Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders

Nikola Paunković1 and Marko Vojinović2

1Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1049-001, Lisboa, Portugal
2Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We study the notion of causal orders for the cases of (classical and quantum) circuits and spacetime events. We show that every circuit can be immersed into a classical spacetime, preserving the compatibility between the two causal structures. Using the process matrix formalism, we analyse the realisations of the quantum switch using 4 and 3 spacetime events in classical spacetimes with fixed causal orders, and the realisation of a gravitational switch with only 2 spacetime events that features superpositions of different gravitational field configurations and their respective causal orders. We show that the current quantum switch experimental implementations do not feature superpositions of causal orders between spacetime events, and that these superpositions can only occur in the context of superposed gravitational fields. We also discuss a recently introduced operational notion of an event, which does allow for superpositions of respective causal orders in flat spacetime quantum switch implementations. We construct two observables that can distinguish between the quantum switch realisations in classical spacetimes, and gravitational switch implementations in superposed spacetimes. Finally, we discuss our results in the light of the modern relational approach to physics.

► BibTeX data

► References

[1] A. Einstein, B. Podolsky and N. Rosen, Physical Review 47, 777 (1935).
https:/​/​doi.org/​10.1103/​PhysRev.47.777

[2] J. S. Bell, Physics Physique Fizika 1, 195 (1964).
https:/​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[3] G. Chiribella, G. M. D'Ariano, P. Perinotti and B. Valiron, Physical Review A 88, 022318 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.022318

[4] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. A. Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner and P. Walther, Nature Communications 6, 7913 (2015).
https:/​/​doi.org/​10.1038/​ncomms8913

[5] G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. Procopio, Č. Brukner and P. Walther, Science Advances 3, e1602589 (2017).
https:/​/​doi.org/​10.1126/​sciadv.1602589

[6] G. Rubino, L. A. Rozema, F. Massa, M. Araújo, M. Zych, Č. Brukner and P. Walther, arXiv:1712.06884.
arXiv:1712.06884

[7] L. Hardy, Journal of Physics A: Mathematical and Theoretical 40, 3081 (2007).
https:/​/​doi.org/​10.1088/​1751-8113/​40/​12/​s12

[8] O. Oreshkov, F. Costa and Č. Brukner, Nature Communications 3, 1092 (2012).
https:/​/​doi.org/​10.1038/​ncomms2076

[9] M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi and Č. Brukner, New Journal of Physics 17, 102001 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​10/​102001

[10] J. Bavaresco, M. Araújo, Č. Brukner and M. T. Quintino, Quantum 3 176 (2019).
https:/​/​doi.org/​10.22331/​q-2019-08-19-176

[11] P. Allard Guérin, G. Rubino and Č. Brukner, Phys. Rev. A 99 062317 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.062317

[12] C. Portmann, C. Matt, U. Maurer, R. Renner and B. Tackmann, IEEE Transactions on Information Theory 63, 3277 (2017).
https:/​/​doi.org/​10.1109/​TIT.2017.2676805

[13] J.-P. W. MacLean, K. Ried, R. W. Spekkens and K. J. Resch, Nature Communications 8, 15149 (2017).
https:/​/​doi.org/​10.1038/​ncomms15149

[14] M. Niedermaier and M. Reuter, Living Rev. Rel. 9, 5 (2006).
https:/​/​doi.org/​10.12942/​lrr-2006-5

[15] M. Zych, F. Costa, I. Pikovski and Č. Brukner, Nature Communications 10, 3772 (2019).
https:/​/​doi.org/​10.1038/​s41467-019-11579-x

[16] M. Bauer, American Journal of Physics 82, 1087 (2014).
https:/​/​doi.org/​10.1119/​1.4891193

[17] M. O. Scully and K. Drühl, Physical Review A 25, 2208 (1982).
https:/​/​doi.org/​10.1103/​PhysRevA.25.2208

[18] M. O. Scully, B.-G. Englert and H. Walther, Nature 351, 111 (1991).
https:/​/​doi.org/​10.1038/​351111a0

[19] H. Lichtenegger and B. Mashhoon, in The Measurement of Gravitomagnetism: A Challenging Enterprise, edited by L. Iorio, 13, Nova Science Pub Inc, New York (2007).

