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Violation of a noncontextuality inequality or
the phenomenon referred to ‘quantum contextu-
ality’ is a fundamental feature of quantum the-
ory. In this article, we derive a novel family
of noncontextuality inequalities along with their
sum-of-squares decompositions in the simplest
(odd-cycle) sequential-measurement scenario ca-
pable to demonstrate Kochen-Specker contextu-
ality. The sum-of-squares decompositions allow
us to obtain the maximal quantum violation of
these inequalities and a set of algebraic relations
necessarily satisfied by any state and measure-
ments achieving it. With their help, we prove
that our inequalities can be used for self-testing
of three-dimensional quantum state and measure-
ments. Remarkably, the presented self-testing re-
sults rely on a single assumption about the mea-
surement device that is much weaker than the
assumptions considered in Kochen-Specker con-
textuality.

To realize genuine quantum technologies such as cryp-
tographic systems, quantum simulators or quantum com-
puting devices, the back-end user should be ensured that
the quantum devices work as specified by the provider.
Methods to certify that a quantum device operates in a
nonclassical way are therefore needed. The most com-
pelling one, developed in the cryptographic context, is
self-testing [MY04]. It exploits nonlocality, i.e., the exis-
tence of quantum correlations that cannot be reproduced
by the local-realist models, and provides the complete
form of device-independent 1 characterization of quan-
tum devices only from the statistical data the devices
generate. Thus, it is being extensively studied in recent
years [YVB+14, BP15, CGS17].

However, since self-testing, as defined in Ref. [MY04],
stands on nonlocality [Bel64] (or, in other words, quan-
tum correlations that violate local-realist inequalities),
it is restricted to preparations of composite quantum
systems and local measurements on them. Therefore,
it poses a fundamental question: presuming the min-
imum features of the devices how to characterize (i)
quantum systems of prime dimension that are not ca-
pable of exhibiting nonlocal correlations, and (ii) quan-
tum systems without entanglement or spatial separation
between subsystems? A possible way to address such
instances is to employ quantum contextuality (Kochen-
Specker contextuality), a generalization of nonlocal cor-

1With the requirement of the spatial separation between mea-
surements on subsystems, and without any assumption on the in-
ternal features of the devices.

relations obtained from the statistics of commuting mea-
surements that are performed on a single quantum sys-
tem [KS75, Cab08, CSW14, KCBbuS08]. Indeed, the
recent study [BRV+19b, IMOK20, BRV+19a] provides
self-testing statements based on contextual correlations
(or correlations that violate noncontextuality inequal-
ity). Since quantum contextual correlations are essen-
tial in many aspects of quantum computation [HWVE14,
Rau13] and communication [GHH+14, SHP19], self-
testing statements are crucial for certifying quantum
technology [BRV+19a]. Apart from that, it is, nonethe-
less, fundamentally interesting to seek the maximum in-
formation one can infer about the quantum devices only
from the observed statistics in a contextuality experi-
ment.

In the context of nonlocality, sum-of-squares (SOS)
decomposition of quantum operators associated with
local-realist inequalities has been the key mathemat-
ical tool in recent years to obtain optimal quantum
values and self-testing properties of quantum devices
[BP15, ŠASA16, SAT+17, KŠT+19, SSKA19, ASTA19,
Kan19, CMMN19]. Whether this line of study, albeit, re-
stricted to nonlocal correlations, can further be extended
to contextuality scenario is of great interest from the per-
spective of unified approach to non-classical correlations
[CSW14, AC18].

In this work, we consider Klyachko-Can-Binicioğlu-
Shumovsky (KCBS) scenario which comprises of one
preparation and n (where n > 5 is odd) number of mea-
surements [KCBbuS08, AQB+13, LSW11]. This is the
simplest scenario capable to exhibit contextual correla-
tions using a three-dimensional quantum system and five
binary outcome measurements. It also has several impli-
cations in quantum foundation and quantum information
[GBC+14, GHH+14, SBA17, Cab13, KanCK14, SR17,
XSS+16]. We first introduce a modified version of KCBS
expression for n = 5 involving correlation between the
outcomes of two sequential measurements, along with an
SOS decomposition of the respective quantum operator.
We describe our methodology to obtain SOS and simul-
taneously, generalize for n-cycle KCBS scenario where
n = 2m + 1,m ∈ N. Interestingly, the SOS decomposi-
tion holds even without the idealizations that the mea-
surements satisfy commutativity conditions in a cyclic
order. By virtue of this decomposition, we obtain the
maximum quantum value of our modified n-cycle ex-
pression and a set of algebraic relations involving any
quantum state and measurements that yield those max-
imum values. By solving those relations, we show the
existence of a three-dimensional vector-space invariant
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under the algebra of measurement operators. Subse-
quently, we prove the uniqueness of the projected three-
dimensional measurements and state up to unitary equiv-
alence, that is, self-testing property of the quantum de-
vices. The presented self-testing statement relies on the
premise that the measurement device returns only the
post-measurement system and has no memory, while it
does not rely on the commutativity relations between ob-
servables.

1 Preliminaries
We begin by illustrating our scenario and specifying the
assumptions.

Sequential-measurement set-up. Each run of the exper-
imental observation comprises of preparation of a physi-
cal system followed by two measurements in a sequence
using one non-demolishing measurement device as de-
picted in Fig. 1. The measurement device has n (odd)
different settings, each of which yields ±1 outcome. Let’s
denote the first and second measurement settings by Ai
and Aj where i, j ∈ {1, . . . , n}. The settings are chosen
such that j = i ± 1, where from now on the subscript i
is taken modulo n, that is, Ai±n = Ai. We make the
following assumption about the measurement device.

