Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders

Nikola Paunković1 and Marko Vojinović2

1Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1049-001, Lisboa, Portugal
2Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We study the notion of causal orders for the cases of (classical and quantum) circuits and spacetime events. We show that every circuit can be immersed into a classical spacetime, preserving the compatibility between the two causal structures. Using the process matrix formalism, we analyse the realisations of the quantum switch using 4 and 3 spacetime events in classical spacetimes with fixed causal orders, and the realisation of a gravitational switch with only 2 spacetime events that features superpositions of different gravitational field configurations and their respective causal orders. We show that the current quantum switch experimental implementations do not feature superpositions of causal orders between spacetime events, and that these superpositions can only occur in the context of superposed gravitational fields. We also discuss a recently introduced operational notion of an event, which does allow for superpositions of respective causal orders in flat spacetime quantum switch implementations. We construct two observables that can distinguish between the quantum switch realisations in classical spacetimes, and gravitational switch implementations in superposed spacetimes. Finally, we discuss our results in the light of the modern relational approach to physics.

► BibTeX data

► References

[1] A. Einstein, B. Podolsky and N. Rosen, Physical Review 47, 777 (1935).

[2] J. S. Bell, Physics Physique Fizika 1, 195 (1964).

[3] G. Chiribella, G. M. D'Ariano, P. Perinotti and B. Valiron, Physical Review A 88, 022318 (2013).

[4] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. A. Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner and P. Walther, Nature Communications 6, 7913 (2015).

[5] G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. Procopio, Č. Brukner and P. Walther, Science Advances 3, e1602589 (2017).

[6] G. Rubino, L. A. Rozema, F. Massa, M. Araújo, M. Zych, Č. Brukner and P. Walther, arXiv:1712.06884.

[7] L. Hardy, Journal of Physics A: Mathematical and Theoretical 40, 3081 (2007).

[8] O. Oreshkov, F. Costa and Č. Brukner, Nature Communications 3, 1092 (2012).

[9] M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi and Č. Brukner, New Journal of Physics 17, 102001 (2015).

[10] J. Bavaresco, M. Araújo, Č. Brukner and M. T. Quintino, Quantum 3 176 (2019).

[11] P. Allard Guérin, G. Rubino and Č. Brukner, Phys. Rev. A 99 062317 (2019).

[12] C. Portmann, C. Matt, U. Maurer, R. Renner and B. Tackmann, IEEE Transactions on Information Theory 63, 3277 (2017).

[13] J.-P. W. MacLean, K. Ried, R. W. Spekkens and K. J. Resch, Nature Communications 8, 15149 (2017).

[14] M. Niedermaier and M. Reuter, Living Rev. Rel. 9, 5 (2006).

[15] M. Zych, F. Costa, I. Pikovski and Č. Brukner, Nature Communications 10, 3772 (2019).

[16] M. Bauer, American Journal of Physics 82, 1087 (2014).

[17] M. O. Scully and K. Drühl, Physical Review A 25, 2208 (1982).

[18] M. O. Scully, B.-G. Englert and H. Walther, Nature 351, 111 (1991).

[19] H. Lichtenegger and B. Mashhoon, in The Measurement of Gravitomagnetism: A Challenging Enterprise, edited by L. Iorio, 13, Nova Science Pub Inc, New York (2007).

[20] M. Blagojević, Gravitation and Gauge Symmetries, Institute of Physics Publishing, Bristol (2002).

[21] H. Bondi and J. Samuel, Physics Letters A 228, 121 (1997).

[22] A. S. Eddington, Space time and gravitation, Cambridge University Press, Cambridge (1921).

[23] C. Misner, K. Thorne and J. Wheeler, Gravitation, W. H. Freeman, San Francisco (1973).

[24] C. Rovelli, Quantum Gravity, Cambridge University Press, Cambridge (2004).

[25] J. Janjić, N. Paunković and M. Vojinović, in preparation.

[26] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, Cambridge University Press, Cambridge (2014).

[27] C. T. Marco Ho, F. Costa, C. Giarmatzi and T. C. Ralph, arXiv:1804.05498.

[28] O. Oreshkov, Quantum 3, 206 (2019).

[29] R. A. Bertlmann and P. Krammer, Journal of Physics A: Mathematical and Theoretical 41, 235303 (2008).

Cited by

[1] Laura J. Henderson, Alessio Belenchia, Esteban Castro-Ruiz, Costantino Budroni, Magdalena Zych, Časlav Brukner, and Robert B. Mann, "Quantum Temporal Superposition: The Case of Quantum Field Theory", Physical Review Letters 125 13, 131602 (2020).

[2] Alastair A. Abbott, Julian Wechs, Dominic Horsman, Mehdi Mhalla, and Cyril Branciard, "Communication through coherent control of quantum channels", arXiv:1810.09826, Quantum 4, 333 (2020).

[3] Nicola Pinzani and Stefano Gogioso, "Giving Operational Meaning to the Superposition of Causal Orders", arXiv:2003.13306.

The above citations are from Crossref's cited-by service (last updated successfully 2020-10-22 01:44:18) and SAO/NASA ADS (last updated successfully 2020-10-22 01:44:19). The list may be incomplete as not all publishers provide suitable and complete citation data.