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We show that every language in QMA admits a classical-verifier, quantum-prover
zero-knowledge argument system which is sound against quantum polynomial-time
provers and zero-knowledge for classical (and quantum) polynomial-time verifiers. The
protocol builds upon two recent results: a computational zero-knowledge proof sys-
tem for languages in QMA, with a quantum verifier, introduced by Broadbent et al.
(FOCS 2016), and an argument system for languages in QMA, with a classical verifier,
introduced by Mahadev (FOCS 2018).

1 Introduction

The paradigm of the interactive proof system is a versatile tool in complexity theory. Although
traditional complexity classes are usually defined in terms of a single Turing machine—NP, for
example, can be defined as the class of languages which a non-deterministic Turing machine is able
to decide—many have reformulations in the language of interactive proofs, and such reformulations
often inspire natural and fruitful variants on the traditional classes upon which they are based. (The
class MA, for example, can be considered a natural extension of NP under the interactive-proof
paradigm.)

Intuitively speaking, an interactive proof system is a model of computation involving two entities,
a verifier and a prover, the former of whom is computationally efficient, and the latter of whom
is unbounded and untrusted. The verifier and the prover exchange messages, and the prover
attempts to ‘convince’ the verifier that a certain problem instance is a yes-instance. We can define
some particular complexity class as the set of languages for which there exists an interactive proof
system that 1) is complete, 2) is sound, and 3) has certain other properties which vary depending
on the class in question. Completeness means, in this case, that for any problem instance in the
language, there is an interactive proof involving r messages in total that the prover can offer the
verifier which will cause it to accept with at least some probability p; and soundness means that, for
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any problem instance not in the language, no prover can cause the verifier to accept, except with
some small probability q. For instance, if we require that the verifier is a deterministic polynomial-
time Turing machine, and set r = 1, p = 1, and q = 0, the class that we obtain is of course the class
NP. If we allow the verifier to be a probabilistic polynomial-time machine, and set r = 1, p = 2

3 ,
q = 1

3 , we have MA. Furthermore, if we allow the verifier to be an efficient quantum machine, and
we allow the prover to communicate with it quantumly, but we retain the parameter settings from
MA, we obtain the class QMA. Finally, if we allow r to be any polynomial in n, where n is the
size of the problem instance, but otherwise preserve the parameter settings from MA, we obtain
the class IP.

For every complexity class thus defined, there are two natural subclasses which consist of the
languages that admit, respectively, a statistical and a computational zero-knowledge interactive
proof system with otherwise the same properties. The notion of a zero-knowledge proof system was
first considered by Goldwasser, Micali and Rackoff in [GMR89], and formalises the surprising but
powerful idea that the prover may be able to prove statements to the verifier in such a way that the
verifier learns nothing except that the statements are true. Informally, an interactive proof system
is statistical zero-knowledge if an arbitrary malicious verifier is able to learn from an honest prover
that a problem instance is a yes-instance, but can extract only negligible amounts of information
from it otherwise; and the computational variant provides the same guarantee only for malicious
polynomial-time verifiers. For IP in particular, the subclass of languages which admit a statistical
zero-knowledge proof system that otherwise shares the same properties had by proof systems for
languages in IP is known as SZK. Its computational sibling, meanwhile, is known as CZK. It is well-
known that, contingent upon the existence of one-way functions, NP ⊆ CZK: computational zero-
knowledge proof systems have been known to exist for every language in NP since the early 1990s
([GMW91]). However, because these proof systems often relied upon intractability assumptions or
techniques (e.g. ‘rewinding’) that failed in quantum settings, it was not obvious until recently how
to obtain an analogous result for QMA. One design for a zero-knowledge proof system for promise
problems in QMA was introduced by Broadbent, Ji, Song and Watrous in [BJSW16]. Their work
establishes that, provided that a quantum computationally concealing, unconditionally binding
commitment scheme exists, QMA ⊆ QCZK.

There are, of course, a myriad more variations on the theme of interactive proofs in the quantum
setting, each of which defines another complexity class. For example, motivated partly by practical
applications, one might also consider the class of languages which can be decided by an interactive
proof system involving a classical verifier and a quantum prover communicating classically, in
which the soundness condition still holds against arbitrary provers, but the honest prover can be
implemented in quantum polynomial time. (For simplicity, we denote this class by IPBQP.) The
motivation for this specific set of criteria is as follows: large-scale quantum devices are no longer
so distant a dream as they seemed only a decade ago. If and when we have such devices, how
will we verify, using our current generation of classical devices, that our new quantum computers
can indeed decide problems in BQP? This problem—namely, the problem of showing that BQP
⊆ IPBQP—is known informally as the problem of quantum verification.

The problem of quantum verification has not yet seen a solution, but in recent years a number of
strides have been made toward producing one. As of the time of writing, protocols are known for
the following three variants on the problem:
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1. It was shown in [ABE10, ABOEM17] that a classical verifier holding a quantum register
consisting only of a constant number of qubits can decide languages in BQP by communicating
quantumly with a single BQP prover. In [BFK09, FK17], this result was extended to classical
verifiers with single-qubit quantum registers. All of these protocols are sound against arbitrary
provers.

2. It was shown in [RUV13] that an entirely classical verifier can decide languages in BQP by
interacting classically with two entangled, non-communicating QPT provers. This protocol
is likewise sound against arbitrary provers.

3. It was shown in [Mah18] that an entirely classical verifier can decide languages in BQP by exe-
cuting an argument system ([BCC88]) with a single BQP prover. An argument system differs
from a proof system in that 1) its honest prover must be efficient, and 2) an argument system
need not be sound against arbitrary provers, but only efficient ones. In this case, the argument
system in [Mah18] is sound against quantum polynomial-time provers. (The class of languages
for which there exists an argument system involving a classical probabilistic polynomial-time
verifier and a quantum polynomial-time prover is referred to throughout [Mah18] as QPIP0.)
The argument system introduced in [Mah18] is reliant upon cryptographic assumptions about
the quantum intractability of Learning With Errors (LWE; see [Reg09]) for its soundness. For
practical purposes, if this assumption holds true, the problem of verification can be considered
solved.

