Sum-of-squares decompositions for a family of noncontextuality inequalities and self-testing of quantum devices

Debashis Saha, Rafael Santos, and Remigiusz Augusiak

Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Violation of a noncontextuality inequality or the phenomenon referred to `quantum contextuality' is a fundamental feature of quantum theory. In this article, we derive a novel family of noncontextuality inequalities along with their sum-of-squares decompositions in the simplest (odd-cycle) sequential-measurement scenario capable to demonstrate Kochen-Specker contextuality. The sum-of-squares decompositions allow us to obtain the maximal quantum violation of these inequalities and a set of algebraic relations necessarily satisfied by any state and measurements achieving it. With their help, we prove that our inequalities can be used for self-testing of three-dimensional quantum state and measurements. Remarkably, the presented self-testing results rely on a single assumption about the measurement device that is much weaker than the assumptions considered in Kochen-Specker contextuality.

► BibTeX data

► References

[1] B. Amaral and M. T. Cunha. Contextuality: The Compatibility-Hypergraph Approach, pages 13–48. Springer Briefs in Mathematics. Springer, Cham, 2018. DOI: 10.1007/​978-3-319-93827-1_2.
https:/​/​doi.org/​10.1007/​978-3-319-93827-1_2

[2] M. Araújo, M. T. Quintino, C. Budroni, M. T. Cunha, and A. Cabello. All noncontextuality inequalities for the $n$-cycle scenario. Phys. Rev. A, 88: 022118, 2013. DOI: 10.1103/​PhysRevA.88.022118.
https:/​/​doi.org/​10.1103/​PhysRevA.88.022118

[3] R. Augusiak, A. Salavrakos, J. Tura, and A. Acín. Bell inequalities tailored to the \textGreenberger–\textHorne–\textZeilinger states of arbitrary local dimension. New J. Phys., 21(11): 113001, 2019. DOI: 10.1088/​1367-2630/​ab4d9f.
https:/​/​doi.org/​10.1088/​1367-2630/​ab4d9f

[4] J. S. Bell. On the \textEinstein \textPodolsky \textRosen paradox. Physics Physique Fizika, 1: 195–200, 1964. DOI: 10.1103/​PhysicsPhysiqueFizika.1.195.
https:/​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[5] C. Bamps and S. Pironio. Sum-of-squares decompositions for a family of \textClauser-\textHorne-\textShimony-\textHolt-like inequalities and their application to self-testing. Phys. Rev. A, 91: 052111, 2015. DOI: 10.1103/​PhysRevA.91.052111.
https:/​/​doi.org/​10.1103/​PhysRevA.91.052111

[6] K. Bharti, M. Ray, A. Varvitsiotis, A. Cabello, and L. Kwek. Local certification of programmable quantum devices of arbitrary high dimensionality. 2019.

[7] K. Bharti, M. Ray, A. Varvitsiotis, N. Warsi, A. Cabello, and L. Kwek. Robust \textSelf-\textTesting of \textQuantum \textSystems via \textNoncontextuality \textInequalities. Phys. Rev. Lett., 122: 250403, 2019. DOI: 10.1103/​PhysRevLett.122.250403.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.250403

[8] A. Cabello. Experimentally \textTestable \textState-\textIndependent \textQuantum \textContextuality. Phys. Rev. Lett., 101: 210401, 2008. DOI: 10.1103/​PhysRevLett.101.210401.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.210401

[9] A. Cabello. Simple \textExplanation of the \textQuantum \textViolation of a \textFundamental \textInequality. Phys. Rev. Lett., 110: 060402, 2013. DOI: 10.1103/​PhysRevLett.110.060402.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.060402

[10] A. Coladangelo, K. Goh, and V. Scarani. All pure bipartite entangled states can be self-tested. Nature Communications, 8(1): 15485, 2017. DOI: 10.1038/​ncomms15485.
https:/​/​doi.org/​10.1038/​ncomms15485

[11] D. Cui, A. Mehta, H. Mousavi, and S. Nezhadi. A generalization of \textCHSH and the algebraic structure of optimal strategies. 2019.

