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We propose a variational quantum algorithm
to prepare ground states of 1D lattice quan-
tum Hamiltonians specifically tailored for pro-
grammable quantum devices where interac-
tions among qubits are mediated by Quan-
tum Data Buses (QDB). For trapped ions with
the axial Center-Of-Mass (COM) vibrational
mode as single QDB, our scheme uses resonant
sideband optical pulses as resource operations,
which are potentially faster than off-resonant
couplings and thus less prone to decoherence.
The disentangling of the QDB from the qubits
by the end of the state preparation comes as a
byproduct of the variational optimization. We
numerically simulate the ground state prepara-
tion for the Su-Schrieffer-Heeger model in ions
and show that our strategy is scalable while be-
ing tolerant to finite temperatures of the COM
mode.

1 Introduction
Realizing many-body quantum states on quantum de-
vices offers an experimental pathway for studying the
equilibrium properties of interacting lattice models
[1–3], quench dynamics [4–7], or it can be viewed as a
quantum resource, e.g., for sensing [8–11]. Adiabatic
state preparation has been experimentally demon-
strated, e.g., on trapped ions [12] and atoms in opti-
cal tweezers [13]. However, this strategy is currently
limited by the finite coherence times of quantum de-
vices, incompatible with the long annealing times re-
quired by the adiabatic criterion [14]. An alternative,
promising pathway towards quantum ground state
preparation is given by feedback-loop quantum algo-
rithms, and especially by the Variational Quantum
Eigensolver [15–21] (VQE). In VQE, parametrized −
generally non-universal − quantum resource opera-
tions, available on a given quantum device, are ar-
ranged in a variational sequence, or circuit ansatz,
to generate entangled trial states. The trial states
approximate a target ground state as a result of a
closed-loop optimization of the variational parame-
ters, where an energy cost function is minimized.

For trapped ion qubits, VQE was recently demon-
strated using as entangling resource either the

Figure 1: (a) Blue-detuned optical pulse acting on ion j re-
alizes interaction Hj , Eq. (1), which couples the internal ion
levels to levels of the COM phonon mode. The coupling
rates depend on the state of the system. (b) QDB-MPS cir-
cuit in an ion trap generating trial states as in Eq. (6). The
COM mode (red line), as single QDB, is initially cooled to
a low-temperature state ρ0, and ions (black lines) are ini-
tialized in pure states. Variational operations exp(−iθkHjk )
(blue links) are virtually grouped into boxes, parametrized by
corresponding vectors θi = {θk}, as explicitly illustrated for
the first two boxes. The out-coming ions are measured, while
the state of the QDB is discarded. (c) Mapping of circuit (b)
with the optimized parameters, {θ(opt)

i }, to an MPS diagram
with the qubits state approximating |ψtarg〉.

Mølmer-Sørensen gate [22], or a programmable analog
quantum simulator of the long-range XY spin model
[23]. Both these entangling resources generate ef-
fective interactions between ion qubits by coupling
them to vibrational modes (phonons). Implement-
ing the optical couplings off-resonantly, one effectively
achieves robustness of these resource operations to the
temperatures of the phonon modes. However, this
strategy yields relatively slow rates [24, 25], limiting
the performance of VQE, as the quantum processing
suffers from decoherence.

Here we propose a strategy to improve the efficiency
of VQE on programmable quantum devices where in-
teraction between qubits is mediated by auxiliary de-
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grees of freedoms: Quantum Data Buses (QDBs).
This strategy employs interactions between qubits
and QDBs, naturally available in these devices, as
variational resource operations in the quantum algo-
rithm. We illustrate our approach on trapped ions,
using the acoustic Center-Of-Mass (COM) phonon
mode − the axial vibrational mode where all ions os-
cillate in phase − acting as a single QDB. We employ
resonant optical coupling of ion qubits with the COM
mode, yielding faster rates than off-resonant strate-
gies, and thus being less prone to decoherence. Un-
like logical gates designed with the resonant coupling,
such as the C-phase gate [26], our variational ap-
proach is tolerant to finite temperatures of the COM
mode, which do not limit the state preparation fi-
delity. Moreover, our strategy does not require to dis-
entangle the QDB after each resource operation, but
only at the end of the state preparation, ultimately
yielding faster processing. The task of disentangling
the QDB from the qubits is carried out by the opti-
mization algorithm itself: As the output qubit state
approaches the unique ground state of a target non-
degenerate Hamiltonian, the QDB becomes disentan-
gled without ever being measured.

Via numerical simulations, we investigate the scal-
ing and robustness properties of our strategy for 1D
lattice models. As a benchmark goal, we aim to vari-
ationally prepare the ground state, |ψtarg〉, of the Su-
Schrieffer-Heeger (SSH) Hamiltonian [27–29] on ion
qubits in a linear trap. Using only blue-detuned
sideband optical pulses [30] as resource operations,
we design the variational circuit ansatz shown in
Fig. 1, which can efficiently realize Matrix Product
States (MPS), a class of tailored variational wavefunc-
tions capable of accurately capturing the equilibrium
physics of many-body quantum systems in 1D [31, 32].
This ‘QDB-MPS circuit’ can incorporate various sym-
metries of the target model for enhanced performance,
including approximate translational invariance in the
bulk. In this paper, we will show that our approach is
scalable, as we can approximate 1D ground states at
saturating precision in the system size Nions, without
increasing the number of variational parameters Np
[see Fig. 2(a)]. Additionally, we compare the results
from the QDB-MPS circuit with other VQE strate-
gies, still designed for trapped ion hardware, but us-
ing different sets of (coherent) entangling resources:
(i) site-filtered Mølmer-Sørensen gates (ii) an analog
quantum simulator of a long-range XXZ model [23].
We evaluate the respective accuracies in terms of var-
ious figures of merit, including excitation energy, fi-
delity, and two-point correlations. We demonstrate
that our strategy can realize highly-accurate ground
states even for QDB initialized at finite temperatures.
Finally, we show that the QDB-MPS circuit can be
up-scaled beyond the single-trap limit by being im-
plemented in modular ion traps [33, 34]. Overall,
we consider our strategy a viable, efficient route to-

Figure 2: (a) Error function Ferr (7) versus size Nions of the
states prepared in the circuits QDB-MPS, CSA shown in (b),
and CSD-MPS shown in (c) for the fixed number of varia-
tional parameters Np = 18. The insets show correlation ma-
trix CDMRG

ij (8) (right) with i < j for |ψtarg〉 with Nions = 12
obtained by the numerical DMRG method, and deviations
∆Cij = Cij−CDMRG

ij for Cij obtained for states prepared by
the circuits CSA (left) and QDB-MPS (middle); the arrows
indicate the corresponding Ferr data-points. The dashed pix-
els represent arias with negligible absolute value < 0.01. (b)
CSA and (c) CSD-MPS circuits generating trial states (5).
CSA circuit uses global all-to-all qubits operations (3) and
singe-qubit rotations σz

i . CSD-MPS circuit uses local entan-
gling MS gates (2) and singe-qubit rotations σz

i .

wards quantum state preparation in ion traps as well
as in other quantum platforms that rely on QDBs,
such as atom qubits coupled via photons in waveg-
uides [35, 36] or cavities [37–40], or superconducting
qubits coupled by microwave resonators [41–44].