The last of these three results establishes that BQP ⊆ QPIP0, contingent upon the intractability
of LWE. (As a matter of fact, the same result also establishes that QMA ⊆ QPIP0, provided the
efficient quantum prover is given access to polynomially many copies of a quantum witness for
the language to be verified, in the form of ground states of an associated local Hamiltonian.) In
this work, we show that the protocol which [Mah18] introduces for this purpose can be combined
with the zero-knowledge proof system for QMA presented in [BJSW16] in order to obtain a zero-
knowledge argument system for QMA. It follows naturally that, if the LWE assumption holds, and
quantum computationally hiding, unconditionally binding commitment schemes exist, 1 QMA ⊆
CZK-QPIP0, where the latter refers to the class of languages for which there exists a computational
zero-knowledge interactive argument system involving a classical verifier and a quantum polynomial-
time prover. Zero-knowledge protocols for languages in NP are an essential component of many
cryptographic constructions, such as identification schemes, and are often used in general protocol
design (for example, one can force a party to follow a prescribed protocol by requiring it to produce
a zero-knowledge proof that it did so). Our result opens the door for the use of zero-knowledge
proofs in protocols involving classical and quantum parties which interact classically in order to
decide languages defined in terms of quantum information (for instance, to verify that one of the
parties possesses a quantum state having certain properties).

We now briefly describe our approach to the problem. The proof system for promise problems in
QMA presented in [BJSW16] is almost classical, in the sense that the only quantum action which
the honest verifier performs is to measure a quantum state after applying Clifford gates to it. The
key contribution which [Mah18] makes to the problem of verification is to introduce a measurement
protocol which, intuitively, allows a classical verifier to obtain honest measurements of its prover’s

1It is known that quantum computationally hiding, unconditionally binding commitment schemes fitting our
requirements can be constructed from LWE. See, for example, Section 2.4.2 in [CVZ19].
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quantum state. The combining of the proof system from [BJSW16] and the measurement protocol
from [Mah18] is therefore a fairly natural action.

That the proof system of [BJSW16] is complete for problems in QMA follows from the QMA-
completeness of a problem which the authors term the 5-local Clifford Hamiltonian problem. How-
ever, the argument system which [Mah18] presents relies upon the QMA-completeness of the well-
known 2-local XZ Hamiltonian problem (see Definition 2.3). For this reason, the two results cannot
be composed directly. Our first step is to make some modifications to the protocol introduced
in [BJSW16] so it can be used to verify that an XZ Hamiltonian is satisfied, instead of verifying
that a Clifford Hamiltonian is satisfied. We then introduce a composite protocol which replaces
the quantum measurement in the protocol from [BJSW16] with an execution of the measurement
protocol from [Mah18]. With the eventual object in mind of proving that the result is sound
and zero-knowledge, we introduce a trapdoor check step into our composite protocol, and split the
coin-flipping protocol used in the proof system from [BJSW16] into two stages. We explain these
decisions briefly here, after we present a summary of our protocol and its properties, and refer the
reader to Sections 3, 5 and 6 for fuller expositions.

Protocol 1.1. Zero-knowledge, classical-verifier argument system for QMA (informal summary).

Parties.

The protocol involves

1. A verifier, which runs in classical probabilistic polynomial time;

2. A prover, which runs in quantum polynomial time.

Inputs. The protocol requires the following primitives:

• A perfectly binding, quantum computationally concealing commitment protocol.

• A zero-knowledge proof system for NP.

• An extended trapdoor claw-free function family (ETCFF family), as defined in [Mah18].

Apart from the above cryptographic primitives, we assume that the verifier and the prover also
receive the following inputs.

1. Input to the verifier: a 2-local XZ HamiltonianH (see Definition 2.3), along with two numbers,
a and b, which define a promise about the ground energy of H. Because the 2-local XZ
Hamiltonian promise problem is complete for QMA, any input to any decision problem in
QMA can be reduced to an instance of the 2-local XZ Hamiltonian problem.

2. Input to the prover: the Hamiltonian H, the numbers a and b, and the quantum state
ρ = σ⊗m, where σ is a ground state of the Hamiltonian H.

Protocol.

1. The prover applies an encoding process to ρ. Informally, the encoding can be thought of as a
combination of an encryption scheme and an authentication scheme: it both hides the witness
state ρ and ensures that the verifier cannot meaningfully tamper with the measurement
results that it reports in step 5. Like most encryption and authentication schemes, this
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encoding scheme is keyed. For convenience, we refer to the encoding procedure determined
by a particular encoding key K as EK .2

2. The prover commits to the encoding key K from the previous step using a classical commit-
ment protocol, and sends the resulting commitment string z to the verifier.

3. The verifier and the prover jointly decide which random terms from the Hamiltonian H
the verifier will check by executing a coin-flipping protocol. (‘Checking terms of H’ means
that the verifier obtains measurements of the state EK(ρ) and checks that the outcomes are
distributed a particular way—or, alternatively, asks the prover to prove to it that they are.)
However, because it is important that the prover does not know which terms will be checked
before the verifier can check them, the two parties only execute the first half of the coin-
flipping protocol at this stage. The verifier commits to its part of the random string, rv, and
sends the resulting commitment string to the prover; the prover sends the verifier rp, its own
part of the random string; and the verifier keeps the result of the protocol r = rv ⊕ rp secret
for the time being. The random terms in the Hamiltonian which the verifier will check are
determined by r.

4. The verifier and the prover execute the measurement protocol from [Mah18]. Informally,
this allows the verifier to obtain honest measurements of the qubits of the prover’s encoded
witness state, so that it can check the Hamiltonian term determined by r. The soundness
guarantee of the measurement protocol prevents the prover from cheating, even though the
prover, rather than the verifier, is physically performing the measurements. This soundness
guarantee relies on the security properties of a family of trapdoor one-way functions termed
an ETCFF family in [Mah18]. Throughout the measurement protocol, the verifier holds
trapdoors for these one-way functions, but the prover does not, and this asymmetry is what
allows the (intrinsically weaker) verifier to ensure that the prover does not cheat.

5. The verifier opens its commitment to rv, and also sends the prover its measurement outcomes
u and function trapdoors from the previous step.

6. The prover checks, firstly, that the verifier’s trapdoors are valid, and that it did not tam-
per with the measurement outcomes u. (It can determine the latter by making use of the
authentication-scheme-like properties of EK from step 1.) If both tests pass, it then proves
the following statement to the verifier, using a zero-knowledge proof system for NP:

There exists a string sp and an encoding key K such that z = commit(K, sp) and
Q(K, r, u) = 1.

The function Q is a predicate which, intuitively, takes the value 1 if and only if both the
verifier and the prover were honest. In more specific (but still informal) terms, Q(K, r, u)
takes the value 1 if u contains the outcomes of honest measurements of the state EK(ρ),
where ρ is a state that passes the set of Hamiltonian energy tests determined by r.

