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Squeezing Metrology: a unified framework
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Quantum metrology theory has up to
now focused on the resolution gains
obtainable thanks to the entanglement
among N probes. Typically, a quadratic
gain in resolution is achievable, going from
the 1/ V/N of the central limit theorem to
the 1/N of the Heisenberg bound. Here we
focus instead on quantum squeezing and
provide a unified framework for metrology
with squeezing, showing that, similarly,
one can generally attain a quadratic gain
when comparing the resolution achievable
by a squeezed probe to the best N-probe
classical strategy achievable with the same
energy. Namely, here we give a quantifi-
cation of the Heisenberg squeezing bound
for arbitrary estimation strategies that
employ squeezing. Owur theory recovers
known results (e.g. in quantum optics and
spin squeezing), but it uses the general
theory of squeezing and holds for arbitrary
quantum systems.

1 Introduction

In quantum metrology one studies the resolution
gains that can be attained when using quantum
effects in the estimation strategy. The usual set-
ting considers an estimation strategy where a pa-
rameter ¢ is encoded onto a probe state through
a unitary transformation U, = % where H is
the probe Hamiltonian. This is a very general set-
ting that encompasses most estimations. While
squeezing has been used in quantum metrology
for specific systems [1-14], there is no general
theory of squeezing-based metrology that holds
for arbitrary measurements and systems. In the
general case, quantum metrology theory [15-26]
focuses on entanglement: it analyzes the situa-
tion in which the estimation is repeated N times
and shows that there is a quadratic improvement
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in resolution whenever the probes are entangled.
Without entanglement, one can only achieve the
standard-quantum-limit resolution Ay o 1/ VN
of the central limit theorem, and the error de-
creases to Ap o« 1/N of the Heisenberg bound
using entangled probes [15,19,20,22], Fig. la.

In this paper we focus on squeezing and con-
sider the case in which a single probe is squeezed
with respect to the observable A that is measured
to estimate the parameter ¢. We are not claim-
ing to have discovered that squeezing is useful
for quantum metrology (there is plenty of ev-
idence for that in the literature [1-14]). The
main result of this paper is a unified framework
that describes all previous (and presumably fu-
ture) metrology protocols that use squeezing in
any quantum system and any observable, as it
is based on the elegant general theory of squeez-
ing for arbitrary systems [27]. As shown through
various examples, the previously known results
[1-14] can be recovered as specific instances of our
theory. Squeezing the probe requires an amount
of energy FE = (s|H|s), where |s) is the squeezed
state of the probe. As in entanglement-based
quantum metrology, a quadratic resolution gain
is obtained also in this case, if one compares the
resolution attainable with a squeezed probe to
the resolution obtainable with N classical probes
(i.e. prepared in a coherent state) of total en-
ergy F, Fig. 1b. By classical probe we intend
a probe prepared in a minimum uncertainty co-
herent state, as is customary. We employ N clas-
sical probes with the same energy as the squeezed
probe because we need a dimensionless parame-
ter (N) to measure the precision enhancement.
We compare the quantum and classical strate-
gies with same average energy because, without
any energy restriction, one could achieve arbi-
trary precision by using arbitrarily high squeez-
ing. In essence, our result can be summarized as
follows: whereas one needs N classical probes to
decrease the error from Ay to Ap/v/N, a sin-
gle squeezed probe that uses the same energy can
decrease the error to Agp/N. We show that this
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resolution increase is the optimal one (no further
enhancement is possible), so we can call it the
Heisenberg squeezing bound. We will be neglect-
ing multiplicative constants of order one and con-
sider only the scaling in N: it is impossible to give
a general theory of the multiplicative constants
because these depend on the specific implemen-
tations (as is clear from the examples below).
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Figure 1: Conventional quantum metrology vs. squeezed
metrology. (a) Typically one considers entanglement
among probes as a means of achieving a quadratic en-
hancement in precision: N entangled probes allow a pre-
cision gain from Ap/v/N (left) to Ap/N (right) [15].
(b) Here we consider the role of squeezing: if a probe
in a classical (coherent) state allows a precision esti-
mate of A, one can achieve Aw/+/N by using N such
probes (left). Devoting the same energy of the N co-
herent probes that optimally use the energy resources to
squeezing a single probe, one can decrease the error to
Ap/N (right), a quadratic gain.