The paper is organized as follows. In section 2, we
describe the ion trap resource operations which we
employ in the QDB-MPS circuit. We also review the
resources used by other VQE strategies in ion traps,
which we consider for comparison. We briefly intro-
duce the target SSH model in section 3, and we discuss
in detail the VQE strategies. We exhibit the results
of our numerical simulation in section 4. Finally, in
section 5, we summarize our conclusions and argue
future perspectives for our approach.

2 Quantum resources in trapped ions
We consider a setup of Nions ions in a linear Paul trap
as a relevant quantum platform. The system qubit, or
spin 1/2, at site j is encoded by two internal electronic
levels of ion j [30], labeled |↓〉j and |↑〉j . Each ion,
driven by laser fields in the transition between levels
|↓〉j ↔ |↑〉j , experiences a recoil associated with ab-
sorption or emission of photons. This mechanism cou-
ples the internal ion levels with vibrational (phonon)
modes, either axial or radial, depending on the optical
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setup [30], and allows phonons to be used as bosonic
QDBs for the ion qubits. In ion traps, as well as in
other quantum hardware using QDBs [35–43, 45, 46],
various strategies have been developed to construct
entangling quantum operations between qubits, while
ensuring that the QDBs are disentangled from the
qubits by the end of each operation. In what follows,
we review some of these strategies.
Resonant Sideband Resources − One possible ap-

proach to exploit QDBs in quantum hardware is to
transfer information from one qubit to another by
populating QDBs with real excitations [26, 42, 43,
45, 46]. In trapped-ion quantum computers, a typ-
ical choice is to elect the axial COM mode as sin-
gle QDB, thanks to notable advantages: The mode
frequency is well separated from the other phonon
modes thanks to the linear dispersion at k = 0
of the acoustic band, and additionally the qubit-
phonon coupling is (roughly) homogeneous along the
chain. Using focused beams, each individual ion can
be coupled to the COM mode, usually via sideband
optical pulses [26] implemented in the Lamb-Dicke
regime [30] (where the Lamb-Dicke parameter η is
small, η � 1). These pulses have frequencies detuned
from the atomic transition exactly by the frequency of
the COM mode ν. For the case considered further in
this paper, it is sufficient to consider a single resonant
sideband, either the −ν negative detuned (red side-
band) or the +ν positive detuned (blue sideband).
As the two choices lead to equivalent results, here
we only illustrate the blue sideband case for simplic-
ity, which is described by the Anti-Jaynes-Cummings
Hamiltonian

Hj = iηΩ
(
aσ−j − a

†σ+
j

)
(1)

addressing ion j, where Ω is the Rabi frequency, and
achievable rates are of the order ηΩ ∝ 25 kHz [47,
48]. In this picture, a is the destruction operator for
the COM mode, and σ−j = (σ+

j )† = |↓〉〈↑|j is the
lowering operator for ion j. In Eq. (1), we used a
gauge transformation a→ eiϕa to highlight the anti-
unitary symmetry (σ± → σ∓, a → a†, t → −t) in the
interaction Hamiltonian.

In Ref. [26], it was proposed to use resonant side-
band pulses to realize the C-phase gate in ion traps.
However, the main hindrance in using gates built
out of resonant interactions with a bosonic QDB, as
Eq. (1), is the requirement for the QDB to be perfectly
initialized in a pure state, typically the vacuum |0〉a,
where index a refers to the QDB mode. This require-
ment stems from the incommensurate rates

√
l + 1ηΩ

of the transitions |↓〉j |l〉a ↔ |↑〉j |l + 1〉a, depending
on the number of excitations l stored in the QDB,
as highlighted in Fig. 1(a). As a result, the gate
fidelity of resonant sideband gates in ion traps de-
creases roughly linearly with temperature T of the
initial thermal state ρ0(T ) = (1−e−1/T ) exp(−a†a/T )
(in units of kB = ~ = 1) of the COM mode.

Off-Resonant Sideband Resources − To address this
hindrance, alternative strategies to realize entangling
operations were developed, in which couplings of the
qubits to QDBs are implemented off-resonantly, and
the QDBs are only virtually populated [39, 49–52].
A prototypical example in ion traps, the Mølmer-
Sørensen (MS) gate [49], can be implemented by cou-
pling a subset S of ions to the COMmode by a bichro-
matic laser beam with two frequencies, detuned from
the qubit frequency by ± (ν − δ) with δ � ν. The
resulting Hamiltonian

HMS = (ηΩ)2

δ

S∑
i<j

σxi σ
x
j , (2)

is an all-to-all interaction among qubits in S, with
σxj = σ+

j + σ−j . The condition δ � ηΩ [53] ensures
that the qubits interact with each other via second-
order processes, populating the COM mode only vir-
tually and keeping it disentangled from the qubits.
This approach is insensitive to the temperature of the
COM mode. However, its rates are intrinsically lower
than the rates of the resonant sideband resources (1),
(ηΩ)2/δ � ηΩ.
Analog Spin-model Resource − Recent experi-

ment [23] showed that VQE in ion traps can also
employ a programmable analog quantum simulator
as entangling resource operation. Such analog quan-
tum simulator is realized by using a bichromatic laser
beam that off-resonantly couples all the ions to all
the transverse phonon modes, ultimately implement-
ing the XY Hamiltonian [50, 54]

HXY =
Nions−1∑
i=1

Nions∑
j=i+1

Jij
2
(
σxi σ

x
j + σyi σ

y
j

)
+B

Nions∑
i=1

σzi

(3)
with power-law Jij ∼ J0 |i− j|−α long-range cou-
plings, where σ

{x,y,z}
j are the Pauli operators act-

ing on qubit j and B is a uniform magnetic field.
Thanks to the off-resonant couplings, the interac-
tion (3) is also insensitive to the temperature of the
phonon modes. However, typical rates J0 ∼ 0.05 −
0.5 kHz [24, 25] are, again, much slower than the rates
of resonant sideband interactions (1).