Assumption. The measurement device has no memory
and returns only the actual post-measurement state.

This assumption is necessary, otherwise, any quantum
statistics can be reproduced by classical systems.

By repeating this experiment many times we can ob-
tain joint probabilities p(ai, ai±1|Ai,Ai±1) of two mea-
surements and single probabilities p(ai|Ai) of the first
measurement, and consequently, their correlation func-
tions,

〈AiAi±1〉 =
∑

ai,ai±1

aiai±1p(ai, ai±1|Ai,Ai±1),

〈Ai〉 =
∑
ai

aip(ai|Ai), (1)

where the measurement outcomes are denoted as ai =
±1.

Figure 1: Sequential-measurement set-up. The simplest
contextuality scenario comprises of one preparation P and one
measurement device with settings Ai each of them returns ±1
outcome.

In quantum theory the two-outcome measurements Ai
can be in general non-projective. However, since we do
not restrict the dimension of these measurements, an

extension of Naimark’s dilation theorem [IMOK20] al-
lows us to consider these measurements to be projective.
Thus, we can represent the measurements by the follow-
ing operators

Ai = 2Pi − 1, (2)
where Pi are projectors acting on some finite-dimensional
Hilbert space H. The preparation is represented by a
quantum state that, by the same reason, can be consid-
ered pure; we denote it by |ψ〉.

Kochen-Specker contextuality [CSW14] pertains to the
assumption that the projectors satisfy certain orthogo-
nality relations, particularly in this scenario, PiPi±1 = 0
for all i, implying [Ai, Ai±1] = 0. Such prerequisite about
the measurement device are difficult to justify in practice.
Since we aim to characterize the quantum devices from
their minimal features, we do not make this assumption.
We will see later that orthogonality relations between
projectors will be derived facts from the maximal viola-
tion of our inequality.

A general linear expression that can be considered to
test nonclassicality (or noncontextuality in the usual sce-
nario) in this set-up is given by,

B =
∑
i

ci(〈AiAi+1〉+ 〈Ai+1Ai〉) +
∑
i

di〈Ai〉. (3)

Using the quantum expression of the joint probabili-
ties under the aforementioned Assumption, for example,
p(+1,+1|Ai,Ai±1) = 〈ψ|PiPi±1Pi|ψ〉, we find

〈AiAi+1〉+ 〈Ai+1Ai〉 = 〈ψ|{Ai, Ai+1}|ψ〉. (4)

Subsequently, the optimal quantum value of the expres-
sion (3) is defined as

ηQ = sup
|ψ〉,Ai

〈ψ|B|ψ〉, (5)

where B =
∑
i ci{Ai, Ai+1} +

∑
i diAi is the quantum

operator associated with the expression B and Ai are of
the form (2). Notice that in the usual scenario, due to
commutativity relations, {Ai, Ai+1} can be replaced by
2AiAi+1. The maximal classical value ηC (or noncontex-
tual value in the usual scenario 2) is defined as

ηC = max
ai∈{1,−1}

{
2
∑
i

ciaiai+1 +
∑
i

diai

}
. (6)

KCBS inequality. The well known n-cycle KCBS non-
contextuality inequality [AQB+13] is of the form

BKCBS := −
n∑
i=1
〈AiAi+1〉 6 ηC = n− 2. (7)

The maximal quantum violation of this inequality is

ηQ = 3 cos (π/n)− 1
1 + cos (π/n) n (8)

2Since any noncontextual value assignment pertains to certain
orthogonality conditions, here we refer to ηC as the classical value
for the relaxed scenario. Note that, under the aforesaid Assump-
tion, the optimal value of B in classical theory or any other theory
where measurement does not affect the system is given by Eq. (6).
With the orthogonality conditions, ηC reduces to the maximal non-
contextual value.

2



and it is achieved by the following quantum state

|ψ̂〉 = |0〉 ≡ (1, 0, 0)T , (9)

and observables

Âi = 2|v̂i〉〈v̂i| − 1, (10)

where |v̂i〉 are three-dimensional real vectors defined as

|v̂i〉 = (cos θ, sin θ sinφi, sin θ cosφi)T (11)

where θ is defined as cos θ =
√

1/(1 + 2α), where

α = 1
2 sec

(π
n

)
(12)

and
φi = n− 1

n
πi. (13)

Note that α and φi are functions of n, which for the
sake of simplification is not explicitly specified in their
notation. Let us also remark that |ψ̂〉 ∈ C3 and Âi
acting on C3 denote a particular example of quantum
realizations achieving the maximal quantum value of the
KCBS inequality (7). The self-testing properties of the
above-mentioned state and measurements based on the
violation of KCBS inequality are shown in [BRV+19b].
The proof is based on the optimization method of
semidefinite programming under the usual assumptions
of contextuality, along with an additional assumption
that Pi in Eq. (2) are rank-one projectors.