Lemma 1.2 (soundness; informal). Assume that LWE is intractable for quantum computers. Then,
in a no-instance execution of Protocol 1.1, the probability that the verifier accepts is at most a
function that is negligibly close to 3

4 .

2The notation used here for the encoding key is not consistent with that which is used later on; it is simplified for
the purposes of exposition.
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Lemma 1.3 (zero-knowledge; informal). Assume that LWE is intractable for quantum computers.
In a yes-instance execution of Protocol 1.1, and for any classical probabilistic (resp. quantum)
polynomial-time verifier interacting with the honest prover, there exists a classical probabilistic
polynomial-time (resp. quantum polynomial-time) simulator such that the simulator’s output is
classical (resp. quantum) computationally indistinguishable from that of the verifier.

The reason we delay the verifier’s reveal of rv (rather than completing the coin-flipping in one step,
as is done in the protocol in [BJSW16]) is fairly easily explained. In our classical-verifier protocol,
the prover cannot physically send the quantum state EK(ρ) to its verifier before the random string
r is decided, as the prover of the protocol in [BJSW16] does. If we allow our prover to know r at
the time when it performs measurements on the witness ρ, it will trivially be able to cheat.

The trapdoor check, meanwhile, is an addition which we make because we wish to construct a
classical simulator for our protocol when we prove that it is zero-knowledge. Since our verifier is
classical, we need to achieve a classical simulation of the protocol in order to prove that its execution
(in yes-instances) does not impart to the verifier any knowledge it could not have generated itself.
During the measurement protocol, however, the prover is required to perform quantum actions
which no classical polynomial-time algorithm could simulate unless it had access to the verifier’s
function trapdoors. Naturally, we cannot ask the verifier to reveal its trapdoors before the mea-
surement protocol takes place. As such, we ask the verifier to reveal them immediately afterwards
instead, and show in Section 6 that this (combined with the encryption-scheme properties of the
prover’s encoding EK) allows us to construct a classical simulator for Protocol 1.1 in yes-instances.

The organisation of the paper is as follows.

1. Section 2 (‘Ingredients’) outlines the other protocols which we use as building blocks.

2. Section 3 (‘The protocol’) introduces our argument system for QMA.

3. Section 4 (‘Completeness of protocol’) gives a completeness lemma for the argument system
introduced in section 3.

4. Section 5 (‘Soundness of protocol’) proves that the argument system introduced in section 3
is sound against quantum polynomial-time provers.

5. Section 6 (‘Zero-knowledge property of protocol’) proves that the argument system is zero-
knowledge (that yes-instance executions can be simulated classically).

Remark 1.4. As Broadbent et al. note in [BJSW16, Section 1.3], argument systems can often be
made zero-knowledge by employing techniques from secure two-party computation (2PC). The
essential idea of such an approach, applied to our particular problem, is as follows: the prover and
the verifier would jointly simulate the classical verifier of the [Mah18] measurement protocol using a
(classical) secure two-party computation protocol, and zero-knowledge would follow naturally from
simulation security. (This technique is similar in spirit to those which are used in [BOGG+88] to
show that any classical-verifier interactive proof system can be made zero-knowledge.) We think
that the 2PC approach applied to our problem would have many advantages, including that it is
more generally applicable than our approach; however, we also believe that our approach is a more
direct and transparent solution to the particular problem at hand, and that it provides an early
example of how two important results might be fruitfully combined. As such, we expect that our
approach may more easily lead to extensions and improvements.
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Related work. Subsequent to the completion of this work, there have been several papers which
explore other extensions and applications of the argument system from [Mah18], and also papers
which propose zero-knowledge protocols (with different properties from ours) for QMA. Many
of these works focus on decreasing the amount of interaction required to implement a proof or
argument system for QMA. Although none of these works directly builds on or supersedes ours,
we review them briefly for the reader’s convenience. In the category of extensions on the work
of [Mah18], we mention [ACGH19], which proposes a non-interactive zero-knowledge variant of
the Mahadev protocol and proves its security in the quantum random oracle model. (Of course,
our protocol is interactive, and our analysis holds in the standard model.) In the category of
‘short’ proof and argument systems for QMA, we mention three independent works. In [BS19],
the authors present a constant-round computationally zero-knowledge argument system for QMA.
In [BG19] and [CVZ19] the authors present non-interactive zero-knowledge proof and argument
systems, respectively, for QMA, with different types of setup phases. The main difference between
all three of these new protocols and our protocol is that the three protocols mentioned all involve
the exchange of quantum messages (although, in [CVZ19], only the setup phase requires quantum
communication).

Acknowledgments. We thank Zvika Brakerski, Andru Gheorghiu, and Zhengfeng Ji for useful dis-
cussions. We thank an anonymous referee for suggesting the approach based on secure 2PC sketched
in Remark 1.4. Thomas Vidick is supported by NSF CAREER Grant CCF-1553477, AFOSR YIP
award number FA9550-16-1-0495, MURI Grant FA9550-18-1-0161, a CIFAR Azrieli Global Scholar
award, and the IQIM, an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with support
of the Gordon and Betty Moore Foundation (GBMF-12500028). Tina Zhang acknowledges support
from the Richard G. Brewer Prize and Caltech’s Ph11 program.

2 Ingredients

The protocol we present in section 3 combines techniques which were introduced in prior works
for the design of protocols to solve related problems. In this section, we outline these protocols in
order to introduce notation and groundwork which will prove useful in the remainder of the paper.
We also provide formal definitions of QMA and of zero-knowledge.

2.1 Definitions

Definition 2.1 (QMA). The following definition is taken from [BJSW16].

A promise problem A = (Ayes, Ano) is contained in the complexity class QMAα,β if there exists a
polynomial-time generated collection {

Vx : x ∈ Ayes ∪Ano
}

(1)

of quantum circuits and a polynomially bounded function p possessing the following properties:

1. For every string x ∈ Ayes ∪Ano, one has that Vx is a measurement circuit taking p(|x|) input
qubits and outputting a single bit.
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2. Completeness. For all x ∈ Ayes, there exists a p(|x|)-qubit state ρ such that Pr(Vx(ρ) = 1) ≥ α.