3 Variational Quantum Eigensolvers
VQE enables the experimental realization of ground
states of arbitrary Hamiltonians, providing the best
approximation for the given resource operations.
Once the optimization is converged, the optimal quan-
tum state can then be re-prepared on demand. For
example, this state can be used as a resource to ini-
tialize the system for digital quantum simulation [55],
which was recently demonstrated on ion traps in the
context of lattice gauge theories [6].
Target model: Su-Schrieffer-Heeger − As an exam-

ple, in this work, we consider VQE for the ground
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state preparation of the SSH model on ion qubits.
The SSH is an exactly solvable Hamiltonian [27–29],
and a free-fermion prototype for symmetry-protected
topological order in 1D, which reads

HSSH =
Nions−1∑
j=1

(
1− (−1)j t

) (
σxj σ

x
j+1 + σyj σ

y
j+1
)

+ B̃
(
σz1 − σzNions

)
(4)

in open boundary conditions. HSSH is real in the
canonical basis, exhibits z-magnetization symme-
try [HSSH,

∑
j σ

z
j ] = 0, and has zero-magnetization

ground states with real amplitudes. We added a small
staggered magnetic field B̃ = 0.1 at the boundaries,
to lift the four-fold degeneracy arising in the topo-
logical phase (t < 0). With this prescription, HSSH
is also CP symmetric (invariant under global spin-flip
plus spatial reflection), translationally invariant in the
bulk with a period of two sites, and has a critical point
at t = 0.
VQE with Closed System Analog resources (CSA)

− In Ref. [23], VQE was performed on trapped ions
using Closed-System programmable Analog resources
as in Eq. (3). We report the variational circuit ansatz
considered in that work in Fig 2(b). This circuit alter-
nates global resource operations, generated by HXY ,
and single-qubit rotations exp(−iθσzj ). It was shown
that this strategy is potentially scalable and capable
of approximating ground states of 1D lattice mod-
els, including lattice gauge theories, with high fidelity.
Here, we consider the CSA circuit as a comparison
benchmark for the QDB-MPS circuit in preparing of
the ground state of HSSH. We briefly review some de-
tails of the CSA strategy to highlight the differences
with respect to the QDB-MPS.

The variational CSA circuit built with closed-
system resource interactions H(r)

k ∈ {HXY , σ
z
j } gen-

erates (ideally pure) trial states

|ψout(θ)〉 =
∏
k

exp(−iθkH(r)
k ) |ψin〉 , (5)

where the product of operators is ordered right-to-left
for increasing k. The system qubits are initialized in
a Néel product state |ψin〉 = |↓〉1 |↑〉2 |↓〉3 ... |↑〉Nions
which can be prepared with high fidelity. For each
given set of trial parameters θ, multiple instances of
|ψout(θ)〉 are prepared, and projectively measured in
various local bases to reconstruct the energy cost func-
tion 〈HSSH〉θ = 〈ψout(θ)|HSSH |ψout(θ)〉 from one-
and two-point correlation functions 〈σai 〉, 〈σai σaj 〉. The
cost function 〈HSSH〉θ, function of θ, is evaluated at
finite precision and minimized with a search algorithm
capable of taking into account statistical errors. Upon
convergence, 〈HSSH〉θopt

reaches its global minimum,
and the optimal set of parameters θopt can be used to
re-prepare the (approximate) non-degenerate ground
state |ψout(θopt)〉 on demand.

Convergence of the search algorithm can be en-
hanced by incorporating symmetries of the target
model in the trial states. For the CSA circuit, the
zero z-magnetization of the initial Néel state |ψin〉 is
protected both by the entangler HXY and rotations
exp(−iθjσzj ). CP symmetry is protected byHXY , and
can be enforced on single-qubit transformation ‘layers’
by using correlated rotations angles θj = −θNions+1−j .
can be approximated as well, by repeating odd-site
and even-site rotation angles, θj = θj+2, away from
the system edges [23].

While VQE provides the best approximate state
preparation for a given set of resources in the pres-
ence of actual imperfections and noise [10], it is still
affected by decoherence. By considering a different
VQE circuit ansatz for trapped ions, which uses the
high-rate resonant sideband resources of Eq. (1), we
aim to tackle decoherence by speeding-up the prepa-
ration of trial states.
VQE with Quantum Data Buses (QDB-MPS)−

We design a variational circuit ansatz U(θ) =∏
k exp(−iθkHjk

) built on ion-COM mode interaction
pulses (1), according to Fig. 1(b). Since now the COM
mode becomes entangled to the ion qubits, the state
of the qubits is generally mixed, both during the pro-
cessing and in the output trial state

ρout(θ) = TrCOM[U(θ)(|ψin〉 〈ψin| ⊗ ρ0)U†(θ)]. (6)

Parameters {θk} can be controlled by the dura-
tion of the sideband laser pulses. Similar to the
closed-system case, the cost function 〈HSSH〉θ =
Tr[ρout(θ)HSSH] is reconstructed from correlation
functions evaluated on the trial qubit state, while
the output state of the COM mode is discarded. As
〈HSSH〉θ is minimized to approach the ground energy,
ρout(θ) approximates the unique, pure ground state
|ψtarg〉〈ψtarg|, and the output state of the COM mode
becomes automatically disentangled.

In our design, resource operations are arranged such
that the circuit ultimately generates a variational Ma-
trix Product State (MPS). In fact, MPS efficiently ap-
proximate ground states of 1D quantum lattice Hamil-
tonians, including the SSH model [56, 57]. In contrast
to CSA resources, which are inherently global, blue-
sideband operations (1) offer single-site addressabil-
ity. This property allows us to progressively tailor
the MPS from one edge to the other, as shown by the
Tensor Network diagram [56, 57] in Fig. 1(c), in anal-
ogy to quantum circuits developed in the context of
quantum machine learning [58]. Previous strategies
for realizing MPS on quantum devices were proposed,
both for deterministic state preparation [59, 60], as
well as for variational state preparation [61] which em-
ployed long-range interactions. In contrast, our vari-
ational circuit requires only local ion-phonon inter-
actions, and, therefore, can be up-scaled to modular
ion trap architectures (see next section). Addition-
ally, we introduce an approximate bulk-translational
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invariance to the ansatz, to reduce its variational com-
plexity: In our circuit, interactions in the bulk can be
virtually grouped in ‘boxes’ (drawn in Fig. 1(b) as
grey rectangles at the edges, and orange and green
for the bulk). Each box is defined by a set of vari-
ational parameters, which are repeated in the bulk
boxes of the same color. At the same time, the maxi-
mum achievable bond dimension D ∼ 2l−1 of the gen-
erated MPS can be controlled by increasing the size of
the bulk boxes l (see Appendix A). Figure 1 shows a
specific design of the bulk boxes using five operations
per box. Numerical results suggest that the number
of operations per box is crucial towards the accuracy
of the ansatz, while the ordering is marginal (data not
shown). Appendix E illustrates our basic strategy to
arrange operations inside a box.