The paper outline: we prove the general the-
ory of squeezing metrology, giving the yields of
the possible strategies that employ squeezing; we
then illustrate it with some prototypical cases:
quadrature squeezing, interferometric phase esti-
mation, and spin squeezing. We conclude with a
step-by-step procedure to obtain new squeezing
based metrology protocols.

2 Results

Two observables are relevant in an estimation
problem: the observable A that is measured and
whose outcomes are used to estimate the param-
eter ¢ and the Hamiltonian H that encodes the
parameter onto the probes, namely the genera-
tor of translations of ¢ through U, = e Tt is

then natural to consider as “classical” the strategy
that uses the coherent states for these two observ-
ables [3,27]. Then the “quantum” strategies are
the ones where we squeeze A and anti-squeeze H.
Squeezed states for two observables A and H are
the eigenstates of the operator L(\) = A\A + iH
[27], where A € C is a squeezing parameter: the
states are squeezed in A and antisqueezed in H
for [A\| > 1 and squeezed in H and antisqueezed
in A for [\] < 1 1. All states with |\ = 1
are coherent states. |[The converse is not true
in Perelomov’s definition of coherent states [3],
where [A| # 1 for some. Here we use Trifonov’s
notation [27]: all have |A| = 1.| In the follow-
ing, among all eigenstates with [A| = 1, we will
consider the minimum uncertainty ones: these
are the ones that are customarily considered the
“classical” states. These definitions of squeezed
and coherent arise from the Schrédinger uncer-
tainty relation

AN > (A, H])P 1)
ISHAHY — (AP, (@)

where AX? is the variance of X, (X) its expecta-
tion value, and [,] and {,} are the commutator
and anticommutator. For the eigenstates of L(\),
[27]

)l 1(C)]
AAQ — ‘( AHQ — 2
2Re)’ A 2Re\’
B _\<C>|Im)\
AAH = 2Re\ '’ )

where C = [A,H] and AAH = ({4, H}) —
(A)(H) (and additional dimensionful constant
may be present if A and H have different units).
By considering a real A, we can restrict to the
Heisenberg-Robertson inequality [28] AAAH >
$1{C)| and squeezed states: the best metrologi-
cal advantage is obtained in this case (this can
be easily shown by repeating the derivation be-
low with complex A), so we will consider only real
positive A.

When using the outcomes of A to estimate the
parameter ¢, error propagation implies Ap =
AA/|%(A>|. We can evaluate the derivative re-
calling that the state of the probe is evolved by

In the case in which i[A, B] is not strictly positive or
negative, as for spin systems, additional squeezed states
may exist [27].
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the unitary U, = e% 5o that
a5 (A) = 55 (0le™ P A M?|0) = —i([H, A]) (4)

where |0) is the initial state of the probe. So

Ap = AAJNC) = 1/\2AO), (5)

where we used (3). This equation is also valid for
coherent states where A = 1. When repeating the
estimation procedure N times, the central limit
theorem implies that the rmse reduces by v'N to
Ap(N) = Ap/VN.

We now show that a squeezed state with the
same energy as /N minimum-uncertainty coher-
ent states can allow a quadratic gain when com-
paring Apg, to Apq(N) = Agpcl/\/N (i.e. what
can be achieved classically by repeating N times),
where the suffix sq and ¢l indicates that the re-
spective quantities are calculated on squeezed or
minimum-uncertainty coherent states. Namely,
Apsq/Ape ~ 1/N which is a quadratic gain over
Apy(N)/Apg = 1/v/N. Here N is the number
of coherent probes that can be produced with the
squeezed state’s energy, namely

N = ((H)sq — Eo)/((H)a — Eo) ,  (6)

where Ej is the ground state energy. Clearly we
are interested in comparing the best estimation
strategies, since one can always get a worse strat-
egy by simply wasting energy resources.