3. Soundness. For all x ∈ Ano, and every p(|x|)-qubit state ρ, it holds that Pr(Vx(ρ) = 1) ≤ β.

In this definition, α, β ∈ [0, 1] may be constant values or functions of the length of the input
string x. When they are omitted, it is to be assumed that they are α = 2/3 and β = 1/3. Known
error reduction methods [KSVV02, MW05] imply that a wide range of selections of α and β give
rise to the same complexity class. In particular, QMA coincides with QMAα,β for α = 1− 2−q(|x|)

and β = 2−q(|x|), for any polynomially bounded function q.

Definition 2.2 (Zero-knowledge). Let (P, V ) be an interactive proof system (with a classical verifier
V ) for a promise problem A = (Ayes, Ano). Assume that (possibly among other arguments) P and
V both take a problem instance x ∈ {0, 1}∗ as input. (P, V ) is computational zero-knowledge if, for
every probabilistic polynomial-time (PPT) V ∗, there exists a polynomial-time generated simulator
S such that, when x ∈ Ayes, the distribution of V ∗’s final output after its interaction with the
honest prover P is computationally indistinguishable from S’s output distribution. More precisely,
let λ be a security parameter, let n be the length of x in bits, and and let {Dn,λ}n,λ and {Sn,λ}n,λ
be the two distribution ensembles representing, respectively, the verifier V ∗’s output distribution
after an interaction with the honest prover P on input x, and the simulator’s output distribution
on input x. If (P, V ) is computationally zero-knowledge, we require that, for all PPT algorithms
A, the following holds:

∣∣∣∣ Pr
y←Dn,λ

[A(y) = 1]− Pr
y←Sn,λ

[A(y) = 1]
∣∣∣∣ = µ(n)ν(λ),

where µ(·) and ν(·) are negligible functions.

2.2 Single-qubit-verifier proof system for QMA ([MF16])

Morimae and Fitzsimons ([MF16]) present a proof system for languages (or promise problems)
in QMA whose verifier is classical except for a single-qubit quantum register, and which is sound
against arbitrary quantum provers. The proof system relies on the QMA-completeness of the 2-local
XZ Hamiltonian problem, which is defined as follows.

Definition 2.3 (2-local XZ Hamiltonian (promise) problem).
Input. An input to the problem consists of a tuple x = (H, a, b), where

1. H =
∑S
s=1 dsHs is a Hamiltonian acting on n qubits, each term Hs of which

(a) has a weight ds which is a polynomially bounded rational number,
(b) satisfies 0 ≤ Hs ≤ I,
(c) acts as the identity on all but a maximum of two qubits,
(d) acts as the tensor product of Pauli observables in {σX , σZ} on the qubits on which it

acts nontrivially.

2. a and b are two real numbers such that

8



(a) a < b, and
(b) b− a = Ω( 1

poly(|x|)).

Yes: There exists an n-qubit state σ such that
〈
σ,H

〉
≤ a.3

No: For every n-qubit state σ, it holds that
〈
σ,H

〉
≥ b.

Remark 2.4. Given a Hamiltonian H, we call any state σ∗ which causes
〈
σ∗, H

〉
to take its mini-

mum possible value a ground state ofH, and we refer to the value
〈
σ∗, H

〉
as the ground energy ofH.

The following theorem is proven by Biamonte and Love in [BL08, Theorem 2].

Theorem 2.5. The 2-local XZ Hamiltonian problem is complete for QMA.

We now describe an amplified version of the protocol presented in [MF16], and give a statement
about its completeness and soundness which we will use. (See [MF16] for a more detailed presen-
tation of the unamplified version of this protocol.)

Protocol 2.6 (Amplified variant of the single-qubit-verifier proof system for QMA from [MF16]).

Notation. Let L = (Lyes, Lno) be any promise problem in QMA; let x ∈ {0, 1}∗ be an input; and
let (H, a, b) be the instance of the 2-local XZ Hamiltonian problem to which x reduces.

1. If x ∈ Lyes, the ground energy of H is at most a.

2. if x ∈ Lno, the ground energy of H is at least b.

3. b− a ≥ 1
poly(|x|) .

Let H =
∑S
s=1 dsHs, as in Definition 2.3. Define

πs = |ds|∑
s |ds|

.

Parties. The proof system involves

1. A verifier, who implements a classical probabilistic polynomial-time procedure with access to
a one-qubit quantum register; and

2. A prover, who is potentially unbounded, but whose honest behaviour in yes-instances can be
implemented in quantum polynomial time.

The verifier and the prover communicate quantumly.

Inputs.

3The angle brackets
〈
·, ·
〉

denote an inner product between two operators which is defined as follows:
〈
A,B

〉
=

Tr(A∗B) for any A,B ∈ L(X ,Y), where the latter denotes the space of linear maps from a Hilbert space X to a
Hilbert space Y.
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1. Input to the verifier: the Hamiltonian H and the numbers a and b.

2. Input to the prover: the Hamiltonian H, the numbers a and b, and the quantum state
ρ = σ⊗m, where σ is a ground state of the Hamiltonian H.

Protocol.

1. The verifier selects uniformly random coins r = (r1, . . . , rm).

2. For each j ∈ {1, . . . ,m}, the verifier uses rj to select a random sj ∈ {1, . . . , S} according to
the distribution D specified as follows:

D(s) = πs, for s ∈ {1, . . . , S} .

3. The prover sends a state ρ to the verifier one qubit at a time. (The honest prover sends the
state σ⊗m that consists of m copies of the ground state of H.)

4. The verifier measures Hsj for j = 1, . . . ,m, taking advantage of the fact that—if the prover is
honest—it is given m copies of σ. (‘Measuring Hsj ’, in this case, entails performing at most
two single-qubit measurements, in either the standard or the Hadamard basis, on qubits in
ρ, and then computing the product of the two measurement outcomes.)

5. The verifier initialises a variable Count to 0. For each j ∈ {1, . . . ,m}, if the jth product
that it obtained in the previous step was equal to −sign(dj), the verifier adds one to Count.

6. If Count
m is closer to 1

2−
a∑
s

2|ds|
than to 1

2−
b∑
s

2|ds|
, the verifier accepts. Otherwise, it rejects.

Claim 2.7. Given an instance x = (H, a, b) of the 2-local XZ Hamiltonian problem, there is a
polynomial P (depending only on a and b) such that, for any m = Ω(P (|x|)), the following holds. In
a yes-instance, the procedure of Protocol 2.6 accepts the state ρ = σ⊗m with probability exponentially
close (in |x|) to 1. In a no-instance, the probability that it accepts any state is exponentially small
in |x|.