As in the CSA case, we again incorporate symme-
tries of the target model in the trial states. First of all,
since Hj is fully imaginary, the operation U(θ) is real
as well as |ψin〉 and ρ0(T ), and, thus, the generated
states ρout(θ) have real amplitudes. Moreover, opera-
tions (1) protect an ‘extended’ magnetization symme-
try 1/2

∑
j σ

z
j − a†a, forcing the output qubits state

to have well-defined z-magnetization upon qubits and
QDB becoming variationally disentangled (see Ap-
pendix B for details). We have analytically verified
that, in the theoretical limit of infinite-depth circuits,
the resources given by Eq. (1) are sufficient to gener-
ate ground states of any real, magnetization conserv-
ing Hamiltonian (proof in Appendix C). Controllabil-
ity for an arbitrary lattice model (e.g., without sym-
metries) can be achieved by adding to the resources a
resonant carrier operation σzj for at least one ion.

We stress that resources of the form (1) are typical
in various experimental platforms with bosonic QDBs,
such as superconducting qubits connected via a res-
onator [42, 43, 46]. As such, the numerical analysis
presented below can be generalized to these platforms.
CSD-MPS Circuit Ansatz − We also compare our

QDB-based approach with a variational MPS cir-
cuit ansatz realized with Closed System Digital re-
source operations (CSD-MPS circuit), as presented in
Fig 2(c). This circuit is built with single-qubit σzi
rotations and site-filtered MS gates (2) applied to a
local set of ions. Such resource operations protect z-
magnetization in the trial state.

4 Results
Performance− We compare the performance of the
variational circuits by numerically simulating VQE
for preparation of the ground state |ψtarg〉 of Hamilto-
nian (4) in the gapped phase with t = 0.5. Trial states
are obtained by evolving the initial quantum state in
terms of density matrixes. For the QDB-MPS cir-
cuit, we consider the COM mode to be prepared in a
thermal state ρ0(T ) with realistic average number of
excitations n0(T ) = Tr[a†a ρ0(T )] = 1/(e1/T − 1) =

Figure 3: Energy error related to the excitation gap, ε, (a)
versus size of the prepared states Nions for fixed number vari-
ational parameters Np = 18 and (b) versus Np for Nions = 12
in circuits QDB-MPS, CSD-MPS, and CSA, as indicated in
(a). Gray small rounds in (b) give values of εq obtained
in the same QDB-MPS circuit and parameters as the black
plot but with different initial pure states of the QDB |q〉a for
q ∈ {0, 1}.

0.01 [62, 63]. Other sources of imperfections are not
taken into account, and, therefore, in contrast to the
QDB-MPS circuit, simulations of the CSA and CSD-
MPS circuits are free of imperfections. We consider
the theoretical limit of unlimited measurement bud-
get [10, 23], i.e., the cost function is the exact expec-
tation value 〈HSSH〉θ. To optimize parameters θ, we
use a gradient-based optimization algorithm (see Ap-
pendix D), which can be adapted for noisy cost func-
tions [64–66]. We emphasize that we consider a low
number of free variational parameters, Np ∼ 10− 25,
which enables global search methods, such as the di-
viding rectangles algorithm [67, 68], already adopted
in VQE [23]. For the analog resource entangler HXY ,
realistic values α = 1.34 and B = 20 [23] are used.
Further details on the circuit ansätze and their simu-
lation are given in Appendix E.

To assess the accuracy of the ground state prepara-
tion, we employ various figures of merit. Besides the
fidelity and the excitation energy (defined later on),
we also consider a correlation-based error function

Ferr =
Nions∑

i=1, j>i

∣∣CDMRG
ij − Cij

∣∣ / Nions∑
i=1, j>i

∣∣CDMRG
ij

∣∣ ,
(7)

calculated using (parallel) two-point correlators

Cij = 〈σxi σxj 〉 − 〈σxi 〉〈σxj 〉. (8)

Here Cij is evaluated on the optimized state
ρout (θopt) and CDMRG

ij is the exact correlator of
|ψtarg〉 obtained by DMRG method [69]. We consider
this error function in Fig. 2(a), to show that the pro-
posed QDB-MPS circuit is able to prepare states with
Ferr saturating in Nions at fixed number of variational
parameters Np. In particular, the insets show that
these states have correlations Cij accurately capturing
CDMRG
ij . By contrast, Ferr arising from the CSA cir-

cuit grows rapidly for this specific task, and the corre-
lators Cij decay slower than in |ψtarg〉. We argue that

Accepted in Quantum 2020-05-19, click title to verify. Published under CC-BY 4.0. 5



this follows from the necessity to variationally remove
the strong (power-law) correlations established by the
long-range interactions in HXY (3) to recover the ex-
ponential decay of correlations in the ground state.
Moreover, the SSH ground state exhibits consider-
able (short-range) entanglement dimerization, which
in turn seems to favor quasi-local resource circuits
over global resource circuits. While the results for
CSD-MPS and QDB-MPS circuits given in Fig 2(a)
are compatible, the QDB-MPS is realized with higher-
rate operations, and, therefore, is expected to be less
prone to decoherence.

Scalability − We study the scalability of the cir-
cuits in terms of the excitation energy in units of
the energy gap, which bounds infidelity of the pre-
pared states 1 − F ≤ ε = (〈HSSH〉θopt − E0)/∆ (Ap-
pendix F), and is thus a figure of accuracy. Here,
F = 〈ψtarg|ρout (θopt) |ψtarg〉 and ∆ = E1 − E0 is the
energy gap obtained by DMRG, which converges to
a finite non-zero value in the thermodynamical limit
Nions →∞ since the target model is non-critical. Fig-
ure 3(a) shows that, for the QDB-MPS and CSD-MPS
circuits, ε grows linearly with Nions, in contrast to
the CSA circuit. This is compatible with the previ-
ous observation that the two-point correlation func-
tions carry, on average, an error saturating in Nions,
and the energy functional contains a linear amount of
such correlators.