[20] M. Blagojević, Gravitation and Gauge Symmetries, Institute of Physics Publishing, Bristol (2002).

[21] H. Bondi and J. Samuel, Physics Letters A 228, 121 (1997).
https:/​/​doi.org/​10.1016/​S0375-9601(97)00117-5

[22] A. S. Eddington, Space time and gravitation, Cambridge University Press, Cambridge (1921).

[23] C. Misner, K. Thorne and J. Wheeler, Gravitation, W. H. Freeman, San Francisco (1973).

[24] C. Rovelli, Quantum Gravity, Cambridge University Press, Cambridge (2004).

[25] J. Janjić, N. Paunković and M. Vojinović, in preparation.

[26] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, Cambridge University Press, Cambridge (2014).

[27] C. T. Marco Ho, F. Costa, C. Giarmatzi and T. C. Ralph, arXiv:1804.05498.
arXiv:1804.05498

[28] O. Oreshkov, Quantum 3, 206 (2019).
https:/​/​doi.org/​10.22331/​q-2019-12-02-206

[29] R. A. Bertlmann and P. Krammer, Journal of Physics A: Mathematical and Theoretical 41, 235303 (2008).
https:/​/​doi.org/​10.1088/​1751-8113/​41/​23/​235303

Cited by

[1] M. Trassinelli, "Conditional probabilities of measurements, quantum time, and the Wigner's-friend case", Physical Review A 105 3, 032213 (2022).

[2] Huan Cao, Jessica Bavaresco, Ning-Ning Wang, Lee A. Rozema, Chao Zhang, Yun-Feng Huang, Bi-Heng Liu, Chuan-Feng Li, Guang-Can Guo, and Philip Walther, "Semi-device-independent certification of indefinite causal order in a photonic quantum switch", Optica 10 5, 561 (2023).

[3] Zuzana Gavorová, Matan Seidel, and Yonathan Touati, "Topological obstructions to quantum computation with unitary oracles", Physical Review A 109 3, 032625 (2024).

[4] Ricardo Faleiro, Nikola Paunkovic, and Marko Vojinovic, "Operational interpretation of the vacuum and process matrices for identical particles", Quantum 7, 986 (2023).

[5] Kyrylo Simonov, Gianluca Francica, Giacomo Guarnieri, and Mauro Paternostro, "Work extraction from coherently activated maps via quantum switch", Physical Review A 105 3, 032217 (2022).

[6] David Felce, Nicetu Tibau Vidal, Vlatko Vedral, and Eduardo O. Dias, "Indefinite causal orders from superpositions in time", Physical Review A 105 6, 062216 (2022).

[7] Natália S. Móller, Bruna Sahdo, and Nelson Yokomizo, "Quantum switch in the gravity of Earth", Physical Review A 104 4, 042414 (2021).

[8] Nikola Paunković and Marko Vojinović, "Equivalence Principle in Classical and Quantum Gravity", Universe 8 11, 598 (2022).

[9] Nick Ormrod, Augustin Vanrietvelde, and Jonathan Barrett, "Causal structure in the presence of sectorial constraints, with application to the quantum switch", Quantum 7, 1028 (2023).

[10] Erickson Tjoa, "Quantum teleportation with relativistic communication from first principles", Physical Review A 106 3, 032432 (2022).

[11] Jian Wei Cheong, Andri Pradana, and Lock Yue Chew, "Communication advantage of quantum compositions of channels from non-Markovianity", Physical Review A 106 5, 052410 (2022).

[12] Tein van der Lugt, Jonathan Barrett, and Giulio Chiribella, "Device-independent certification of indefinite causal order in the quantum switch", Nature Communications 14 1, 5811 (2023).