Proof. Consider the probability (over the choice of rj and the randomness arising from measure-
ment) that the jth measurement from step 4 of Protocol 2.6, conditioned on previous measurement
outcomes, yields −sign(dj). Denote this probability by qj .

As shown in [MNS16, Section IV], it is not hard to verify that

1. when x ∈ L, if the prover sends the honest witness σ⊗m, then qj ≥ 1
2 −

a∑
s

2|ds|
, and

2. when x /∈ L, for any witness that the prover sends, qj ≤ 1
2 −

b∑
s

2|ds|
.

The difference between the two cases is inverse polynomial in the size of the input to the 2-local
XZ Hamiltonian problem. It is straightforward to show that, for an appropriate choice of m, this
inverse polynomial gap can be amplified to an exponential one: see Appendix B.

Remark 2.8. It will be useful later to establish at this point that, if the string r from step 1 of
Protocol 2.6 is fixed, it is simple to construct a state ρr which will pass the challenge determined
by r with probability 1. One possible procedure is as follows.
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1. For each j ∈ 1, . . . ,m:
Suppose that Hsj = djP1P2, and that P1, P2 ∈ {σX , σZ} act on qubits `1 and `2, respectively.
(a) If −sign(dj) = 1, initialise the ((j − 1)n + `1)th qubit to the +1 eigenstate of P1, and

likewise, initialise the ((j − 1)n+ `2)th qubit to the +1 eigenstate of P2.
(b) If −sign(dj) = −1, initialise the ((j − 1)n+ `1)th qubit to the +1 eigenstate of P1, and

initialise the ((j − 1)n+ `2)th qubit to the −1 eigenstate of P2.

2. Initialise all remaining qubits to |0〉.

It is clear that the ρr produced by this procedure is a tensor product of |0〉, |1〉, |+〉 and |−〉 qubits.

2.3 Measurement protocol ([Mah18])

In [Mah18], Mahadev presents a measurement protocol between a quantum prover and a classical
verifier which, intuitively, allows the verifier to obtain trustworthy standard and Hadamard basis
measurements of the prover’s quantum state from purely classical interactions with it. The sound-
ness of the measurement protocol relies upon the security properties of functions that [Mah18]
terms noisy trapdoor claw-free functions and trapdoor injective functions, of which Mahadev pro-
vides explicit constructions presuming upon the hardness of LWE. (A high-level summary of these
constructions can be found in Appendix A.) Here, we summarise the steps of the protocol, and
state the soundness property that it has which we will use.

Protocol 2.9 (Classical-verifier, quantum-prover measurement protocol from [Mah18]).

Parties. The proof system involves

1. A verifier, which implements a classical probabilistic polynomial-time procedure; and

2. A prover, which implements a quantum polynomial-time procedure.

The verifier and the prover communicate classically.

Inputs.

1. Input to the prover: an n-qubit quantum state ρ, whose qubits the verifier will attempt to
derive honest measurements of in the standard and Hadamard bases.

2. Input to the verifier:
(a) A string h ∈ {0, 1}n, which represents the bases (standard or Hadamard) in which it

will endeavour to measure the qubits of ρ. hi = 0 signifies that the verifier will attempt
to obtain measurement outcomes of the ith qubit of ρ in the standard basis, and hi = 1
means that the verifier will attempt to obtain measurement outcomes of the ith qubit
of ρ in the Hadamard basis.

(b) An extended trapdoor claw-free function family (ETCFF family), as defined in Section 4
of [Mah18]. The description of an ETCFF family specifies a large number of algorithms,
and we do not attempt to enumerate them. Instead, we proceed to describe the verifier’s
prescribed actions at a level of detail which we believe to be sufficient for our purposes,
and refer the reader to [Mah18] for a finer exposition.
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Protocol.

1. For each i ∈ {1, . . . , n} (see ‘Inputs’ above for the definition of n), the verifier generates
an ETCFF function key κi using algorithms provided by the ETCFF family, along with a
trapdoor τκi for each function, and sends all of the keys κ to the prover. It keeps the trapdoors
τ to itself. If hi = 0, the ith key κi is a key for an injective function g, and if hi = 1, it is a key
for a two-to-one function f known as a ‘noisy trapdoor claw-free function’. Intuitively, the
g functions are one-to-one trapdoor one-way functions, and the f functions are two-to-one
trapdoor collision-resistant hash functions. The keys for f functions and those for g functions
are computationally indistinguishable. (For convenience, we will from now on refer to the
function specified by κi either as fκi or as gκi . Alternatively, we may refer to it as ηκi if we
do not wish to designate its type.4) A brief outline of how these properties are achieved using
LWE is given in Appendix A.
We make two remarks about the functions ηκi which will become relevant later.
(a) The functions ηκi always have domains of the form {0, 1} × X , where X ⊆ {0, 1}w for

some length parameter w.
(b) The outputs of both the f and the g functions should be thought of not as strings but

as probability distributions. The trapdoor τκi inverts the function specified by κi in the
sense that, given a sample y from the distribution Y = ηκi(b‖x), along with the trapdoor
τκi , it is possible to recover b‖x, as well as any other b′‖x′ which also maps to Y under
ηκi (should it exist).

Definition 2.10. Suppose that ηκi is the function specified by κi, whose output on each
input b‖x in its domain {0, 1} × X is a probability distribution Y . Define a (deterministic)
function η∗κi(b‖x, e) which takes as input an b‖x ∈ {0, 1} × X and a randomness e ∈ E , for
some well-defined finite set E , and returns a sample ye from the distribution Y = ηκi(b‖x).

Definition 2.11. Let ηκi be the function specified by κi, with domain {0, 1} × X . Let y be
a sample from one of the distributions Y ∈ Y, where Y is the range of ηκi . It is guaranteed
that the distributions in the range of ηκi have compact support, and we call b‖x ∈ {0, 1}×X
a preimage of y if y is in the support of the probability distribution ηκi(b‖x).