Scaling of the accuracy ε with Np, for the various
methods and at fixed Nions, is plotted in Fig. 3(b).
Again, we observe that MPS circuits offer asymptoti-
cally better accuracy (or better parametric efficiency)
than the CSA global resources. While increasing
the number of parameters Np, we observe the CSD-
MPS circuit reaches slightly better accuracies than
the QDB-MPS circuit; we attribute this effect to the
finite temperature of the COM mode we employed
for the simulations. This argument is supported by
the gray curves in Fig. 3(b), showing relative excita-
tion energies εq obtained with the same QDB-MPS
circuit and the same parameter values as the black
plot but with different initial pure states of the COM
mode |q〉a for q ∈ {0, 1}. For n0 = 0.01, we have
ε = ε0p0+ε1p1+O(n2

0), with pq = 〈q|aρ0(T )|q〉a ∼ nq0.
The plot shows that the two quantum trajectories are
both variationally optimized in such a way that their
error contributions are commensurate, ε0p0 ∼ ε1p1.
Tolerance to temperature − Here, we further in-

vestigate tolerance of the QDB-MPS approach to
finite temperatures T of the COM mode. As
T increases, more amplitudes pq are populated in
ρ0(T ) =

∑
pq(T ) |q〉a 〈q|, and, therefore, more equa-

tions U (θopt) |ψin〉 |q〉a ∼ |ψtarg〉 |q〉a need to be si-
multaneously satisfied, requiring higher Np to achieve
the same accuracies. In Fig. 4, we consider the fidelity
of the optimized output state of Nions = 6 qubits, as
a function of the average number of excitations n0(T )
and number of variational parameters Np. Panel (a)

Figure 4: (a) Fidelity and (b) infidelity of the 6 qubit state
prepared in the QDB-MPS circuit as functions of number of
excitations n0 in ρ0(T ) and number of variational parameters
Np in the circuit. In (b), the red line indicates the lowest
number ofNp required to preserve infidelity threshold 1−F ≤
0.002 at given n0.

Figure 5: QDB-MPS circuit in a modular ion trap architec-
ture, which generates a state on the ions chain with 4 ions
per trap. The processing is implemented consequently, start-
ing from the left trap to the right, and from the bottom to
the top in a single trap as presented by the circuits. The red
boxes with the arrows indicate the transfer of the edge ions
(or their internal states) to the next trap after the implemen-
tation of all operations in a trap.

shows that, for fixed Np, F decreases linearly with
n0 (similarly to the C-phase gate [26] built with side-
bands), but with a slope that flattens for increasing
Np. Therefore, to achieve a fidelity threshold, Np
must be increased with n0. Remarkably, for the case
under consideration, it seems that the Np required
to obtain a static fidelity threshold scales logarithmi-
cally with n0. This behavior is illustrated in panel (b),
where the density plot shows the infidelity of the opti-
mized state as a function of n0 and Np. The red curve
highlights a fixed fidelity threshold 1 − F ≤ 0.002.
This property sets our QDB-based VQE apart from
the approaches using sideband interactions to con-
struct logical gates [26], in which imperfect cooling
imposes a hard bound on the attainable accuracies.
Scalability on a modular ion trap architectures −

The proposed QDB-MPS circuit 1(a) relies on inter-
actions between individual ions and the COM mode.
However, the number of ions which can be coupled
to the COM mode in a single trap is limited by
∼ 10 − 100 [34]. To further scale the ion trap quan-
tum processors, modular ion trap architectures were
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Figure 6: Energy error related to the excitation gap versus
size Nions of the optimized state in a single trap using Np =
18 variational parameters and in Ntraps traps with 6 ions per
trap using Np = 18 + 2 .

proposed [33, 34]. Following these proposals, we de-
scribe ground state preparation with QDB-MPS cir-
cuit across multiple traps, as shown in Fig. 5. We
consider coherent shuttling of few ions [33, 70] (or
their internal states [34]) as a quantum communica-
tion channel among the traps, and we assume it to be
error-free. We consider each trap containing a small
number of ions, such that each ion is addressable via
blue sideband pulses, realizing interactions as Eq. (1)
with the COM mode of the corresponding trap. For
simplicity, we assume that the initial thermal states,
ρ0, of the COM modes are identical in each trap, as
well as and their effective coupling to the ions.

The variational circuit ansatz is constructed se-
quentially along the network of traps, i.e., by ap-
plying operations in trap k + 1 after all operations
in trap k are completed. Since each trap has an in-
dependent COM mode as a bosonic QDB, we intro-
duce a variational ‘interface’ operation UI(θ5), con-
structed with resource interactions (1), which is ap-
plied to a set of l − 1 ions (with l the size of the
bulk boxes) as the last operation for trap k. This
operation can be optimized in order to disentangle
the COM mode of trap k, effectively implementing
UIρqubits,kU

†
I = ρqubits⊗ρ0, with ρqubits,k the common

state of ions and the COM mode. After transferring
the set of l − 1 ions to trap k + 1, we apply the uni-
tary U†I to the same ions plus the COM mode of trap
k + 1 prepared in state ρ0, effectively reconstructing
the state ρqubits,k+1 = U†I (ρqubits ⊗ ρ0)UI = ρqubits,k.
Ultimately, this operation removed the ‘impurity’ in-
troduced by the interface between the two traps.

In Fig. 6, we compare the excitation energies, from
optimizing the QDB-MPS circuit, with a single trap
and with a modular trap network. Both circuits
have the same number of variational operations in
the boxes in the edges and in the boxes of the bulk,
and the interface operation UI contains 2 variational
sideband operations. The error emerging from the
optimization of the ion-trap network deviates only
slightly from the error in the single trap case, and
we recover linear scaling of the error with the sys-
tem size. This result is an even stronger indicator of

scalability of the QDB-MPS approach for VQE, as it
can treat hardware interfaces as impurities, and effi-
ciently compensate for them with small variations of
the circuit ansatz.

5 Outlook

We proposed an approach for VQE which uses qubit-
QDB interactions, available in currently-existing pro-
grammable quantum devices, as variational resource
operations. In our strategy, the QDB is disentangled
from the optimized states only at the end of the state
preparation, as a byproduct of the optimization. For
trapped ions, we discussed how to realize our strategy
with resonant blue-sideband pulses, potentially yield-
ing faster state-preparation rates compared to exist-
ing strategies, and thus helping to mitigate decoher-
ence effects. The variational ansatz circuit we de-
signed is tailored to efficiently prepare MPS, leading
to a potential improvement in scalability over current
VQE strategies.