Sum-of-squares decomposition. Let us finally discuss
the concept of sum-of-squares decompositions. Consider
a quantum operator B corresponding to some noncontex-
tuality expression B like the one in (5). Now, if for any
choice of quantum measurements Ai and some η ∈ R one
can decompose the shifted operator η1−B as

η1−B =
∑
k

E†kEk, (14)

the maximal quantum value of B is upper bounded by
η, i.e., 〈ψ|B|ψ〉 6 η for any quantum state |ψ〉. We
call (14) a sum-of-squares decomposition associated to
B. Typically Ek are constructed from the measurement
operators Ai. The bound η is realized by a state and a
set of measurements if and only if the following algebraic
relation holds true for all k,

Ek|ψ〉 = 0. (15)

Our self-testing proofs heavily rely on the above relations.
Let us remark that Ref. [LSW11] provides an SOS

decomposition for the conventional KCBS operator un-
der the assumptions that the measurements satisfy
[Ai, Ai±1] = 0. In what follows we derive an alterna-
tive noncontextuality inequality together with the cor-
responding SOS decomposition of the form (14) which
does not require making this assumption. Furthermore,
our SOS is designed in such a way that the algebraic
relations (15) it implies can be used for self-testing.

2 Modified KCBS inequality with sum-of-
squares decomposition
We are now ready to present our results. For pedagogical
purposes we begin with the simplest case of n = 5 and
consider the following modified KCBS expression

B = −1
2

5∑
i=1

(〈AiAi+1〉+ 〈Ai+1Ai〉)− α2
5∑
i=1
〈Ai〉, (16)

where α is given in (12) with n = 5. Following (6) it is
not difficult to find the maximal classical value of B is
ηC = 3 + α2.

Result 1 (Modified KCBS inequality with SOS). The
maximal quantum value of B given in Eq. (16) with α =
(1/2) sec(π/n) is ηQ = 3(1 + α2).

Proof. To prove this statement we present the SOS de-
composition for the modified KCBS operator

B = −1
2
∑
i

{Ai, Ai+1} − α2
∑
i

Ai. (17)

Let us first define the following Hermitian operators for
i = 1, . . . , 5,

Mi,1 = − 1
α3 (Ai + αAi−1 + αAi+1),

Mi,2 = − 1
α4 (−αAi +Ai−2 +Ai+2), (18)

and observe that they satisfy the following relations

− α5

5
∑
i

(
2Mi,1 + α3Mi,2

)
= α2

∑
i

Ai, (19)

and
α5

5
∑
i

(
M2
i,1 + α3

2 M2
i,2

)
= 1

2
∑
i

{Ai, Ai+1}+ 5
2α1,

(20)
where we have used the identities α2 +α = 1 for α given
in Eq. (12) with n = 5 and A2

i = 1. With the aid of
these relations it is straightforward to verify that

α5

5
∑
i

(1−Mi,1)2+α8

10
∑
i

(1−Mi,2)2

=
(
α5 + α8

2

)
1− α5

5
∑
i

(
2Mi,1 + α3Mi,2

)
+α5

5
∑
i

(
M2
i,1 + α3

2 M2
i,2

)
= 3(1 + α2)1−B, (21)

where B is given in Eq. (17).
Thus, the above equation constitutes a SOS decompo-

sition (14) of the modified KCBS operator in which

Ek =
√
α5

5 (1−Mk,1) (22)

for k = 1, . . . , 5;

Ek =
√
α8

10 (1−Mk−5,2) (23)
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for k = 6, . . . , 10; and 3 + 3α2 = 4.146 is the quantum
bound of B. We can validate that the state and measure-
ments in dimension three (9)-(10) responsible for optimal
value of KCBS inequality achieve this bound.

Inspired by the above n = 5 case, let us now derive our
modified KCBS expression for more measurements. Our
aim is to obtain a general expression for which the sum-
of-squares decomposition can easily be constructed as the
one in Eq. (21) and later directly used for self-testing.

To reach this goal, let us consider n two-outcome quan-
tum measurements represented by operators Ai (2) act-
ing on some Hilbert space of unknown but finite dimen-
sion. Let us then consider the expression (14) in which
the operators Ek are of the form 1−Mk with some pos-
itive multiplicative factors, where Mk are constructed
from Ai. Notice that for such a choice, Eq. (15) im-
plies that Mk must be stabilizing operators of the state
|ψ〉 maximally violating our modified KCBS expression,
that is, Mk|ψ〉 = |ψ〉. Now, to design the explicit form of
Mk we can use the optimal quantum realization (9)-(10)
of the n-cycle KCBS inequality (7), which gives us (see

Appendix A for details of the derivation)

Mi,k = ᾱ [(1− 2βk)Ai + βk(Ai+k +Ai−k)] , (24)

where i = 1, . . . , n and k = 1, . . . , (n− 1)/2, whereas the
coefficients βk and ᾱ are given by

βk = 1
2(1− cosφk) (25)

and
ᾱ = 1 + 2α

1− 2α, (26)

where α, φk are defined in Eqs. (12) and (13), respec-
tively. Let us remark that Mi,k, ᾱ, βi are all functions
of n which for the sake of simplification is not specified
explicitly. Moreover, the operators Mi,k defined in (24)
act on unknown Hilbert space H of finite dimension.

We now go back to the SOS decomposition (14) which
is deemed to be of the form∑

i,k

ck [1−Mi,k]2 (27)

with some non-negative parameters ck to be determined.
By plugging the expression of Mi,k (24) into it and after
some rearrangement of indices, we obtain

∑
i,k

ck [1−Mi,k]2 =
(
nᾱ2

∑
k

ck

(
1
ᾱ2 + 1 + 6β2

k − 4βk
))

1−

(
2ᾱ
∑
k

ck

)∑
i

Ai

+ᾱ2
∑
i

[
2c1β1 (1− 2β1) + cn−1

2
β2

n−1
2

]
{Ai, Ai+1}

+ᾱ2
∑
i

(n−3)/2∑
k=2

[
2ckβk (1− 2βk) + cf( k

2 )β
2
f( k

2 )
]
{Ai, Ai+k}, (28)

where

f

(
k

2

)
=
{
k/2, if k is even
(n− k)/2, if k is odd.