[12] A. Cabello, S. Severini, and A. Winter. Graph-\textTheoretic \textApproach to \textQuantum \textCorrelations. Phys. Rev. Lett., 112: 040401, 2014. DOI: 10.1103/​PhysRevLett.112.040401.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.040401

[13] M. Farkas and J. Kaniewski. Self-testing mutually unbiased bases in the prepare-and-measure scenario. Phys. Rev. A, 99: 032316, 2019. DOI: 10.1103/​PhysRevA.99.032316.
https:/​/​doi.org/​10.1103/​PhysRevA.99.032316

[14] O. Gühne, C. Budroni, A. Cabello, M. Kleinmann, and J. Larsson. Bounding the quantum dimension with contextuality. Phys. Rev. A, 89: 062107, 2014. DOI: 10.1103/​PhysRevA.89.062107.
https:/​/​doi.org/​10.1103/​PhysRevA.89.062107

[15] A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, P. Joshi, W. Kłobus, and A. Wójcik. Quantifying \textContextuality. Phys. Rev. Lett., 112: 120401, 2014. DOI: 10.1103/​PhysRevLett.112.120401.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.120401

[16] M. Howard, J. Wallman, V. Veitch, and J. Emerson. Contextuality supplies the “magic” for quantum computation. Nature, 510(7505): 351–355, 2014. DOI: 10.1038/​nature13460.
https:/​/​doi.org/​10.1038/​nature13460

[17] A. Irfan, K. Mayer, G. Ortiz, and E. Knill. Certified quantum measurement of \textMajorana fermions. Phys. Rev. A, 101: 032106, 2020. DOI: 10.1103/​PhysRevA.101.032106.
https:/​/​doi.org/​10.1103/​PhysRevA.101.032106

[18] J. Kaniewski. A weak form of self-testing. 2019.

[19] P. Kurzyński, A. Cabello, and D. Kaszlikowski. Fundamental \textMonogamy \textRelation between \textContextuality and \textNonlocality. Phys. Rev. Lett., 112: 100401, 2014. DOI: 10.1103/​PhysRevLett.112.100401.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.100401

[20] A. Klyachko, M. Can, S. Binicioğlu, and A. Shumovsky. Simple \textTest for \textHidden \textVariables in \textSpin-1 \textSystems. Phys. Rev. Lett., 101: 020403, 2008. DOI: 10.1103/​PhysRevLett.101.020403.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.020403

[21] S. Kochen and E. Specker. The \textProblem of \textHidden \textVariables in \textQuantum \textMechanics. In The Logico-Algebraic Approach to Quantum Mechanics, The Western Ontario Series in Philosophy of Science, pages 293–328. Springer Netherlands, 1975. DOI: 10.1007/​978-94-010-1795-4.
https:/​/​doi.org/​10.1007/​978-94-010-1795-4

[22] J. Kaniewski, I. Šupić, J. Tura, F. Baccari, A. Salavrakos, and R. Augusiak. Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems. Quantum, 3: 198, 2019. DOI: 10.22331/​q-2019-10-24-198.
https:/​/​doi.org/​10.22331/​q-2019-10-24-198

[23] Y. Liang, R. Spekkens, and H. Wiseman. Specker$'$s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity. Phys. Rep., 506(1): 1–39, 2011. DOI: 10.1016/​j.physrep.2011.05.001.
https:/​/​doi.org/​10.1016/​j.physrep.2011.05.001

[24] D. Mayers and A. Yao. Self testing quantum apparatus. Quantum Inf. Comput., 4(4): 273–286, 2004. DOI: doi.org/​10.26421/​QIC4.4.
https:/​/​doi.org/​10.26421/​QIC4.4

[25] R. Raussendorf. Contextuality in measurement-based quantum computation. Phys. Rev. A, 88: 022322, 2013. DOI: 10.1103/​PhysRevA.88.022322.
https:/​/​doi.org/​10.1103/​PhysRevA.88.022322

[26] I. Šupić, R. Augusiak, A. Salavrakos, and A. Acín. Self-testing protocols based on the chained bell inequalities. New J. Phys., 18(3): 035013, 2016. DOI: 10.1088/​1367-2630/​18/​3/​035013.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​3/​035013