We numerically simulated the ion trap implemen-
tation of VQE based on the QDB-MPS ansatz circuit,
and showed strong evidence of scalability of our ap-
proach, even when it is realized in modular ion traps.
While the ions-COM mode sideband interactions op-
erate in an extended Hilbert space, we demonstrated
that these resource operations can incorporate sym-
metries in the variational circuit, similar to the closed-
system VQE approaches. Although here we demon-
strated robustness of the method to the initial tem-
perature of the COM mode, further investigations are
required to study other realistic imperfections, includ-
ing (i) qubits decoherence, (ii) fluctuations of the con-
trol parameters, and (iii) shot noise resulting from a
finite budget of measurements to reconstruct the cost
function.

The developed QDB-based VQE can be readily
used in other currently available experimental plat-
forms, such as quantum dots [71] or atoms coupled
by (chiral) waveguides [72]. Moreover, we expect that
the scaling and parametric efficiency of our results,
found for the MPS circuit ansatz, extend to other
efficiently-contractible tensor network states [58, 61],
such as MPS2 [73, 74], thus allowing us to accomodate
the entanglement content required to explore higher
dimensions. Also, by including simultaneous opera-
tions on multiple qubits, it is possible to build many-
body wavefunction ansätze beyond tensor networks,
ultimately enabling the efficient preparation of quan-
tum states that can not be numerically simulated. Fi-
nally, we envision the possibility of including control-
lable dissipative elements to the QDB resources [75]
in order to construct optimized cooling algorithms be-
yond stabilizer codes [76, 77].
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Figure 7: (a) QDB-MPS circuit with the measurement of
the bosonic QDB, which results in probabilistic generation of
MPS |Φ〉 in qubits. (b) Tensor network diagram of |Φ〉.

Appendix

A Maximum bond dimension
In the section, we study the maximum bond dimen-
sion, DM , of MPS generated with the QDB-MPS cir-
cuit using a bosonic QDB and built with resource op-
erations (1) described by the Anti-Jaynes-Cummings
Hamiltonian. Here we distinguish two sets of MPS
accessible by the circuit. The first set contains all
pure states which can be generated by the QDB-MPS
circuit. The states of this set can be generated prob-
abilistically [59] after measuring (and therefore disen-
tangling) the QDB at the end. It defines the search
space for VQE and, therefore, is desired to be limited.
The second set — a subset of the first set — contains
deterministically generated translationally invariant
MPS, which are disentangled from the QDB by the
end of the circuit without measuring the EM. This
set, in opposite to the first one, is required to be big
enough to include a good approximation of the target
state.

Set of probabilistically generated MPS
We start with the set of MPS generated probabilisti-
cally. We characterize this set of MPS by considering
a possible range of their bond dimensions. Bond di-
mension DM of MPS of size N is the maximum of
bond dimensions Dn between two blocks of qubits
[1, n] and [n + 1, N ]. Dn corresponds to entangle-
ment entropy between the blocks [57], such that the
Schmidt decomposition of MPS |Φ〉 in the basis of two
blocks {|φ(i)

[1,n]〉} and {|φ
(i)
[n+1,N ]〉} is

|Φ〉 =
Dn∑
i=1

ai|φ(i)
[1,n]〉|φ

(i)
[n+1,N ]〉.

The entanglement entropy of the blocks is S[1,n] =
−Tr

[
ρ[1,n]log(ρ[1,n])

]
≤ logDn, with ρ[1,n] the state
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of qubits [1, n].

Using singular value decomposition, one can show
that, for an arbitrary state of size N , it is valid
that Dn ≤ 2min(n,N+1−n), and, therefore, DM ≤
2bN/2c. By using a not universal set of resource
operations (9) we limit DM and, therefore, restrict
the set of achievable states. As presented in Ap-
pendix B, interactions (1) preserve an extended sym-
metry Z = 1/2

∑N
j=1 σ

z
j − a†a. In the following, we

explain that this symmetry imposesDn / bn/2c·2l−1,
where l is the size of the bulk boxes in the QDB-MPS
circuit, and limits the maximum bond dimension as
DM / b2/3 ·Nc 2l−1. Therefore, in comparison with
the general case, the bond dimension of the MPS gen-
erated by the QDB-MPS circuit is exponentially sup-
pressed.

Figure 7, demonstrates entanglement distribution
in the QDB-MPS circuit between the qubits by a sub-
system, highlighted by orange color, which includes
the QDB and l− 1 qubits shared by neighbor virtual
boxes. Such a subsystem can be considered as a vir-
tual ancilla that sequentially interacts with the qubits
distributing entanglement among them [59]. The ef-
fective dimension of this ancilla (dimension of the pop-
ulated Hilbert space) bounds bond dimension Dn.

Let us consider the QDB initially prepared in state
|p0〉a = |0〉a, and the qubits prepared in state |ψin〉 =
|↓〉1 |↑〉2 |↓〉3 ... |↑〉N . Then, because of the preserved
symmetry, the maximum possible population of the
QDB after interaction with n ions can not be higher
than |bn/2c〉a. Multiplying the growing dimension of
the QDB by the dimension of l−1 qubits in the ancilla,
we obtain that Dn / bn/2c · 2l−1. From the other
side, as explained in [59], Dn has to decrease as n
approaches to N to guarantee that the ancilla (with
QDB measured in |pN 〉a) is decoupled by the end of
the state preparation. Therefore, there exists some
nM , for which DnM

achieves its maximum. To obtain
nM , we study how Dn can decrease while the ancilla
interacts with the qubits after qubit nM . Intuitively,
this can be done other way around by considering
the growth of bond dimension D̃N−n if MPS would
be generated from the other side of the qubits chain,
starting from n = N . Since the measured output
state |pN 〉a can contain number of excitations pN ≥ 0,
the number of excitations in the QDB can not only
increase but also decrease as the QDB interacts with
the qubits, populating Hilbert space with the twice
bigger dimension than if the QDB would be initially
prepared in |0〉a. Therefore, D̃N−n ≈ 2Dñ

∣∣
ñ=N−n /

(N −n)2l−1. Solving DnM
= D̃N−nM

we obtain that,
after nM / b2/3 ·Nc, Dn has to decrease with n.
Thus, we find that DM = DnM

/ b2/3 ·Nc 2l−1.

Set of deterministically generated translation-
ally invariant MPS
In order to generate MPS with translationally invari-
ant Dn in the bulk, the virtual ancilla has to own
dimension which repeats itself with a target period
along the state preparation. This includes the an-
cilla dimension after realization of the last box in the
bulk, after which the edge box is aimed to disentan-
gle the QDB from l − 1 ancilla qubits as required by
deterministic preparation of a pure state. This can
be done only if the effective dimension of the ancilla
does not exceed dimension 2l−1 of the qubits. Hence,
the limit of the bond dimension of the translationally
invariant MPS deterministically generated in the con-
sidered QDB-MPS circuit is ∼ 2l. Here, we defined
the limit not exactly, since the actual bond dimension
can vary within one period of the bulk.

