Amplification of quadratic Hamiltonians

Christian Arenz1, Denys I. Bondar2, Daniel Burgarth3, Cecilia Cormick4, and Herschel Rabitz1

1Frick Laboratory, Princeton University, Princeton NJ 08544, United States
2Tulane University, New Orleans, LA 70118, United States
3Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
4Instituto de Física Enrique Gaviola, CONICET and Universidad Nacional de Córdoba, Ciudad Universitaria, X5016LAE, Córdoba, Argentina

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Speeding up the dynamics of a quantum system is of paramount importance for quantum technologies. However, in finite dimensions and without full knowledge of the details of the system, it is easily shown to be $impossible$. In contrast we show that continuous variable systems described by a certain class of quadratic Hamiltonians can be sped up without such detailed knowledge. We call the resultant procedure $\textit{Hamiltonian amplification}$ (HA). The HA method relies on the application of local squeezing operations allowing for amplifying even unknown or noisy couplings and frequencies by acting on individual modes. Furthermore, we show how to combine HA with dynamical decoupling to achieve amplified Hamiltonians that are free from environmental noise. Finally, we illustrate a significant reduction in gate times of cavity resonator qubits as one potential use of HA.

Our ability to leverage quantum phenomena in future technologies will rely on approaches for operating on sufficiently fast time scales. However, the dynamics of quantum systems composed of qubits cannot be accelerated beyond an intrinsic limit without full knowledge of and full control over the system parameters. We address this issue by showing that this is no longer true for continuous variable systems such as quantum harmonic oscillators, thereby introducing a new route for the manipulation of quantum system time scales. Consequently, uncertain and noisy couplings in the system, including those between qubits coupled via quantum harmonic oscillators, can be enhanced by locally acting on individual system components.

We show that a large class of Hamiltonians quadratic in the position and momentum operators can generically be amplified by local parametric drives without knowing the parameter details of the Hamiltonian. By combining our findings with dynamical decoupling, we achieve a generic speed up of the evolution a quantum system while decoherence coming from the interaction with the environment is suppressed. Even though such amplification does not work for system only composed of qubits, we demonstrate how the implementation of quantum logical gates in hybrid quantum systems can be sped up through the developed amplification scheme

► BibTeX data

► References

[1] L. Dicarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature, 467(7315):574–578, Sep 2010. doi:10.1038/​nature09416.

[2] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert. Entangling mechanical motion with microwave fields. Science, 342(6159):710–713, Nov 2013. doi:10.1126/​science.1244563.

[3] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland . Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 422(6930):412–415, Mar 2003. doi:10.1038/​nature01492.

[4] T. R. Tan, J. P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D. Leibfried, and D. J. Wineland. Multi-element logic gates for trapped-ion qubits. Nature, 528(7582):380–383, Dec 2015. doi:10.1038/​nature16186.

[5] Thaddeus D Ladd, Fedor Jelezko, Raymond Laflamme, Yasunobu Nakamura, Christopher Monroe, and Jeremy Lloyd O’Brien. Quantum computers. Nature, 464(7285):45–53, Mar 2010. doi:10.1038/​nature08812.

[6] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Advances in quantum metrology. Nature Photonics, 5(4):222–229, Apr 2011. doi:10.1038/​nphoton.2011.35.

[7] Shimon Kolkowitz, Ania C. Bleszynski Jayich, Quirin P. Unterreithmeier, Steven D. Bennett, Peter Rabl, J. G. E. Harris, and Mikhail D. Lukin. Coherent sensing of a mechanical resonator with a single-spin qubit. Science, 335(6076):1603–1606, Mar 2012. doi:10.1126/​science.1216821.

[8] Sebastian Deffner and Steve Campbell. Quantum speed limits: from heisenberg's uncertainty principle to optimal quantum control. Journal of Physics A: Mathematical and Theoretical, 50(45):453001, Oct 2017. doi:10.1088/​1751-8121/​aa86c6.

[9] Michael R Frey. Quantum speed limits—primer, perspectives, and potential future directions. Quantum Information Processing, 15(10), Nov.

[10] Lorenza Viola, Emanuel Knill, and Seth Lloyd. Dynamical decoupling of open quantum systems. Phys. Rev. Lett., 82:2417–2421, Mar 1999. doi:10.1103/​PhysRevLett.82.2417.

[11] Christian Arenz, Daniel Burgarth, and Robin Hillier. Dynamical decoupling and homogenization of continuous variable systems. Journal of Physics A: Mathematical and Theoretical, 50(13):135303, Mar 2017. doi:10.1088/​1751-8121/​aa6017.

[12] Daniel Lidar and Brun Todd. Quantum error correction, Sep 2013. doi:10.1017/​CBO9781139034807.