(29)

We want to choose the coefficient ck so that they are non-
negative and all the anti-commutators {Ai, Ai+k} vanish
except for k = ±1. For that purpose we consider n =
2m + 1 for m ∈ N \ {1}. First we take ck = 0 whenever
k 6= 2x, where x = 0, . . . ,m − 1. It follows from (28)
that our requirement is fulfilled if the following set of
equations is satisfied

2c2xβ2x (1− 2β2x) + c2x−1β2
2x−1 = 0 (30)

for x = 1, . . . ,m−1. The above equation (30) implies for
all x = 1, . . . ,m− 1

c2x

c1
= 1

2x
x∏
j=1

β2
2j−1

β2j (2β2j − 1)

=
(

β1

2xβ2x

)2 x∏
j=1

sec(φ2j ). (31)

Since sec(φ2j ) is positive for all j 3, c2x/c1 is also positive.
Now, to provide a plausible solution of c2x , it suffices to
choose a positive c1. Due to (30) the remaining anti-
commutators in (28) are {Ai, Ai+1} with a factor

ᾱ2 [2c1β1 (1− 2β1) + c2m−1β2
2m−1

]
. (32)

For simplicity we choose this factor to be 1/2 which im-
plies that c1 is such that

4c1β1 (1− 2β1) + 2c2m−1β2
2m−1 = 1

ᾱ2 . (33)

After substituting c2m−1 from Eq. (31), the above gives

c1 = 22m−3

ᾱ2
1

22m−1β1 (1− 2β1) + β2
1

m−1∏
j=1

sec(φ2j )
. (34)

One can readily verify that c1 is positive. Finally, due to

3Note that cosφ2j = cos (π2j/n) and 0 < π2j/n < π/2, ∀j =
1, 2, . . . ,m− 1.
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(30) and (33), Eq. (28) reads as,∑
i,k

ck [1−Mi,k]2 = ηn1−Bn, (35)

where

Bn = −1
2
∑
i

{Ai, Ai+1} − γ
∑
i

Ai , (36)

γ = −2ᾱ
∑
k

ck , (37)

and

ηn = nᾱ2
∑
k

ck

(
1
ᾱ2 + 1 + 6β2

k − 4βk
)
, (38)

and ck,Mi,k are defined in (31), (34) and (24).
From Eq. (25) we know that ᾱ is a negative quan-

tity and hence γ is positive. Thus, our modified n-cycle
KCBS inequality is

Bn := −1
2
∑
i

(〈AiAi+1〉+ 〈Ai+1Ai〉)− γ
∑
i

〈Ai〉 6 ηCn

(39)
whose quantum bound is ηn (38) and the classical value
ηCn is provided in Result 3. It follows from the construc-
tion of the SOS (35) that the qutrit quantum state and
measurements defined in Eqs. (9)-(13) satisfy the stabi-
lizing relations Mi,k|ψ〉 = |ψ〉, implying the bound ηn is
tight, or, in other words, the maximal quantum value of
(39) equals ηn.

To put the above mathematical analysis in a nutshell,
the expression of the noncontextuality inequality (39) is
derived such that it meets a SOS decomposition (14) of
certain form. This leads us to the following result.

Result 2 (Modified n-cycle expression with SOS). The
maximum quantum value of modified n-cycle noncontex-
tuality expression (39) with a SOS decomposition (35) is
ηn (38) (where n = 2m + 1,m ∈ N \ {1}).

Let us finally prove the classical bound of our new non-
contextuality expression.

Result 3 (Maximal classical value). The classical value
of Bn in Eq. (39) is given by n+ γ − 2.
Proof. The classical value can be obtained by assigning
±1 values to the observables appearing in (39), that is,

ηCn = max
ai∈{1,−1}

{
−

n∑
i=1

aiai+1 − γ
n∑
i=1

ai

}
, (40)

where γ is positive. Let us say in the optimal assignment
there are k number of ai which are −1. We first assume
k > n/2. When there are k number of −1, and n − k
number of +1, the minimum value of

∑
i aiai+1 = 4k −

3n, and the quantity
∑
i ai = n− 2k. Substituting these

values in (40) we see

ηCn = (3− γ)n− (4− 2γ) k. (41)

Therefore, the optimal value of ηCn is obtained for the
minimum value of k, that is, for k = (n + 1)/2. This
implies the right-hand-side of (41) is n+γ−2. Similarly,
if k < n/2, then we have (n− k) > n/2, and following a
similar argument we can obtain the same bound.

3 Self-testing of quantum devices
An exact self-testing statement provides us the certifica-
tion of quantum devices, given that we observe an op-
timal violation of a noncontextuality inequality. How-
ever, the observed statistics are unchanged in the pres-
ence of auxiliary degrees of freedom (or auxiliary sys-
tems) and a global unitary. Therefore, self-testing in the
context of state-dependent quantum contextual correla-
tion [BRV+19b, IMOK20] infers unique state and mea-
surements up to these equivalences.