B Symmetries
In this section, we discuss the symmetries protected
by the operations

Hj = iΩ̃
(
aσ−j − a

†σ+
j

)
, (9)

with Ω̃ the Rabi frequency, a is the destruction oper-
ator for the bosonic QDB, and σ−j = (σ+

j )† = |↓〉 〈↑|j
the lowering operator for qubit j, with {|↓〉j , |↑〉j} the
internal logical states of the qubit.
Magnetization − A number symmetry, forming an

Abelian U(1) group of symmetric transformations
W (ϕ) = exp(−iϕZ), is generated by the integer op-
erator

Z = 1/2
N∑
j=1

σzj − a†a = M − a†a, (10)

where N is the number of qubits, M = 1/2
∑
j σ

z
j ,

and σzj = |↑〉 〈↑|j − |↓〉 〈↓|j . It is straightforward to
check that Z is a symmetry since [Hj , Z] = 0 for every
site j ∈ {1..N}. Z thus defines a quantum number,
which is conserved during the controlled variational
dynamics. Consider the initial state of the system of
qubits plus the QDB as |Ψin〉 = |ψin〉 ⊗ |s〉a, with
|ψin〉 = |↓〉1 |↑〉2 |↓〉3 ... |↑〉N the state of the qubits
and |s〉a the Fock state of the QDB, a†a|s〉a = s|s〉a,
s ∈ N. This state has well-defined quantum num-
ber Z |Ψin〉 = s |Ψin〉. Due to the symmetry of
Eq. (10), the evolution of this state will preserve its
quantum number, and the state will always be of
the form |Ψout〉 =

∑
q,m,t δm,q−scm,t|m, tm〉 ⊗ |q〉a,

where the qubit states are labeled by the magneti-
zation m (eigenvalues of M) and degeneracy tm. At
the end of the variational quantum state preparation,
after optimization of the process, the output state
will be disentangled between phonon and qubits, and
reads |Ψopt〉 = (

∑
t cm,t|m, tm〉)⊗ |m+ s〉a. The final
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qubit state will thus have a well-defined magnetiza-
tion m ∈ N. This requirement identifies the class of
target Hamiltonians H targetable with the chosen re-
sources: which must contain the magnetization sym-
metry: [H,Mz] = 0.
Conjugation − A second symmetry is nested within

our controls, and it becomes evident after gauging
the resource Hamiltonians as in Eq. (1). In this
format, the resource Hamiltonians are purely imag-
inary Hj = −H̄j when expressed in the canonical
basis, and thus antisymmetric Hj = −Ht

j and trace-
less Tr[Hj ] = 0. It follows that the unitary oper-
ators Uj(t) = e−iHjt/~ of time evolution under Hj

must be real, as they are imaginary exponentials of
imaginary matrices, and have determinant det(Uj) =
e−itTr[Hj ] = 1. This means that, with the chosen re-
sources, we can only perform transformations in the
special orthogonal group SO(2d), a subgroup of the
unitaries U(2d), which, in turn, limits the set of states
we can prepare to real states (vectors with real coeffi-
cients in the canonical basis). In conclusion, the class
of models targetable with our variational scheme is
restricted to models expressed by real, or symmetric,
Hamiltonians, which always possess real eigenbases.
We stress that the complex conjugation symmetry can
be relaxed by adding a detuning δj = ν ± ε to one or
more of the control lasers, which can be helpful if we
aim to quantum simulate a non-real Hamiltonian HT .

C Controllability
We now discuss the controllability problem and show
that, within the constraints set in the symmetry sec-
tion, the selected controls are theoretically able to
prepare any quantum state, in the limit of infinite
available resources. First of all, we argue that start-
ing from the state |ψin〉 ⊗ |q〉a it is possible to shift
the system qubits state to any magnetization sector.
This is shown recursively, by highlighting that the
state |↓〉j |q〉a under the action of Hj for a time equal
to t = π/(Ω̃

√
q + 1) is completely mapped into the

state |↑〉j |q + 1〉a, ultimately increasing the magne-
tization by +1. Secondly, we show that our controls
Hj provide strong controllability within each magne-
tization sector m (of dimension dm) of real states,
meaning that the Lie algebra generated by {Hj} con-
tains the Lie algebra of imaginary, hermitian matri-
ces onto the m sector, generators of SO(dm), as we
will show later in this section. From this observa-
tion, it follows that any two real states |ψ1〉|q〉a and
|ψ2〉|q〉a can be dynamically connected, i.e., |ψ2〉 =
e−iH

′t/~|ψ1〉 for some t, simply because the effec-
tive Hamiltonian H ′ = i|ψ1〉〈ψ′| − i|ψ′〉〈ψ1|, with
|ψ′〉 ∝ |ψ2〉 − |ψ1〉〈ψ1|ψ2〉, can be generated with our
resources.

We now prove that, by means of linear combination
and commutation, we can generate the whole algebra
of imaginary Hermitian matrices for the sector m by

starting from the bare resources Hj = i(σ+
j a
†−σ−j a).

We start by considering the commutator i[Hj , Hj′ ] =
i(σ−j σ

+
j′ − σ+

j σ
−
j′ ), for sites j 6= j′, which is an en-

domorphism of magnetization sector m. Moreover,
it is easy to show that i[Hj , i[Hj , Hj′ ]] = σzjHj′ , for
j 6= j′. By recursion and locality, it follows that we
can generate any string operator of the form

i(σ−j σ
+
j′ − σ+

j σ
−
j′ )

∏
k 6=j,j′

(σz)qk (11)

for any binary string qk. We run one additional
commutator, namely i[(σ−j σ

+
j′ − σ+

j σ
−
j′ )σzk, (σ

−
k σ

+
k′ −

σ+
k σ
−
k′)] = 2i(σ−j σ

+
j′ − σ+

j σ
−
j′ )(σ−k σ

+
k′ + σ+

k σ
−
k′) where

all sites are different. By recursion, we conclude that
we can generate operators H̄ which are tensor prod-
uct of one operator i(σ−j σ

+
j′ − σ+

j σ
−
j′ ) at a pair of

sites j 6= j′, any amount of σz` , and any amount of
(σ−k σ

+
k′ + σ+

k σ
−
k′) (each one acting on separate sites).