[13] Laura J. Henderson, Alessio Belenchia, Esteban Castro-Ruiz, Costantino Budroni, Magdalena Zych, Časlav Brukner, and Robert B. Mann, "Quantum Temporal Superposition: The Case of Quantum Field Theory", Physical Review Letters 125 13, 131602 (2020).

[14] Natália S. Móller, Bruna Sahdo, and Nelson Yokomizo, "Gravitational quantum switch on a superposition of spherical shells", Quantum 8, 1248 (2024).

[15] Carlos Sabín, "Causality in a Qubit-Based Implementation of a Quantum Switch", Universe 8 5, 269 (2022).

[16] Robin Lorenz, "Quantum causal models: the merits of the spirit of Reichenbach’s principle for understanding quantum causal structure", Synthese 200 5, 424 (2022).

[17] Marco Fellous-Asiani, Raphaël Mothe, Léa Bresque, Hippolyte Dourdent, Patrice A. Camati, Alastair A. Abbott, Alexia Auffèves, and Cyril Branciard, "Comparing the quantum switch and its simulations with energetically constrained operations", Physical Review Research 5 2, 023111 (2023).

[18] Aurélien Drezet, "Indefinite causal order with fixed temporal order for electrons and positrons", Quantum Studies: Mathematics and Foundations 10 1, 101 (2023).

[19] Emily Adlam, "Is there causation in fundamental physics? New insights from process matrices and quantum causal modelling", Synthese 201 5, 152 (2023).

[20] Julian Wechs, Hippolyte Dourdent, Alastair A. Abbott, and Cyril Branciard, "Quantum Circuits with Classical Versus Quantum Control of Causal Order", PRX Quantum 2 3, 030335 (2021).

[21] Yu Guo, Zixuan Liu, Hao Tang, Xiao-Min Hu, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, and Giulio Chiribella, "Experimental Demonstration of Input-Output Indefiniteness in a Single Quantum Device", Physical Review Letters 132 16, 160201 (2024).

[22] Laurie Letertre, "Causal nonseparability and its implications for spatiotemporal relations", Studies in History and Philosophy of Science 95, 64 (2022).

[23] Pedro R. Dieguez, Vinicius F. Lisboa, and Roberto M. Serra, "Thermal devices powered by generalized measurements with indefinite causal order", Physical Review A 107 1, 012423 (2023).

[24] Michael Antesberger, Marco Túlio Quintino, Philip Walther, and Lee A. Rozema, "Higher-Order Process Matrix Tomography of a Passively-Stable Quantum Switch", PRX Quantum 5 1, 010325 (2024).

[25] Alastair A. Abbott, Julian Wechs, Dominic Horsman, Mehdi Mhalla, and Cyril Branciard, "Communication through coherent control of quantum channels", Quantum 4, 333 (2020).

[26] Jonathan Barrett, Robin Lorenz, and Ognyan Oreshkov, "Cyclic quantum causal models", Nature Communications 12 1, 885 (2021).

[27] V. Vilasini and Renato Renner, "Embedding cyclic causal structures in acyclic space-times: no-go results for indefinite causality", arXiv:2203.11245, (2022).

[28] Alastair A. Abbott, Julian Wechs, Dominic Horsman, Mehdi Mhalla, and Cyril Branciard, "Communication through coherent control of quantum channels", arXiv:1810.09826, (2018).

[29] Pablo Arrighi, Marios Christodoulou, and Amélia Durbec, "On quantum superpositions of graphs, no-signalling and covariance", arXiv:2010.13579, (2020).

[30] Nicola Pinzani and Stefano Gogioso, "Giving Operational Meaning to the Superposition of Causal Orders", arXiv:2003.13306, (2020).

[31] Nikola Paunkovic and Marko Vojinovic, "Challenges for extensions of the process matrix formalism to quantum field theory", arXiv:2310.04597, (2023).

[32] Aurélien Drezet, "Indefinite causal order with fixed temporal order for electrons and positrons", arXiv:2202.12886, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-19 08:28:50) and SAO/NASA ADS (last updated successfully 2024-04-19 08:28:51). The list may be incomplete as not all publishers provide suitable and complete citation data.