Here, we take the definition of self-testing stated in
[IMOK20]. Formally, self-testing of preparation |ψ〉 ∈ Cd
and a set of measurements {Ai}ni=1 acting on Cd is de-
fined as follows: if a set of observables {Ai}ni=1 acting on
unknown finite-dimensional Hilbert space H and a state
|ψ〉 ∈ H maximally violate a noncontextuality inequality,
then there exists a projection P : H → Cd and a unitary
operation U on Cd such that

1. U(P|ψ〉) = |ψ〉 ,

2. U(PAiP)U† = Ai for all i = 1, . . . , n.

To obtain self-testing only from the reduced Assumption
mentioned in section 1, we consider a modified version of
the expression Bn (39) of the following form

B̃n := Bn −
∑
i

[p(+ + |Ai+1,Ai) + p(+ + |Ai−1,Ai)] .

(42)
Since the additional term is non-positive, the classical
and quantum bounds of B̃n are the same as for Bn. More-
over, it follows from (35) that the SOS decomposition of
B̃n is

ηn1− B̃n =
∑
i,k

ck [1−Mi,k]2 +
∑
i

(PiPi+1)†(PiPi+1)

+
∑
i

(PiPi−1)†(PiPi−1), (43)

where

B̃n = Bn −
∑
i

Pi+1PiPi+1 −
∑
i

Pi−1PiPi−1, (44)

and ηn is again the optimal quantum value of B̃n. Let us
now show that our inequality (42) can be used to make a
self-testing statement, according to the above definition,
for the state and observables (9)-(10)maximally violating
it.

Result 4 (Self-testing). Under the Assumption stated in
Sec. 1, if a quantum state |ψ〉 ∈ H and a set of n (where
n = 2m + 1,m ∈ N \ {1}) measurements Ai acting on H
violate the inequality (42) maximally, then there exists a
projection P : H → C3 and a unitary U acting on C3

such that

U(PAiP†)U† = 2|v̂i〉〈v̂i| − 13,

U(P|ψ〉) = (1, 0, 0)T , (45)

where |v̂i〉 are defined in (11).
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Proof. Taking the expectation value of the state |ψ〉 on
both side of the SOS decomposition (43) of B, we obtain
by virtue of (15) that for any i and k,

Mi,k|ψ〉 = |ψ〉. (46)

In the particular k = 1 case this condition when com-
bined with the explicit form of Mi,1 given in Eq. (24)
together with the fact that β1 = α/(1 + 2α), leads to the
following relations for all i = 1, . . . , n,

(Ai + αAi+1 + αAi−1)|ψ〉 = (1− 2α)|ψ〉. (47)

Similarly, from the last two terms of the SOS decompo-
sition (43) we get that for all i = 1, . . . , n,

PiPi±1|ψ〉 = 0. (48)

Given the relations (47) and (48), the next Theorem pro-
vides the proof for the self-testing statement.

The self-testing property implies our modified inequal-
ity (42) are non-trivial since any classical value assign-
ment is not equivalent to the realization given in (45).

Theorem. If a set of quantum observables {Ai}ni=1
(where n is odd) of the form (2) acting on arbitrary finite-
dimensional Hilbert space H and a unit vector |ψ〉 ∈ H
satisfy the relations (47) and (48), then there exists a
projection operator P : H → C3 and a unitary U acting
on C3 such that (45) holds true.

Proof. We prove this theorem in two steps.
Step 1. In the first step, we deduce the effective dimen-

sionality of the observables Ai and the state |ψ〉. Let us
define a vector space V = Span{|ψ〉, A1|ψ〉, A3|ψ〉}. Due
to Lemma 1 (stated in Appendix B), it suffices to consider
the observables Ai and the state |ψ〉 restricted to V . In
other words, Lemma 1 points out that the Hilbert space
H can be decomposed as V ⊕ V ⊥ and all the operators
Ai have the following block structure

Ai =
(
Ãi O
O A′i

)
, (49)

wherein Ãi, A′i are acting on V, V ⊥, respectively; in par-
ticular, A′i|ψ〉 = 0 for any i. This allows us to define

Ãi = PAiP
† = 2P̃i − 1,

|ψ̃〉 = P|ψ〉, (50)

where P is the projection operator from H to V , P̃i =
PPiP

† > 0 and 1 is the identity operator acting on V .
It follows from Eq. (2) and Eqs. (47) and (48) that

the projected measurements P̃i and the state |ψ̃〉 satisfy
the following sets of relations for all i = 1, . . . , n,

P̃iP̃i±1|ψ̃〉 = 0, (51)(
P̃i + αP̃i−1 + αP̃i+1

)
|ψ̃〉 = |ψ̃〉, (52)

Step 2. In the second step, we characterize the observ-
ables Ãi. With the help of Lemma 2 given in Appendix
B, we first show that all observables Ãi are of the form

Ãi = 2|vi〉〈vi| − 1 (53)

for some normalized vectors |vi〉 ∈ C3 such that
〈vi|vi±1〉 = 0. The remaining part is the characteriza-
tion of |vi〉. By plugging Eq. (53) into Eq. (52) we
obtain that for all i,

(|vi〉〈vi|+ α|vi−1〉〈vi−1|+ α|vi+1〉〈vi+1|)|ψ̃〉 = |ψ̃〉. (54)

We use the fact that |vi〉, |vi±1〉 are orthogonal and mul-
tiply 〈vi−1| and 〈vi+1| with Eq. (54), which lead us to
the following equations