[27] A. Salavrakos, R. Augusiak, J. Tura, P. Wittek, A. Acín, and S. Pironio. Bell \textInequalities \textTailored to \textMaximally \textEntangled \textStates. Phys. Rev. Lett., 119: 040402, 2017. DOI: 10.1103/​PhysRevLett.119.040402.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.040402

[28] J. Singh, K. Bharti, and Arvind. Quantum key distribution protocol based on contextuality monogamy. Phys. Rev. A, 95: 062333, 2017. DOI: 10.1103/​PhysRevA.95.062333.
https:/​/​doi.org/​10.1103/​PhysRevA.95.062333

[29] D. Saha, P. Horodecki, and M. Pawłowski. State independent contextuality advances one-way communication. New J. Phys., 21(9): 093057, 2019. DOI: 10.1088/​1367-2630/​ab4149.
https:/​/​doi.org/​10.1088/​1367-2630/​ab4149

[30] D. Saha and R. Ramanathan. Activation of monogamy in nonlocality using local contextuality. Phys. Rev. A, 95: 030104, 2017. DOI: 10.1103/​PhysRevA.95.030104.
https:/​/​doi.org/​10.1103/​PhysRevA.95.030104

[31] S. Sarkar, D. Saha, J. Kaniewski, and R. Augusiak. Self-testing quantum systems of arbitrary local dimension with minimal number of measurements. 2019.

[32] A. Tavakoli, J. Kaniewski, T. Vértesi, D. Rosset, and N. Brunner. Self-testing quantum states and measurements in the prepare-and-measure scenario. Phys. Rev. A, 98: 062307, 2018. DOI: 10.1103/​PhysRevA.98.062307.
https:/​/​doi.org/​10.1103/​PhysRevA.98.062307

[33] Z. Xu, D. Saha, H. Su, M. Pawłowski, and J. Chen. Reformulating noncontextuality inequalities in an operational approach. Phys. Rev. A, 94: 062103, 2016. DOI: 10.1103/​PhysRevA.94.062103.
https:/​/​doi.org/​10.1103/​PhysRevA.94.062103

[34] T. Yang, T. Vértesi, J. Bancal, V. Scarani, and M. Navascués. Robust and \textVersatile \textBlack-\textBox \textCertification of \textQuantum \textDevices. Phys. Rev. Lett., 113: 040401, 2014. DOI: 10.1103/​PhysRevLett.113.040401.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.040401

Cited by

[1] Owidiusz Makuta and Remigiusz Augusiak, "Self-testing maximally-dimensional genuinely entangled subspaces within the stabilizer formalism", New Journal of Physics 23 4, 043042 (2021).

[2] Li-Yi Hsu and Ching-Hsu Chen, "Exploring Bell nonlocality of quantum networks with stabilizing and logical operators", Physical Review Research 3 2, 023139 (2021).

[3] Debarshi Das, Ananda G. Maity, Debashis Saha, and A. S. Majumdar, "Robust certification of arbitrary outcome quantum measurements from temporal correlations", Quantum 6, 716 (2022).

[4] Rafael Santos, Chellasamy Jebarathinam, and Remigiusz Augusiak, "Scalable noncontextuality inequalities and certification of multiqubit quantum systems", Physical Review A 106 1, 012431 (2022).

[5] Shashank Gupta, Debashis Saha, Zhen-Peng Xu, Adán Cabello, and A. S. Majumdar, "Quantum Contextuality Provides Communication Complexity Advantage", Physical Review Letters 130 8, 080802 (2023).

[6] Ananda G. Maity, Shiladitya Mal, Chellasamy Jebarathinam, and A. S. Majumdar, "Self-testing of binary Pauli measurements requiring neither entanglement nor any dimensional restriction", Physical Review A 103 6, 062604 (2021).

[7] Adel Sohbi, Damian Markham, Jaewan Kim, and Marco Túlio Quintino, "Certifying dimension of quantum systems by sequential projective measurements", Quantum 5, 472 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2023-09-27 19:43:03) and SAO/NASA ADS (last updated successfully 2023-09-27 19:43:04). The list may be incomplete as not all publishers provide suitable and complete citation data.