2. The prover uses the function keys κ1, . . . , κn to ‘commit’ to the quantum state of each of the
n qubits of ρ, and sends n commitment strings y1, . . . , yn to the verifier. We direct the reader
to Sections 2.2 and 5.1 of [Mah18] for a high-level, and then a more detailed, description of
the commitment procedure, and explanations of how such a procedure will allow the verifier
to extract trustworthy standard and Hadamard basis measurements of the qubits of ρ. For
convenience, we summarise the procedure without justification here.
For each i, the prover concatenates to the qubit indexed by i (which we call, following [Mah18],
the ith ‘committed qubit’, and whose state we denote by5 |ψi〉 = γi |0〉+ δi |1〉) a register (the
‘preimage register’) containing a uniform superposition over all x ∈ X (where {0, 1}×X is the
domain of the function ηκi). It also concatenates to it a register containing a superposition

4The letter η has been chosen because it bears some resemblance to the Latin letter h.
5Strictly speaking, the state of the ith commited qubit may not be a pure state, but we ignore this fact for

simplicity of presentation.
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over all e ∈ E , with E defined as it is in Definition 2.10. It then applies the function η∗κi (see
Definition 2.10) in superposition to

∑
x |ψi〉 |x〉 |e〉, and collects the outputs in a new register

(the ‘output register’), obtaining the quantum state∑
x∈{0,1}w

γi |0〉 |x〉 |e〉 |η∗κi(0‖x, e)〉+ δi |1〉 |x〉 |e〉 |η∗κi(1‖x, e)〉 .

Finally, the prover measures the output register, obtains a sample yi, and sends yi to the
verifier as its ith commitment string.

3. The verifier then chooses at random to run either a test round or a Hadamard round. Each
option is chosen with probability 1

2 .
(a) If a test round is chosen, the verifier requests standard basis measurements of each

committed qubit |ψi〉 and its associated preimage register (recall that, in the previous
step, only the output registers were measured), and receives measurement results βi, xi
for i ∈ {1, . . . , n} from the prover. It then checks, for each i ∈ {1, . . . , n}, whether
the ith measurement result is a preimage of yi. (See Definition 2.11 for a definition of
the phrase ‘preimage of y’.) More precisely: if hi = 0, the verifier accepts iff yi is in
the support of gκi(βi‖xi) (recalling that gκi(βi‖xi) is a probability distribution); and if
hi = 1, the verifier accepts iff yi is in the support of fκi(βi‖xi).

(b) If a Hadamard round is chosen, the verifier requests Hadamard basis measurements
of each committed qubit and its associated preimage register, and receives βi, di for
i ∈ {1, . . . , n} from the prover. (We note, for future reference, that the distribution of
the strings di sent by the honest prover is the uniform distribution over {0, 1}w.) It then
obtains the measurement results it desires using the procedure outlined in Section 2.2
of [Mah18]:

i. If hi = 0, the verifier ignores the measurement results βi, di, and uses the trapdoor
τκi to invert yi. If the inverse of yi exists, the inversion procedure outputs a preimage
(mi, xmi,yi), and the verifier stores mi as the standard-basis measurement outcome.
If the inverse does not exist, the verifier stores a random bit as mi and rejects. The
specification that the verifier stores a random bit is made so that the n-bit string of
measurement results, m, is well-defined even when the verifier rejects.

ii. If hi = 1, the verifier computes the two preimages x0,i and x1,i to yi under fκi
using the trapdoor τκi . It then stores βi ⊕ di · (x0,i ⊕ x1,i) as the Hadamard basis
measurement outcome. Once again, if either inverse does not exist, the verifier stores
a random bit as mi and rejects.

The soundness property of this measurement protocol (Claim 7.1 in [Mah18]) is stated below. Before
we state it, we briefly introduce the notation used in [Mah18]. (For a more detailed exposition, we
refer the reader to Section 5.3 of [Mah18].) DP,h refers to the distribution over measurement results
m ∈ {0, 1}n that the verifier obtains when it executes a Hadamard round with the prover labelled
P on the basis choice h. DC

P,h is the same distribution, but conditioned on the verifier accepting
(in a Hadamard round). Dξ,h is the distribution over measurement outcomes in {0, 1}n that would
result from directly measuring the quantum state ξ in the bases determined by h. ph,T and ph,H are
defined so that the verifier’s probability of accepting (on basis choice h) in a test and a Hadamard
round, respectively, are 1−ph,T and 1−ph,H . ‖ · ‖TV denotes the total variation norm, and A ≈c B
indicates that two distributions A and B are (quantum) computationally indistinguishable.
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Claim 2.12. Assume that the Learning With Errors problem (with the same choices of parameters
as those made in [Mah18, Section 9]) is quantum computationally intractable. Then, for any
arbitrary quantum polynomial-time prover P who executes the measurement protocol (Protocol 2.9)
with the honest verifier V , there exists a quantum state ξ, a prover P′ and a negligible function µ
such that

‖DC
P,h −DP′,h‖TV ≤

√
ph,T + ph,H + µ and

DP′,h ≈c Dξ,h .

2.4 Zero-knowledge proof system for QMA ([BJSW16])

In [BJSW16], Broadbent, Ji, Song and Watrous describe a protocol involving a quantum polynomial-
time verifier and an unbounded prover, interacting quantumly, which constitutes a zero-knowledge
proof system for promise problems in QMA. (Although it is sound against arbitrary provers, the
system in fact only requires an honest prover to perform quantum polynomial-time computations.)
We summarise the steps of their protocol below. For details and fuller explanations, we refer the
reader to [BJSW16, Section 3].

Protocol 2.13 (Zero-knowledge proof system for QMA from [BJSW16]).

Notation. Let L be any promise problem in QMA. For a definition of the k-local Clifford Hamilto-
nian problem, see [BJSW16, Section 2]. The k-local Clifford Hamiltonian problem is QMA-complete
for k = 5; therefore, for all possible inputs x, there exists a 5-local Clifford Hamiltonian H (which
can be computed efficiently from x) whose terms are all operators of the form C∗ |0k〉 〈0k|C for
some Clifford operator C, and such that

1. if x ∈ Lyes, the ground energy of H is ≤ 2−p,

2. if x ∈ Lno, the ground energy of H is ≥ 1
q ,

for some positive integers p and q.

Parties. The proof system involves

1. A verifier, who implements a quantum polynomial-time procedure;

2. A prover, who is unbounded, but who is only required by the protocol to implement a quantum
polynomial-time procedure.

The verifier and the prover communicate quantumly.

Inputs.

1. Input to the verifier:
(a) The Hamiltonian H.
(b) A quantum computationally concealing, perfectly binding (classical) commitment pro-

tocol.
(c) A proof system for NP sound against arbitrary quantum provers.
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2. Input to the prover:
(a) The Hamiltonian H.
(b) The n-qubit quantum state ρ, where ρ is a ground state of the Hamiltonian H.
(c) A quantum computationally concealing, perfectly binding (classical) commitment pro-

tocol.
(d) A zero-knowledge proof system for NP sound against arbitrary quantum provers.

Protocol.