[13] Daniel A. Lidar, Paolo Zanardi, and Kaveh Khodjasteh. Distance bounds on quantum dynamics. Phys. Rev. A, 78:012308, Jul 2008. doi:10.1103/​PhysRevA.78.012308.

[14] C. Leroux, L. C. G. Govia, and A. A. Clerk. Enhancing cavity quantum electrodynamics via antisqueezing: Synthetic ultrastrong coupling. Phys. Rev. Lett., 120:093602, Mar 2018. doi:10.1103/​PhysRevLett.120.093602.

[15] Xin-You Lü, Ying Wu, J. R. Johansson, Hui Jing, Jing Zhang, and Franco Nori. Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett., 114:093602, Mar 2015. doi:10.1103/​PhysRevLett.114.093602.

[16] Marc-Antoine Lemonde, Nicolas Didier, and Aashish A. Clerk. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification. Nature Communications, 7:11338, Apr 2016. doi:10.1038/​ncomms11338.

[17] J Alonso, F M Leupold, B C Keitch, and J P Home. Quantum control of the motional states of trapped ions through fast switching of trapping potentials. New Journal of Physics, 15(2):023001, Feb 2013. doi:10.1088/​1367-2630/​15/​2/​023001.

[18] J. S. Waugh, L. M. Huber, and U. Haeberlen. Approach to high-resolution nmr in solids. Phys. Rev. Lett., 20:180–182, Jan 1968. doi:10.1103/​PhysRevLett.20.180.

[19] Alessandro Ferraro, Stefano Olivares, and Matteo GA Paris. Gaussian states in quantum information. Bibliopolis, 2005. URL: https:/​/​​handle/​2434/​15713#.Xrr7cy-z1hE.

[20] Alessio Serafini. Quantum continuous variables: a primer of theoretical methods. CRC press, 2017. doi:https:/​/​​10.1201/​9781315118727.

[21] Leonard Mandel and Emil Wolf. Optical coherence and quantum optics. Cambridge university press, 1995. doi:10.1017/​CBO9781139644105.

[22] Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86:1391–1452, Dec 2014. doi:10.1103/​RevModPhys.86.1391.

[23] Masuo Suzuki. Decomposition formulas of exponential operators and lie exponentials with some applications to quantum mechanics and statistical physics. Journal of mathematical physics, 26(4):601–612, 1985. doi:10.1063/​1.526596.

[24] Rebing Wu, Raj Chakrabarti, and Herschel Rabitz. Optimal control theory for continuous-variable quantum gates. Phys. Rev. A, 77:052303, May 2008. doi:10.1103/​PhysRevA.77.052303.

[25] Marco G. Genoni, Alessio Serafini, M. S. Kim, and Daniel Burgarth. Dynamical recurrence and the quantum control of coupled oscillators. Phys. Rev. Lett., 108:150501, Apr 2012. doi:10.1103/​PhysRevLett.108.150501.

[26] Roger S. Bliss and Daniel Burgarth. Quantum control of infinite-dimensional many-body systems. Phys. Rev. A, 89:032309, Mar 2014. doi:10.1103/​PhysRevA.89.032309.

[27] Leonardo Banchi, Samuel L. Braunstein, and Stefano Pirandola. Quantum fidelity for arbitrary gaussian states. Phys. Rev. Lett., 115:260501, Dec 2015. doi:10.1103/​PhysRevLett.115.260501.

[28] D. Vitali and P. Tombesi. Using parity kicks for decoherence control. Phys. Rev. A, 59:4178–4186, Jun 1999. doi:10.1103/​PhysRevA.59.4178.

[29] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431(7005):162–167, Sep 2004. doi:10.1038/​nature02851.

[30] Mika A Sillanpää, Jae I Park, and Raymond W Simmonds. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature, 449(7161):438–442, Jul 2007. doi:10.1038/​nature06124.

[31] Alexandre Blais, Jay Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A, 75:032329, Mar 2007. doi:10.1103/​PhysRevA.75.032329.

[32] R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nature Physics, 8(4):277–284, Apr 2012. doi:10.1038/​nphys2252.

[33] Stephan Welte, Bastian Hacker, Severin Daiss, Stephan Ritter, and Gerhard Rempe. Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X, 8:011018, Feb 2018. doi:10.1103/​PhysRevX.8.011018.

[34] Alessio Serafini, Alex Retzker, and Martin B Plenio. Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials. Quantum Information Processing, 8(6):619, 2009. doi:10.1007/​s11128-009-0141-x.

[35] H Pino, J Prat-Camps, K Sinha, B Prasanna Venkatesh, and O Romero-Isart. On-chip quantum interference of a superconducting microsphere. Quantum Science and Technology, 3(2):025001, Jan 2018. doi:10.1088/​2058-9565/​aa9d15.