We remark that these operators form a basis for the
imaginary Hermitian endomorphisms of the symme-
try sector m. To see this, consider the canonical basis
i(|q1q2q3 . . .〉〈r1r2r3 . . . |−H.c.), where ~q and ~r are any
two-bit strings with total magnetization m. This op-
erator can be easily decomposed in operators of the
form H̄: for bits j that do not flip (qj = rj = ±1) just
insert a (1±σzj ) in the tensor product string, while for
pairs of bits that flip-flop, insert a (σ−k σ

+
k′ + σ+

k σ
−
k′),

except one, which is substituted by i(σ−j σ
+
j′ −σ+

j σ
−
j′ ).

This concludes the proof.

D Parameters optimization
In the section, we describe the method used for the op-
timization of variational parameters θ in the numeri-
cal simulations of VQE with the circuits given in the
main text. Since the purpose of the paper is to study
the achievable accuracy of the proposed approaches,
we employ the exact value of cost function 〈HSSH〉θ
in the optimization. The expectation value 〈HSSH〉θ
is obtained by simulating the circuits in terms of den-
sity matrixes without considering shot noise caused
by the finite number of measurements of the trial ions
states. To optimize parameters θ we use a gradient-
based optimization algorithm, which relies on numer-
ically accessible approximate values of ∇θi

〈HSSH〉θ =
(〈HSSH〉θ |θi→θi+∆ −〈HSSH〉θ)/∆|∆→0. To be more
precise, we use the basin-hopping method [78, 79],
which is a two-phase method that combines a global
stepping algorithm with local minimization at each
step. As a local minimization algorithm, we use the
quasi-newton method of Broyden, Fletcher, Goldfarb,
and Shanno (BFGS) [80–83].

To decrease noise in the data presented in the result
section, we ensured that 〈HSSH〉θ is monotonically de-
creases with decrease of temperature T of the COM
mode (or equivalently number of excitations n0), with
decrease of state size Nions, and with growth of the
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Figure 8: Strategy for increasing of the number of the varia-
tional parameters in circuits: (a) QDB-MPS, (b) CSD-MPS,
and (c) CSA. The numbers indicate the order in which the
new variational operations are inserted. The operations with-
out the numbers represent the minimum set. In (a), blue links
in the left box represent interactions between QDB (red line)
and qubits (black lines) and, for simplicity, are replaced by
the blue squares in the following boxes.

number of variational parametersNp. We begin by in-
dependently optimizing parameters for all data points
(defined by one or two values of n0, Nions, and Np),
each of which starts from several sets of initial pa-
rameters θ with values ∼ 0.001− 0.1. Then, the opti-
mized parameters of the best result in one data point
is used as the initial parameters set for the neighbor
data point, and the obtained result is compared with
the existing ones. In the case when the neighbor data
point requires less initial parameters, the extra pa-
rameters are removed from the inserted parameters
set; otherwise, parameters with 0 can be inserted. To
obtain the presented data, we iteratively re-optimize
the parameters from one side of data points range to
another and, afterward, in the reverse direction until
convergence.

E Gates sequence in the circuit
In the section, we consider in detail the sequences
of variational operations, Fig. (8), used to construct
circuits considered in our work. The number of varia-
tional operations in the edge boxes of the QDB-MPS
and CSD-MPS circuits is fixed to 2 and 3 correspond-
ingly, as shown in Fig. (8). In these circuits, the
number of variational parameters is increased by pro-
gressively inserting operations in the first bulk box
(orange) or second (green), alternately. In the QDB-
MPS circuit, we increase this number by 1, arranging
the operations such that the last operation in one box
and the first in the next box do not act to the same
qubit. In the CSD-MPS circuit, we add a single layer,
consisting of a local MS operation and σzi rotations
at each ion. To increase the number of variational
operations in the CSA circuit, we add a single layer
consisting of HXY operations and σzi per ion.

The trial states in the CSA circuit are obtained as

|ψout(θ)〉 =
∏
i exp{−iθiH

(r)
i } |ψin〉, with {H(r)

i } the
resource operations. Afterward, the required correla-
tion functions can be obtained from |ψout(θ)〉. Since
this method requires numerical operation with the full
quantum state, the number of the qubits in the CSA
circuit in our study is limited by 12. On the con-
trary, one can see from Fig. 8 that, in order to obtain
correlation functions of the states generated by the
QDB-MPS and CSD-MPS, the full state is not re-
quired to be kept, but only a reduced density matrix
of at maximum l qubits plus the QDB, with l the size
of the bulk boxes. The qubits which do not more par-
ticipate in the evolution until the end of the circuit
can be measured in the required bases, and the next
qubit can be added to the remained qubits state by
using the Kronecker product operation.

F Energy bounds on fidelity and purity
In this section, we show that the final energy 〈H〉 =
Tr[Hρ(θ)], in respect to a target HamiltonianH, mea-
sured on the optimized variational quantum state ρ(θ)
imposes a bound on its fidelity F = 〈ψtarg|ρ(θ)|ψtarg〉,
with |ψtarg〉 the exact ground state. Establishing this
bound requires a good estimate of the two lowest en-
ergy levels E0 and E1, which can be estimated on the
quantum device via a subspace expansion technique
for mixed states, illustrated in detail in the Supple-
mentary Information of Ref. [84]. This analysis pro-
vides self-verification of the variational quantum state
preparation algorithm [23]. Alternatively, for 1D lat-
tice Hamiltonians, E0 and E1 can be obtained using
numerical method DMRG.

Let us consider the following inequality

〈H〉 − E0 = Tr[Hρ(θ)]− E0

=
∑
j≥0
〈ej |(H−E0I)ρ(θ)|ej〉 =

∑
j≥1

(Ej−E0)〈ej |ρ(θ)|ej〉 ≥

≥ (E1 − E0)
∑
j≥1
〈ej |ρ(θ)|ej〉

= (E1−E0) (1− 〈e0|ρ(θ)|e0〉) = (E1−E0) (1−F)
(12)

stating that the state fidelity F is bound from below
by the ratio

F ≥ E1 − 〈H〉
E1 − E0

, (13)

delivering an actual (positive) bound only when the
variational state energy is below the first excited en-
ergy, i.e. 〈H〉 < E1. A lower bound on the fidelity, in
turn, infers a bound on the purity Tr[ρ2]. In fact

Tr[ρ2] =
∑
j≥0
〈ej |ρ2|ej〉 ≥ 〈e0|ρ2|e0〉

=
∑
j≥0
〈e0|ρ|ej〉〈ej |ρ|e0〉 ≥ 〈e0|ρ|e0〉2 = F 2. (14)
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In conclusion, as long as 〈H〉 ≤ E1, we have that

Tr[ρ2] ≥
(
E1 − 〈H〉
E1 − E0

)2
, (15)

approaching Tr[ρ2] = 1 (certified pure state) in the
limit 〈H〉 → E0.
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