1. The prover’s encoding step. The prover firstly applies a concatenated Steane code (which maps
every one qubit to N qubits) to each qubit in ρ. (For details on the concatenated Steane
code, see [BJSW16, Appendix A.6]. It will be important to Broadbent et al.’s purposes—and
ours, in Section 3—that this code admits transversal applications of Clifford operations.) It
then executes the following steps:
(a) Concatenate N trap qubits to the end of each logical qubit (alternatively, to the end of

each N -qubit block) in the result of applying the concatenated Steane code to ρ. Each
trap qubit is initialised uniformly at random to one of |0〉 , |+〉 , |+y〉.6 Denote the string
that records the choices of trap qubits for all n logical qubits by t = t1, . . . , tn.

(b) Permute each 2N -tuple of qubits in the result of (a) according to a uniformly random
permutation π ∈ S2N . (Note that the same permutation π is applied to every 2N -tuple.)

(c) Apply a Pauli one-time pad XaZb, for uniformly random a, b ∈ {0, 1}2nN , to the entire
2nN -qubit state.

Remark 2.14. The number N functions as a security parameter, both for this protocol and
for the protocol that we construct in section 3. Accordingly, we assume that N is polynomial
in the size of the verifier’s input.

The prover’s encoding applied to ρ is denoted by E(ρ), and the procedure E is fully deter-
mined by the encoding key (t, π, a, b) which the prover chose to use. At this point, the prover
sends the state E(ρ) to the verifier, along with a commitment (using some perfectly binding,
computationally concealing classical commitment protocol) to the tuple (π, a, b). (A commit-
ment to the sequence of trap qubits t is unnecessary because, in a sense, the trap qubits exist
only to check the verifier.) Let the prover’s commitment string be denoted z.

2. Coin-flipping protocol. The prover and the verifier execute a coin-flipping protocol, choosing
a string r of fixed length uniformly at random. This random string r determines a local
Hamiltonian term Hr = C∗r |0k〉 〈0k|Cr that is to be tested. (This step can be implemented,
of course, using the same classical commitment protocol that the prover employed in the
previous step.)

3. Verifier’s challenge. The verifier applies the Clifford Cr transversally to the qubits on which
the k-local Hamiltonian term Hr acts nontrivially, and measures them in the standard basis.
It then sends the measurement results ui1 , . . . , uik which it obtained to the prover. (Each ui
is a 2N -bit string, and i1, . . . , ik are the indices of the logical qubits on which the term Hr

acts nontrivially.)

6|+y〉 here refers to the state 1√
2 (|0〉+ i |1〉).
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4. Prover’s response. The prover receives the verifier’s measurement results u, and firstly checks
whether they cause a predicate Q(t, π, a, b, r, u) to be satisfied. (We will explain the predicate
Q in more detail shortly. Intuitively, Q is satisfied if and only if both verifier and prover
behaved honestly.) If Q is not satisfied, the prover aborts, causing the verifier to reject. If Q
is satisfied, then the prover proves to the verifier, using an NP zero-knowledge protocol, that
there exists randomness sp and an encoding key (t, π, a, b) such that z = commit((π, a, b), sp)
and Q(t, π, a, b, r, u) = 1.
We now describe the predicate Q in precise terms. For convenience, Broadbent et al. define
a predicate Rr, which represents the prover’s check after it reverses the effects on u of the
one-time pad XaZb, and then proceed to define Q in terms of Rr. Since we will shortly
have cause to alter the definition of Rr, we quote the definition of Rr used in [BJSW16] for
comparison. (Note that we have altered their notation slightly: the strings that they call yi
we have called qi, to avoid a conflict.)

Definition 2.15 (Definition of Rr). Let ui1 , . . . , uik be the measurement results that the
verifier sent to the prover in step 3. For each i ∈ {i1, . . . , ik}, define strings qi, zi in {0, 1}N
such that π(qi‖zi) = ui (alternatively: π−1(ui) = qi‖zi). The predicate Rr(t, π, u) takes the
value 1 if and only if the following two conditions are met:
(a) qi ∈ DN for every i ∈ {i1, . . . , ik}, and qi ∈ D1

N for at least one index i ∈ {i1, . . . , ik}.
(DN = D0

N ∪ D1
N is the set of all valid classical N -bit codewords of the concatenated

Steane code. We note, as an aside, that D0
N and D1

N are both sets of size 8t, where t is
an even positive integer such that 7t = N ; as such, DN is polynomially sized.)

(b) 〈zi1 · · · zik |C⊗nr |ti1 · · · tik〉 6= 0.

Now we define the predicate Q(t, π, a, b, r, u) in terms of Rr:

Definition 2.16 (Definition of Q). Let c1, . . . , cn, d1, . . . , dn ∈ {0, 1}2N be the unique strings
such that

C⊗2N
r (Xa1Zb1 ⊗ · · · ⊗XanZbn) = α(Xc1Zd1 ⊗ · · · ⊗XcnZdn)C⊗2N

r

for some α ∈ {1, i,−1,−i}. (It is possible to efficiently compute c = c1, . . . , cn and d =
d1, . . . , dn given a, b and Cr.) The predicate Q is then defined by

Q(t, π, a, b, r, u) = Rr(t, π, u⊕ ci1 · · · cik) .

2.5 Replacing Clifford verification with XZ verification in Protocol 2.13

The authors of [BJSW16] introduce a zero-knowledge proof system which allows the verifier to
determine whether the prover holds a state that has sufficiently low energy with respect to a k-
local Clifford Hamiltonian (see Section 2 of [BJSW16]). In this section, we modify their proof
system so that it applies to an input encoded as an instance of the XZ local Hamiltonian problem
(Definition 2.3) rather than as an instance of the Clifford Hamiltonian problem.

Before we introduce our modifications, we explain why it is necessary in the first place to alter the
proof system presented in [BJSW16]. Modulo the encoding E which the prover applies to its state
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in Protocol 2.13, the quantum verifier from the same protocol is required to perform a projective
measurement of the form {Π = C∗ |0k〉 〈0k|C, Id−Π} of the state that the prover sends it (where
C is a Clifford unitary acting on k qubits) and reject if it obtains the first of the two possible
outcomes. Due to the properties of Clifford unitaries, this action is equivalent to measuring k
commuting k-qubit Pauli observables C∗ZiC for i ∈ {1, . . . , k} (where Zi is a Pauli σZ observable
acting on the ith qubit), and rejecting if all of said measurements result in the outcome +1.