α〈vi−1|vi+1〉〈vi+1|ψ̃〉 = (1− α)〈vi−1|ψ̃〉 (55)

and
α〈vi+1|vi−1〉〈vi−1|ψ̃〉 = (1− α)〈vi+1|ψ̃〉 (56)

for all i. By substituting the term 〈vi−1|ψ̃〉 from the first
equation to the second one, we arrive at the following
conditions

∀i, |〈vi−1|vi+1〉| =
1− α
α

. (57)

Note that, here we use the fact that 〈vi+1|ψ̃〉 6= 0 4.
Considering the absolute value of both side of (56) and
using (57) we obtain another set of conditions

∀i, |〈ψ̃|vi−1〉| = |〈ψ̃|vi+1〉|. (58)

And since n is odd, as a consequence of the above equa-
tion,

∀i, j, |〈ψ̃|vi〉| = |〈ψ̃|vj〉|. (59)

Let us try to see what is the most general form of |vi〉
compatible with the above conditions. First let us exploit
the fact that observed probabilities do not change if we
rotate the state and measurements by a unitary opera-
tion. We thus choose it so that U |ψ̃〉 = (1, 0, 0)T ≡ |0〉.
We also notice that any unitary of the following form(

1 0
0 U ′

)
(60)

with U ′ being any 2 × 2 unitary does not change |0〉.
Later we will use this freedom.

Due to the fact that we are characterizing projectors
|vi〉〈vi| rather than the vectors themselves, we can always
assume the first element of the vector is positive, that is,
|vi〉 has the form,

|vi〉 =
(
cos θi, eiai sin θi sinφi, eibi sin θi cosφi

)T
. (61)

The condition (59) implies that all cos θi are equal and
therefore let us denote θi = θ. Plugging these forms of
|vi〉 and |ψ̃〉 = |0〉 into Eq. (54), the first element of the
vector equation leads to

cos θ = 1√
1 + 2α

. (62)

4If 〈vj+1|ψ̃〉 = 0 for some j, then (55) implies 〈vj−1|ψ̃〉
is also 0, and further (54) implies |vj〉〈vj |ψ̃〉 = |ψ̃〉. Substitut-
ing these in (54) taking i = j + 1, we arrive at a relation
|vj+2〉〈vj+2|ψ̃〉 = (1− α)/α|ψ̃〉 which cannot be true for any finite
n since |vj+2〉〈vj+2| has eigenvalues 1,0.
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Using this freedom we can bring one of the vectors, say
|vn〉, to (cos θ, 0, sin θ)T by taking

sinφn = 0, eibn = 1. (63)

Then, due to the condition 〈v1|vn〉 = 〈vn−1|vn〉 = 0 we
infer eib1 , eibn−1 are real and without loss of generality
we can take

eib1 = eibn−1 = 1 (64)

by absorbing the sign in cosφ1, cosφn−1. Further, we can
get rid one of the phases in |v1〉, that is,

eia1 = 1, (65)

and take sin(φ1) to be non-negative by applying another
unitary of the form (60),

U ′ = diag[± exp(−ia1), 1] (66)

that does not change the simplified form of |vn〉. Equat-
ing the second and third element of the vector equation
(54), we obtain the relations

eiai sinφi + αeiai−1 sinφi−1 + αeiai+1 sinφi+1 = 0, (67)

and

eibi cosφi + αeibi−1 cosφi−1 + αeibi+1 cosφi+1 = 0. (68)

With the aid of (63) and (65), Eq. (67) for i = n points
out sin(φ1) = −eian−1 sin(φn−1) which allows us to con-
sider eian−1 = 1. Taking i = 1 in Eqs. (67) and (68)
and replacing the values of sinφn, cosφn, eia1 , eib1 , eibn

we obtain,

sinφ1 + αeia2 sinφ2 = 0, (69)
cosφ1 + α+ αeib2 cosφ2 = 0. (70)

Thus, eia2 , eib2 are real and can be taken to be 1. Note,
here we use the fact that sinφ1 6= 0 5. Similarly, by
taking i = 2, . . . , n− 2 we conclude for all i

eiai = eibi = 1. (71)

On the other hand, the condition 〈vi|vi+1〉 = 0 implies,

φi+1 − φi = cos−1
(
−cos2 θ

sin2 θ

)
= (n− 1)π

n
. (72)

Finally, considering i = n in the above Eq. (72) and
using sinφn = 0 we deduce φ1 = (n− 1)π/n. We discard
the possibility φ1 = −(n− 1)π/n since sinφ1 is taken to
be non-negative. Thus, the equations (62), (71), and (72)
together with φ1 establish that the unknown vectors |vi〉
in (61) are unitarily equivalent to |v̂i〉. This completes
the proof.

5If sinφ1 = 0, then cosφ1 = ±1 and consequently
〈vn|v1〉 = cos (θ ∓ θ) which contradicts the relation 〈vn|v1〉 = 0.
Analogously, if we suppose cosφ2 = 0, then cosφ1 + α = 0 and
sinφ2 = ±1. Now, the first equation holds only if 2α2 = 1.

4 Conclusion
Kochen-Specker contextuality captures the intrinsic na-
ture of quantum theory that essentially departs from
classicality. It also offers a generalization of quantum
correlations beyond nonlocality to a larger class of quan-
tum systems and minimizes the demands to test non-
classicality. Therefore, it is a fundamental problem to
understand what is the maximal information about the
underlying quantum system that can be inferred from the
correlations observed in a contextuality experiment, and
whether this information can be used for certification of
quantum devices from minimal assumptions of their in-
ternal functioning.

