous. The theory of quantum information. Cambridge University Press, 2018. 10.1017/​9781316848142.
https:/​/​doi.org/​10.1017/​9781316848142

[73] Dave Wecker, Bela Bauer, Bryan K Clark, Matthew B Hastings, and Matthias Troyer. Gate-count estimates for performing quantum chemistry on small quantum computers. Physical Review A, 90 (2): 022305, 2014. 10.1103/​PhysRevA.90.022305.
https:/​/​doi.org/​10.1103/​PhysRevA.90.022305

[74] Dave Wecker, Matthew B Hastings, Nathan Wiebe, Bryan K Clark, Chetan Nayak, and Matthias Troyer. Solving strongly correlated electron models on a quantum computer. Physical Review A, 92 (6): 062318, 2015. 10.1103/​PhysRevA.92.062318.
https:/​/​doi.org/​10.1103/​PhysRevA.92.062318

[75] Nathan Wiebe and Chris Granade. Efficient bayesian phase estimation. Physical review letters, 117 (1): 010503, 2016. 10.1103/​PhysRevLett.117.010503.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.010503

[76] Nathan Wiebe and Martin Roetteler. Quantum arithmetic and numerical analysis using repeat-until-success circuits. Quantum Information & Computation, 16 (1-2): 134–178, 2016.

[77] Nathan Wiebe, Dominic Berry, Peter Høyer, and Barry C Sanders. Higher order decompositions of ordered operator exponentials. Journal of Physics A: Mathematical and Theoretical, 43 (6): 065203, 2010. 10.1088/​1751-8113/​43/​6/​065203.
https:/​/​doi.org/​10.1088/​1751-8113/​43/​6/​065203

[78] U.-J. Wiese. Ultracold quantum gases and lattice systems: Quantum simulation of lattice gauge theories. Ann. Phys., 525 (10-11): 777–796, 2013. ISSN 1521-3889. 10.1002/​andp.201300104.
https:/​/​doi.org/​10.1002/​andp.201300104

[79] Uwe-Jens Wiese. Towards quantum simulating QCD. Nucl. Phys. A, 931: 246–256, Nov 2014. ISSN 0375-9474. 10.1016/​j.nuclphysa.2014.09.102.
https:/​/​doi.org/​10.1016/​j.nuclphysa.2014.09.102

[80] Kenneth G. Wilson. Confinement of quarks. Phys. Rev. D, 10: 2445–2459, Oct 1974. 10.1103/​PhysRevD.10.2445.
https:/​/​doi.org/​10.1103/​PhysRevD.10.2445

[81] T. Yamazaki, Y. Kuramashi, and A. Ukawa. Helium Nuclei in Quenched Lattice QCD. Phys. Rev. D, 81: 111504, 2010. 10.1103/​PhysRevD.81.111504.
https:/​/​doi.org/​10.1103/​PhysRevD.81.111504

[82] Takeshi Yamazaki, Ken-ichi Ishikawa, Yoshinobu Kuramashi, and Akira Ukawa. Helium nuclei, deuteron and dineutron in 2+1 flavor lattice QCD. Phys. Rev. D, 86: 074514, 2012. 10.1103/​PhysRevD.86.074514.
https:/​/​doi.org/​10.1103/​PhysRevD.86.074514

[83] Takeshi Yamazaki, Ken-ichi Ishikawa, Yoshinobu Kuramashi, and Akira Ukawa. Study of quark mass dependence of binding energy for light nuclei in 2+1 flavor lattice QCD. Phys. Rev. D, 92 (1): 014501, 2015. 10.1103/​PhysRevD.92.014501.
https:/​/​doi.org/​10.1103/​PhysRevD.92.014501

[84] Theodore J Yoder, Guang Hao Low, and Isaac L Chuang. Fixed-point quantum search with an optimal number of queries. Physical review letters, 113 (21): 210501, 2014. 10.1103/​PhysRevLett.113.210501.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.210501

[85] Christof Zalka. Simulating quantum systems on a quantum computer. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454 (1969): 313–322, 1998. 10.1098/​rspa.1998.0162.
https:/​/​doi.org/​10.1098/​rspa.1998.0162

[86] Erez Zohar, J. Ignacio Cirac, and Benni Reznik. Cold-Atom Quantum Simulator for SU(2) Yang-Mills Lattice Gauge Theory. Phys. Rev. Lett., 110 (12): 125304, Mar 2013. 10.1103/​PhysRevLett.110.125304.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.125304

[87] Erez Zohar, Alessandro Farace, Benni Reznik, and J. Ignacio Cirac. Digital Quantum Simulation of $\mathbb{{Z}}_2$ Lattice Gauge Theories with Dynamical Fermionic Matter. Phys. Rev. Lett., 118 (7): 070501, Feb 2017. 10.1103/​PhysRevLett.118.070501.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.070501

Cited by

[1] Indrakshi Raychowdhury and Jesse R. Stryker, "Solving Gauss's Law on Digital Quantum Computers with Loop-String-Hadron Digitization", arXiv:1812.07554.

[2] Christopher David White, ChunJun Cao, and Brian Swingle, "Conformal field theories are magical", arXiv:2007.01303.

[3] Anthony Ciavarella, "An Algorithm for Quantum Computation of Particle Decays", arXiv:2007.04447.

[4] Yu Tong, Dong An, Nathan Wiebe, and Lin Lin, "Fast inversion, preconditioned quantum linear system solvers, and fast evaluation of matrix functions", arXiv:2008.13295.

[5] Minh C. Tran, Yuan Su, Daniel Carney, and Jacob M. Taylor, "Faster Digital Quantum Simulation by Symmetry Protection", arXiv:2006.16248.

The above citations are from SAO/NASA ADS (last updated successfully 2020-09-22 18:22:56). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2020-09-22 18:22:55).

1 thought on “Quantum Algorithms for Simulating the Lattice Schwinger Model

  1. Pingback: Perspective in Quantum Views by Lucas Lamata "Making quantum simulations of quantum field theories more affordable"