[36] K. Lake, S. Weidt, J. Randall, E. D. Standing, S. C. Webster, and W. K. Hensinger. Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation. Phys. Rev. A, 91:012319, Jan 2015. doi:10.1103/​PhysRevA.91.012319.

[37] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 78:3221–3224, Apr 1997. doi:10.1103/​PhysRevLett.78.3221.

[38] Christian Arenz and Herschel Rabitz. Controlling qubit networks in polynomial time. Phys. Rev. Lett., 120:220503, May 2018. doi:10.1103/​PhysRevLett.120.220503.

[39] S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leibfried, D. H. Slichter, and D. T. C. Allcock. Quantum amplification of mechanical oscillator motion. Science, 364(6446):1163–1165, 2019. doi:10.1126/​science.aaw2884.

[40] Lorenza Viola and Emanuel Knill. Robust dynamical decoupling of quantum systems with bounded controls. Phys. Rev. Lett., 90:037901, Jan 2003. doi:10.1103/​PhysRevLett.90.037901.

[41] K. Khodjasteh and D. A. Lidar. Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett., 95:180501, Oct 2005. doi:10.1103/​PhysRevLett.95.180501.

[42] JM Cai, Boris Naydenov, Rainer Pfeiffer, Liam P McGuinness, Kay D Jahnke, Fedor Jelezko, Martin B Plenio, and Alex Retzker. Robust dynamical decoupling with concatenated continuous driving. New Journal of Physics, 14(11):113023, 2012. doi:10.1088/​1367-2630/​14/​11/​113023.

[43] Margret Heinze and Robert König. Universal uhrig dynamical decoupling for bosonic systems. Phys. Rev. Lett., 123:010501, Jul 2019. doi:10.1103/​PhysRevLett.123.010501.

[44] Steffen J Glaser, Ugo Boscain, Tommaso Calarco, Christiane P Koch, Walter Köckenberger, Ronnie Kosloff, Ilya Kuprov, Burkhard Luy, Sophie Schirmer, Thomas Schulte-Herbrüggen, et al. Training schrödinger’s cat: quantum optimal control. The European Physical Journal D, 69(12):279, 2015. doi:10.1140/​epjd/​e2015-60464-1.

Cited by

[1] Ye-Hong Chen, Wei Qin, Xin Wang, Adam Miranowicz, and Franco Nori, "Shortcuts to Adiabaticity for the Quantum Rabi Model: Efficient Generation of Giant Entangled Cat States via Parametric Amplification", Physical Review Letters 126 2, 023602 (2021).

[2] S. C. Burd, R. Srinivas, H. M. Knaack, W. Ge, A. C. Wilson, D. J. Wineland, D. Leibfried, J. J. Bollinger, D. T. C. Allcock, and D. H. Slichter, "Quantum amplification of boson-mediated interactions", Nature Physics 17 8, 898 (2021).

[3] Wenchao Ge, "Hamiltonian Amplification: Another Application of Parametric Amplification", Quantum Views 4, 41 (2020).

[4] F. Cosco, J. S. Pedernales, and M. B. Plenio, "Enhanced force sensitivity and entanglement in periodically driven optomechanics", Physical Review A 103 6, L061501 (2021).

[5] David Trillo, Benjamin Dive, and Miguel Navascués, "Translating Uncontrolled Systems in Time", Quantum 4, 374 (2020).

[6] S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leibfried, D. H. Slichter, and D. T. C. Allcock, "Quantum amplification of mechanical oscillator motion", Science 364 6446, 1163 (2019).

[7] Wenchao Ge, Brian C. Sawyer, Joseph W. Britton, Kurt Jacobs, John J. Bollinger, and Michael Foss-Feig, "Trapped Ion Quantum Information Processing with Squeezed Phonons", arXiv:1807.00924, Physical Review Letters 122 3, 030501 (2019).

[8] Hoi-Kwan Lau and Aashish A. Clerk, "High-fidelity bosonic quantum state transfer using imperfect transducers and interference", npj Quantum Information 5, 31 (2019).

[9] Wenchao Ge, Brian C. Sawyer, Joseph W. Britton, Kurt Jacobs, Michael Foss-Feig, and John J. Bollinger, "Stroboscopic approach to trapped-ion quantum information processing with squeezed phonons", Physical Review A 100 4, 043417 (2019).

The above citations are from Crossref's cited-by service (last updated successfully 2021-10-20 07:18:30) and SAO/NASA ADS (last updated successfully 2021-10-20 07:18:31). The list may be incomplete as not all publishers provide suitable and complete citation data.