For arbitrary settings, not just the setup here,
the best estimation strategies are the ones that
satisfy the quantum measurement bound of [29]
with equality. This bound implies that

K v
S —E) vosa) 0

where x and  are numerical constants of order 1
(see [29]) and v is the number of times the esti-
mation is repeated (here we will consider v = 1).
The first term in the max expresses a quantum
speed limit [30] and the second arises from the
time-energy uncertainty [31] (our choice v = 1
follows from these results [29]). Eq. (7) implies
that any energy beyond the standard deviation
will be wasted for the estimation: if (H) — Ey >
CAH (with ¢ = k/7), then the error Ay is dom-
inated by AH: “too much energy” strategies. To
avoid wastes, we should choose (H) — Ey ~ (AH
(“good strategies”), where the “~” sign empha-
sizes that only the order of magnitude of the two
terms is important since Eq. (7) is not a tight

Ap > max{

bound [29]. Eq. (7) also implies that estimation
strategies that have (H) — Ey < (AH (“too lit-
tle energy” strategy) have error Ay dominated
by the energy: they cannot achieve the error of
Eq. (5), but are limited to Ay ~ k/((H) — E,).

The “good strategy” energy requirement (H) —
Ey ~ C(AH can always be enforced when squeez-
ing is used, since the ratio between energy and
its standard deviation can be tuned through the
squeezing parameter A: one can assign an arbi-
trary fraction of the energy budget to squeez-
ing the probe. Instead, for classical strategies,
the requirement of having a coherent state may
be inconsistent with good strategies: for exam-
ple spin coherent states have “too much energy”.
Otherwise typically the “good strategy” require-
ment can be satisfied only for a specific value of
the energy, as for the harmonic oscillator. Indeed,
Eq. (3) fixes AH? to |(C)|/2, and fixing it also to
(H—Ep)? may be possible for coherent states only
for a given energy. For classical strategies with
too little energy, using (6) will underestimate N
since some of the coherent state energy is not
used for estimation, see Eq. (7). For these strate-
gies, one should use N = ((H)sq — Eo)/AH in
place of (6) to count only for the energy that is
actually employed for the estimation in classical
strategies. The focus on “good strategies” is not
a limitation of our paper, because these are the
strategies that are optimal: the ones that do not
waste energy.

Consider the “good strategies” first. In this
case, replacing (H) — Ey = (AH into (6) we find

AH

N~ 2

~Am, — VA (C)sa/(Chal »  (8)

where we used (3) in the last equality. Using (5),
we find

Apsg 1
Aow (C) e/ MC)sql = N 9)

a quadratic gain over the classical strategy
of repeating N times the classical estimation:
Apy(N)/Apy = 1/v/N. In other words, when
comparing the squeezed and classical strategy of
equal energy, we find Apsq/Apq(N) = 1/VN,
the main result of our paper. Since we obtained
the quadratic gain when comparing the best es-
timation strategies, this is optimal: one cannot
achieve a larger gain (unless one employs sub-
optimal classical strategies). This justifies our
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claim that (9) represents the Heisenberg squeez-
ing bound.

We emphasize that in this derivation we have
neglected multiplicative and additive constant
factors of order one: as a general theory contain-
ing them is impossible (they depend on the spe-
cific implementations). In principle, in the ab-
stract scenario we analyzed here, one may con-
sider a single coherent state that is not minimum-
uncertainty (namely a state with equal spreads
AA = AH which are larger than their minimum
value) and devote all the energy to it. In this case,
that state would already achieve the optimal pre-
cision without any need for squeezing. However,
this strategy does not exist in all the examples we
analyzed because those coherent states have al-
ways a bounded variance and the “good strategy”
condition cannot be met. Moreover, these large-
uncertainty coherent states would not be recog-
nized as a “classical” strategy.