In this work, we derive self-testing statements for n-
cycle scenario using weaker assumptions than those made
in previous approaches based on Kochen-Specker contex-
tuality [CSW14, BRV+19b, IMOK20, BRV+19a]. In par-
ticular, we do not assume orthogonality relations between
measurement effects. Instead, we consider general two-
outcome measurements which nevertheless obey a single
assumption that the measurement device does not return
any additional information except the post-measurement
system and does not possess any memory. Moreover,
we take a different approach, that is, we use the sum-
of-squares ’technique’ that has successfully been used in
the Bell scenario to derive maximal quantum violation of
certain Bell inequalities as well as in making self-testing
statements [BP15, ŠASA16, SAT+17, KŠT+19, SSKA19,
CMMN19, Kan19, ASTA19], but has never been explored
for self-testing in the contextuality scenario.

We further remark that self-testing from quantum con-
textuality is not fully device-independent as far as its
original definition is concerned, while, its experimental
test does not require space-like separation. The assump-
tion is critical to verify for practical purposes, however,
in future studies, one may try to overcome it by restrict-
ing the computational power or the memory of the mea-
surement device. Nonetheless, it is way more powerful
than the usual process of tomography. It is also distinct
from the self-testing approach in prepare-and-measure
scenario [TKV+18, FK19] since no restriction on the di-
mensionality of the preparation is imposed here.

Although the SOS decompositions hold for a certain
number of measurements, a suitable adaptation of our
approach in future studies may lead to SOS decomposi-
tions for an arbitrary odd number of measurements. An-
other direction for further study is to explore whether our
approach can be applied to states and measurements of
higher dimension than three and whether our self-testing
statements can be made robust to experimental imper-
fections. From a more general perspective, it would be
interesting to design a unifying approach to self-testing
based on Bell nonlocality and quantum contextuality.
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A Obtaining the stabilizing operators
To guess the stabilizing operators Mi,k we use the stabilizing operators in the optimal quantum realization of n-cycle
KCBS inequality (7). Let us assume that these operators are in the following form

M̂i,k = aÂi + bÂi+k + b′Âi−k, (73)

where the coefficients a, b and b′ are to be determined as a solution to the equation

(aÂi + bÂi+k + b′Âi−k)|ψ̂〉 = |ψ̂〉, (74)

and |ψ̂〉, Âi are given in Eqs. (9)-(10). To solve the above we first notice the following relation,

Âi|ψ̂〉 = (cos 2θ, sin 2θ sinφi, sin 2θ cosφi)T , (75)

which when substituted into Eq. (74) leads one to a system of equations
a(1 + b

a + b′

a ) cos 2θ

a sin 2θ
(

sinφi + b
a sinφi+k + b′

a sinφi−k
)

a sin 2θ
(

cosφi + b
a cosφi+k + b′

a cosφi−k
)
 =

1
0
0

 . (76)

Assuming that a 6= 0 and taking into account that sin 2θ 6= 0, the last two equations in the above system can be
rewritten as [

sinφi sinφi+k sinφi−k
cosφi cosφi+k cosφi−k

] 1
b/a

b′/a

 =
[

0
0

]
. (77)
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After multiplying the above equation from left by[
sinφi cosφi
cosφi − sinφi

]
(78)

and using the fact φi+k − φi = φk, Eq. (77) simplifies to,[
1 cosφk cosφk
0 sinφk − sinφk

] 1
b/a

b′/a

 =
[

0
0

]
. (79)

In this way we remark that the dependence of i in (77) disappears and the system of equations (79) imply

b

a
= b′

a
= −1

2 secφk. (80)

Substitution of above in the first vector equality of (76) leads to

a = 1
(1− secφk)(2 cos2 θ − 1) , (81)

and thus, we obtain a unique solution of a, b, b′. Finally, substituting a, b, b′ into Eq. (74) we can conveniently state
M̂i,k operators in the following way

M̂i,k :=
(

1 + 2α
1− 2α

)[
(1− 2βk)Âi + βk(Âi+k + Âi−k)

]
,

(82)

where
βk = 1

2(1− cosφk) , α = 1
2 sec

(π
n

)
. (83)

B Lemma 1-2
In this appendix, we provide two Lemmas that are used in the proof of the Theorem.

Lemma 1. If a set of quantum observables {Ai}ni=1 (where n is odd) of the form (2) and a vector |ψ〉 satisfy the
relations (47) and (48), then the vector space

V = span{|ψ〉, A1|ψ〉, A3|ψ〉} (84)

is invariant under the algebra generated by Ai.

Proof. To prove this statement it suffices to show that Ai|ψ〉 for all i = 1, . . . , n as well as all AiAj |ψ〉 with i 6= j can
be expressed as linear combinations of the basis vectors |ψ〉, A1|ψ〉 and A3|ψ〉.
Let us begin by noting that Eq. (47) for i = 2 gives us directly such a linear combination for A2|ψ〉 and so A2|ψ〉 ∈ V .