Consider now bad estimation strategies. For
classical strategies with too much energy, the
above results still hold if one uses the appropri-
ate N discussed above. For strategies with too
little energy, Eq. (5) does not apply and we need
to amend the above derivation, but we still ob-
tain the same result: consider first the case of
a suboptimal classical estimation strategy, where
Apa ~ k/((H)a — E,), so

Acaosq: <H>CZ_E0 . 11 (10)

Ape gy oA[(C)yg] 28N

where we used the fact that N = AHg,/((H)a —
Ep) in this case. Again we find a quadratic gain
(apart from an inconsequential numerical con-
stant of order one). We obtain analogous results
when comparing two bad estimation strategies
or a bad squeezed strategy with a good classical
strategy.

3 Discussion

(i) The above proof elucidates why squeezing is
beneficial: only a squeezed estimation strategy
can attain the equality (H) — Ey = (AH for all
energies. A coherent state typically attains this
only for a specific energy, so it is suboptimal when
the procedure is repeated N times: the (H) term
in (7) scales linearly with v = N, whereas the AH
term scales as /v = v/N. Hence, given an en-
ergy budget, repeating the measurement is never

advantageous and a single-shot classical strategy
that optimally uses all resources may exist only
for a specific energy. Then, only for this value
of the energy, the single-shot classical strategy
performs as well as the squeezed one, otherwise
squeezing the probe is always better. (ii) The
squeezing parameter A is not present in the final
result of (9). Nonetheless, the results obtained
hold only for A > 1, corresponding to a reduc-
tion in the fluctuations of the observable A that
is measured, as expected. Indeed, for A < 1, cor-
responding to an increase in fluctuations of A,
Eq. (8) typically implies that N < 1 since the op-
timal squeezed strategy’s energy is less than the
classical one, and the quadratic gain would favor
the classical strategies in that case. Intuitively,
this can be seen by considering the minimum
uncertainty states for which AAAH = |(C)|/2.
Then

Ap = AA/|3‘1<A>\ — AA/|(C)] = 1/(2AH).
(11)

Then, for A > 1 we get better accuracy since
AH is increased, whereas the opposite happens
for A < 1. (iii) The theory above refers to the
estimation of ¢ from the measurement of an ob-
servable A, but it applies also to POVM mea-
surements. Indeed a POVM can be extended to
a projective POVM through the Naimark dilation
theorem [32| without changing the measurement
outcome statistics. One can then assign arbitrary
“eigenvalues” to each element of this POVM to
obtain an observable A to which the above the-
ory applies. (iv) As for entanglement-based quan-
tum metrology [22, 33, 34|, the presence of noise
complicates the situation enormously and will be
analyzed elsewhere.

4 Examples

We now show some simple examples that refer to
different (finite and infinite-dimensional) Hilbert
spaces and to different observables.

4.1 Position measurements

Consider the situation where we want to esti-
mate the position X. The generator of trans-
lation of position is the momentum P, so we
choose H = P. This Hamiltonian is not lower
bounded so the average energy is infinite for any
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state: we need to introduce an energy cutoff,
e.g. by supposing that states have negligible neg-
ative momenta components. [Alternatively, one
could also consider H = |P| as the Hamiltonian.|
We consider a position-momentum squeezed state
[1], whose wavefunction is a Gaussian [2]. In-
troducing (arbitrary) constants m (mass) and
w (angular frequency), we can write X and P
in terms of creation and annihilation operators
through a = X\/mw/2h + iP/v2hkmw. The
squeezed states are eigenstates of ua + va' with

= (A 1)/V4Xand v = (A—1)/v4\. As before,
the coherent state is obtained for A = 1, yield-
ing the “standard” coherent states. The rmse are
[1] AX = /h/(2 \mw) and AP = \/mwh\/2.
Then, assuming zero-energy ground state, and
using the least energetic squeezed and coherent
states (P) ~ AP (the ones with smallest energy
that still have negligible negative energy compo-
nents), we have

<P>sq sq 1
N = ~ = — ~
APd A= 4% AXCI VG

1
N
(12)

a quadratic improvement over the classi-
cal strategy of repeating NN times the opti-
mal coherent state measurement, which gives

AXCZ(N)/AXCZ = 1/\/N

4.2 Optical interferometry

As a second example, consider interferometric
phase ¢ measurements [35]. In this case H =
ala = N and A is whatever observable (or
POVM) is measured. Since the phase is periodic,
the rmse is not an appropriate uncertainty mea-
sure [36] unless the uncertainty is small compared
to 2m. One must resort to Susskind-Glogower un-
certainty relations (SGUR) [37]

ANAC >

(), ANAS > —(C) , (13)

N | —

where C = (B4 + E_)/2 and S = i(E, — E_)/2
are the “cosine” and “sine” operators with £y =
S |n){n F 1| (in the Fock basis). Both S$ and
C can be used as the observable A of the the-
ory given above Indeed the SGUR can be used
because § = d¢ i[H,C] and C' = S =
i[H,8]. [37]. Hence Eq. (5) can be replaced by
A¢ = AC/|(S)| = AS/|(C)| and we can write
SGUR as ANA¢ > % (meaningful if A¢p < 27,

with an appropriate choice of boundaries far from
the average ¢). This implies that the mini-
mum uncertainty squeezed and coherent states
for SGUR can be employed in the theory pre-
sented here to get a quadratic improvement for
phase sensing. (The proof is basically identical
to the one for X and P presented below, since ¢
and N can be considered as conjugate variables
in the above regime, where (¢) is basically null at
the boundaries.) These states were determined
in [38], but unfortunately they seem to have no
physical relevance, although they can be approx-
imated in particular regimes, e.g. [39,40]. The
usual coherent states |a), eigenstates of the an-
nihilation a, are not minimum uncertainty states
for SGUR |[38], although they approximate them
for large average photon number [37].

The prototypical squeezed-light interferometric
measurement is the one proposed by Caves [41].
While the original proposal is not optimal [22],
one with a modified detection strategy is: it has a
phase uncertainty Ag¢g, ~ 1/(a'a) at the optimal
working point [42]. In contrast, coherent states
|a) can only achieve the standard quantum limit

Ao =~ 1/4/(aa), so the classical strategy that

optimally employs the energy resources, i.e. the
one for which (afa) ~ AH, is the one that em-
ploys coherent states with (a'a) = 1 since the
coherent state’s Poissonian statistic implies that
(afa) = AH?. Then a quadratic gain over this
strategy (when repeated N times) follows: the
energy of the repeated strategy is (afa)y = N,
so that Ads,/A¢a(N) = VN/(ala) = l/f
or, when comparing with the single-shot optimal
classical strategy, Adyq/Ape = 1/{ata) = 1/N.

As a further example of phase estimation
that is optimal only in certain regimes, con-
sider quadrature squeezing for phase estimation
(quadrature squeezing is different from SGUR
squeezing). Namely, estimate phase shifts ¢ gen-
erated by H = a'a, by measuring the quadrature
P = i(a’ —a)/v/2. Then A¢p = AP/|(X)|, with
X = (a+al)/V/2 since a%P = i[a'a, P] = —X.
For a quadrature squeezed displaced state we find
(X) = V2Re(a), and AP = ¢7¢/1/2, where «
and £ are the displacement and squeezing param-
eters and where we choose real £ (the only inter-
esting case here). Since (H) = |a|? + sinh?|¢|
[44], it is clear that the good strategies (the ones
which do not waste energy) are the ones where
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asq and oy are real. For these,

Adsq _ AP [(X)arl _ e~loal
Doy = BPyNK)ee] = Tawgl > (1)
H), sinh? |§|+a§

N = = T s ol (19)

where the last equality holds for large squeezing
|€] > 1 and for the optimal classical strategy
that, again, is for (afa) = AH = AH? = a% = 1.
Since 22 + y? > 22y for any real z,y, we find

Agsg 1 2 2

Aby ~ flasg ~ 2102, N (

16)

if we choose & > 0 (i.e. P-direction squeez-
ing). The inequality (16) becomes an equality
for azq = %e% |, namely if we devote half of the
energy to squeezing and half to displacing, which
is known to be the best way to allocate the energy
[43]. So, in the limit of large P-direction squeez-
ing, we have optimality also in this case. Many
other optical phase estimation strategies based on
squeezing are known, e.g. [10,13,45,46].