Then, the fact that Ai|ψ〉 ∈ V for i = 4, . . . , n follows from Eq. (47); it is enough to rewrite the latter as

Ai|ψ〉 = 1− 2α
α
|ψ〉 − 1

α
Ai−1|ψ〉 −Ai−2|ψ〉. (85)

Let us now move on to showing that AiAj |ψ〉 ∈ V for all i 6= j. To this end, we first observe that using (48) we
obtain

AiAi±1|ψ〉 = (2Pi − 1)(2Pi±1 − 1)|ψ〉
= −(Ai +Ai±1 + 1)|ψ〉, (86)

which due to the fact that Ai|ψ〉 ∈ V , allows us to conclude that for all i, AiAi±1|ψ〉 ∈ V .
Let us then consider the vectors AiAj |ψ〉 for pairs i, j such that |i − j| = 2. Using the property of involution and

the fact [Ai, Ai±1]|ψ〉 = 0 which is a consequence of Eq. (48), we get

AiAi±2|ψ〉 = AiAi±2(Ai±1)2|ψ〉
= (AiAi±1)(Ai±1Ai±2)|ψ〉. (87)

Since we have already shown AiAi±1|ψ〉 ∈ V , the above equation implies AiAi±2|ψ〉 ∈ V .
Given that AiAj |ψ〉 ∈ V for |i − j| = 1 and |i − j| = 2 we can then prove, applying the same argument as above,

that AiAj |ψ〉 belong to V for any pair i, j such that |i − j| = 3. In fact, following this approach recursively we can
prove that AiAj |ψ〉 ∈ V for i, j such that |i− j| = k with k = 3, . . . , n− 1, which completes the proof.
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Let us remark that the subspace V is in fact spanned by any triple of the vectors |ψ〉, Ai|ψ〉 and Aj |ψ〉 with i 6= j.
This is a consequence of the fact that, as proven above, any vector Ai|ψ〉 is a linear combination of |ψ〉, A1|ψ〉 and
A3|ψ〉.

Lemma 2. If a set of projectors {P̃i}ni=1 acting on C3 and a vector |ψ̃〉 satisfy the relations (51) and (52), then each
P̃i has rank one, that is, for each i there exists a normalized vector |vi〉 ∈ C3 such that P̃i = |vi〉〈vi| and, moreover,
〈vi|vi±1〉 = 0.

Proof. Since P̃i are projectors, we have
∀i, P̃ 2

i |ψ̃〉 = P̃i|ψ̃〉. (88)

Let us begin by showing that P̃i|ψ̃〉 6= 0 for all i. Assume to this end that there exist j such that P̃j |ψ̃〉 = 0. Using
then Eq. (52) for i = j − 1 we arrive at

(P̃j−1 + αP̃j−2)|ψ̃〉 = |ψ̃〉. (89)

After applying P̃j−2 to both sides of this equation and using Eq. (51), we obtain αP̃ 2
j−2|ψ̃〉 = P̃j−2|ψ̃〉 which is

consistent with Eq. (88) if and only if P̃j−2|ψ̃〉 = 0. Therefore, due to Eq. (89) we have P̃j−1|ψ̃〉 = |ψ̃〉. Again,
substituting these relations in (52) taking i = j, we arrive at P̃j+1|ψ̃〉 = [(1− α)/α]|ψ̃〉 which contradicts Eq. (88).
Let us now show that all the operators P̃i are of rank one. We first prove that none of them can be of rank three.

Assume for this purpose that rank(P̃j) = 3 for some j. Then, the condition (88) gives P̃j |ψ̃〉 = |ψ̃〉. This, after taking
into account that P̃j+1P̃j |ψ̃〉 = 0 implies P̃j+1|ψ̃〉 = 0, which contradicts the fact P̃i|ψ̃〉 6= 0 for all i, as shown before.
Let us then prove that none of P̃i can be of rank two. To this end, assume that there is j such that rank(P̃j) = 2

and consider the eigen-decomposition of P̃j ,
P̃j = |1〉〈1|+ |2〉〈2|, (90)

where |1〉, |2〉, |3〉 are the eigenvectors, forming an orthonormal basis in C3. Subsequently, |ψ̃〉 can be expressed as

|ψ̃〉 = x1|1〉+ x2|2〉+ x3|3〉 (91)

for some x1, x2, x3 ∈ C. Note that x1 = x2 = 0 is not possible since it requires P̃j |ψ̃〉 = 0. Similarly, x3 6= 0, otherwise
P̃j |ψ̃〉 = |ψ̃〉 which implies P̃j±1|ψ̃〉 = 0.
Now, employing the fact that P̃j is supported on span{|1〉, |2〉}, it follows from the condition P̃jP̃j±1|ψ̃〉 = 0 that

P̃j±1|ψ̃〉 = q3,±|3〉 for some q3,± ∈ C. By combining this with (88) we find that

P̃j±1|3〉 = |3〉, (92)

that is, |3〉 is the eigenvector of P̃j±1 with eigenvalue one, which, due to the fact that P̃j±1 6 1, implies that P̃j±1
decompose as

P̃j±1 = P̃ ′j±1 + |3〉〈3| (93)

with P̃ ′j±1 being projectors supported on span{|1〉, |2〉}. By finally plugging Eqs. (90) - (93) into Eq. (52) for i = j
and projecting the obtained equation onto |3〉 we see that 2α = 1, which is not satisfied for any n.
As a result all the operators P̃i are of rank one and therefore they can be expressed as

P̃i = |vi〉〈vi| (94)

for some |vi〉 ∈ C3. Furthermore, since P̃i|ψ̃〉 6= 0, Eq. (51) implies 〈vi|vi±1〉 = 0. This completes the proof.

11


	1 Preliminaries
	2 Modified KCBS inequality with sum-of-squares decomposition
	3 Self-testing of quantum devices
	4 Conclusion
	 Acknowledgement
	 References
	A Obtaining the stabilizing operators
	B Lemma 1-2