4.3 Spin squeezing

As a final example consider spin squeezing, with
A= J;, and H = —J,. In this case, not all
squeezed states are eigenstates of L(A) since C
is not strictly positive or negative [27]. Thus,
instead of limiting ourselves to the eigenstates
of L(A = 1), we will employ the su(2) coherent
states [3] which are a larger class [27]. These are
defined as |B) = exp(B8J4+ — B*J-)|j; —j), with
Ji = Jy£idy, f € C, and |j;—j) the lowest-
weight eigenvector of J,. The latter state is the
only eigenstate of L(A = 1) = J, —iJy, = J_
(this is the reason for the minus sign in the
definition of H, without which we would ob-
tain the equivalent coherent state class originat-
ing from |j;+j)). The states |3) have AJ? =
§(1 — sin®fcos? ¢)/2, AH? = AJ; = j(1 —
sin? 0sin? ¢)/2, (—J,) — Eo = j(1 + sinfsin ),
and [([Jz, Jy])| = [(J)| = j|cosf|, where § and
¢ are defined as B = —e'® tan(0/2) [3]. All these
coherent states give rise to a “too much energy”
strategy, since (H)y — Eg > AH (except for the
case of |f3) eigenstate of J, which is obviously
useless for estimation). Thus, we need to define
N = ((H)sq—Eo)/AH in order to count only the
energy that is actually employed in the estimation
in the classical strategy. The precision achievable
in estimating a rotation by an angle ¢ around the

o o2 0 cos?
y axis is Ap = AJ,/|(J)| = \/% >
ﬁ, where the last inequality becomes an equal-

ity on the eigenstates of J, (i.e. for § = 0,7)
as expected. The squeezed strategy should em-
ploy squeezed spin states [6] with reduced fluctu-
ations in Jy, namely AJ, = 1/v2, AJ, = j/\/2
for which (—J,) +j = j. This is a “good strat-
egy”, since (H)sq — Eo = j ~ AHg, = j/V2. Tt
achieves the Heisenberg squeezing bound preci-
sion Ap ~ 1/5 [6]. The comparison between the
classical and the squeezed strategies follows:

N = (~(Jy)sg + D/ ATy = §/\[5/2 = V2]
= A‘Psq/Asocl = \/Z/] = Q/N’ (17)

again a quadratic improvement (apart from a con-
stant of order one) over the Ay (N)/Apyg =
1/v/N precision obtained by repeating the clas-
sical strategy N times. Note that in all spin-
squeezing literature N is defined differently, as
the number of elementary spin-1/2 particles
equivalent to a j-spin system [6]. Thus else-
where spin squeezing is analyzed in terms of the
entanglement among these particles, using the
entanglement-based theory of quantum metrol-

ogy [15].

5 New protocols

We now detail the step-by-step procedure that
one can employ to devise a new metrology proto-
col based on squeezing, employing the results of
our paper:

1. Identify the Hamiltonian H that generates
the translations of the parameter of observ-
able that we want to estimate. Identify the
observable A that we can employ in the esti-
mation. Note that A is in general not unique
(as shown in the above examples).

2. Solve the eigenvalue equation for the non-
Hermitian operator AA + ¢H to find the
squeezed states of the system (the intelligent
states) [27].

3. Use all the energy available to the estimation
procedure to prepare a single probe in such
squeezed state.

4. Let the probe evolve with the Hamiltonian
H and then measure the observable A.
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The results of our paper guarantee that the
outcome will have an error on the parame-
ter or observable to be estimated that scales
as 1/N, where N is the number of classical
(coherent) probes that could be prepared us-
ing the same energy. These classical probes
would give an error that scales as the stan-
dard quantum limit 1/v/N because of the
central limit theorem. Namely, the squeezed
strategy described here has a quadratic gain.

Conclusions

In conclusion, we have proposed the general the-

ory

squeezing, instead of on entanglement.

of quantum metrology that is focused on
Our

framework applies to arbitrary quantum systems,
since it uses the general theory of squeezing. We
have also provided various examples of applica-
tions of such theory. We believe that this theory
will be of use to theoreticians to develop new pro-
tocols, rather than to experimentalists.
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