Our goal is to replace the quantum component of the verifier’s actions in Protocol 2.13—a com-
ponent which, fortunately, consists entirely of performing the projective measurement just de-
scribed—with the measurement protocol introduced in [Mah18] (summarized as Protocol 2.9).
Unfortunately, the latter protocol 1. only allows for standard and Hadamard basis measurements,
and 2. does not accommodate a verifier who wishes to perform multiple successive measurements
on the same qubit: for each qubit that the verifier wants to measure, it must decide on a mea-
surement basis (standard or Hadamard) prior to the execution of the protocol, and once made its
choices are fixed for the duration of its interaction with the prover. This allows the verifier to, for
example, obtain the outcome of a measurement of the observable C∗ZiC for some particular i, by
requesting measurement outcomes of all k qubits in the appropriate basis and taking the product of
the outcomes obtained. However, it is not obvious how the same verifier could request the outcome
of measuring a k-tuple of commuting Pauli observables which all act on the same k qubits.

To circumvent this technical issue, we replace the Clifford Hamiltonian problem used in [BJSW16]
with the QMA-complete XZ Hamiltonian problem. The advantage of this modification is that it
becomes straightforward to implement the required energy measurements using the measurement
protocol from [Mah18]. In order to make the change, we require that the verifier’s measurements
act on a linear, rather than a constant, number of qubits with respect to the size of the problem
input.

A different potentially viable modification to the proof system of [BJSW16] is as follows. Instead of
replacing Clifford Hamiltonian verification with XZ Hamiltonian verification, we could also repeat
the original Clifford-Hamiltonian-based protocol a polynomial number of times. In such a scheme,
the honest prover would hold m copies of the witness state (as it does in Protocol 2.6). The verifier,
meanwhile, would firstly choose a random term C∗r |0k〉 〈0k|Cr from the Clifford Hamiltonian, and
then select m random Pauli observables of the form C∗rZiCr—where Cr is the particular Cr which
it picked—to measure. (For each repetition, i would be chosen independently and uniformly at
random from the set {1, . . . , k}.) The verifier would accept if and only if the number of times
it obtains −1 from said Pauli measurements is at least m

2k . This approach is very similar to the
approach we take for XZ Hamiltonians (which we explain below), and in particular also fails to
preserve the perfect completeness of the original protocol in [BJSW16]. For simplicity, we choose
the XZ approach. We now introduce the alterations which are necessary in order to make it viable.

Firstly, we require that the honest prover possesses polynomially many copies of the witness state
σ, instead of one. We do this because we want the honest verifier to accept the honest prover
with probability exponentially close to 1, which is not naturally true in the verification procedure
for 2-local XZ Hamiltonians presented by Morimae and Fitzsimons in [MF16], but which is true
in our amplified variant, Protocol 2.6. Secondly, we need to modify the verifier’s conditions for
acceptance. In [BJSW16], as we have mentioned, these conditions are represented by a predicate
Q (that in turn evaluates a predicate Rr; see Definitions 2.15 and 2.16).
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We now describe our alternative proof system for QMA, and claim that it is zero-knowledge.
Because the protocol is very similar to the protocol from [BJSW16], this can be seen by following
the proof of zero-knowledge in [BJSW16], and noting where our deviations require modifications to
the reasoning. On the other hand, we do not argue that the proof system is complete and sound,
as we do not need to make explicit use of these properties. (Intuitively, however, the completeness
and the soundness of the proof system follow from those of Protocol 2.6, and the soundness of the
latter is a property which we will use.)

Protocol 2.17 (Alternative proof system for QMA).

Notation. Refer to notation section of Protocol 2.6.

Parties. The proof system involves

1. A verifier, who implements a quantum polynomial-time procedure;
2. A prover, who is unbounded, but who is only required by the protocol to implement a quantum

polynomial-time procedure.

The verifier and the prover communicate quantumly.

Inputs.

1. Input to the verifier:
(a) The Hamiltonian H, and the numbers a and b.
(b) A quantum computationally concealing, perfectly binding (classical) commitment pro-

tocol.
(c) A proof system for NP sound against arbitrary quantum provers.

2. Input to the prover:
(a) The Hamiltonian H, and the numbers a and b.
(b) The n-qubit quantum state ρ = σ⊗n, where σ is the ground state of the Hamiltonian H.
(c) A quantum computationally concealing, perfectly binding (classical) commitment pro-

tocol.
(d) A zero-knowledge proof system for NP sound against arbitrary quantum provers.

Protocol.

1. Prover’s encoding step: The same as the prover’s encoding step in Protocol 2.13, except
that t ∈ {0,+}N rather than {0,+,+y}N . (This change will be justified in the proof of
Lemma 2.20.)

2. Coin flipping protocol: Unmodified from Protocol 2.13, except that r = (r1, . . . , rm) represents
the choice of m terms from the 2-local XZ Hamiltonian H (with the choices being made as
described in step 2 of Protocol 2.6) instead of a random term from a Clifford Hamiltonian.
Note that r determines the indices of the 2m logical qubits which the verifier will measure in
step 3.

3. Verifier’s challenge: The same as the verifier’s challenge in Protocol 2.13, except that the
verifier now applies Ur transversally instead of Cr. (See item 2(c) in Definition 2.18 below for
the definition of Ur.)
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4. Prover’s response: The same as Protocol 2.13 (but note that the predicate Q, which the
prover checks and then proves is satisfied, is the Q described in Definition 2.19 below).

Definition 2.18 (Redefinition of Rr). Let i1, . . . , i2m be the indices of the logical qubits which
were chosen for measurement in step 2 of Protocol 2.17, ordered by their corresponding js (so that
i1 and i2 are the qubits that were measured in order to determine whether Hs1 was satisfied, and
so on). Let ui1 , . . . , ui2m be the 2N -bit strings which the verifier claims are the classical states
that remained after said measurements were performed, and for each i ∈ {i1, . . . , i2m}, define N -
bit strings qi, zi such that π(qi||zi) = ui (alternatively: π−1(ui) = qi||zi). In Protocol 2.17, the
predicate Rr(t, π, u) takes the value 1 if and only if the following conditions are met:

1. qi ∈ DN for every i ∈ {i1, . . . , i2m}.

2. The number Count
m (where Count is obtained by executing the following procedure) is closer

to 1
2 −

a∑
s

2|ds|
than to 1

2 −
b∑
s

2|ds|
.

(a) Initialise Count to 0.
(b) For each j ∈ {1, . . . ,m}: Suppose that Hsj = djP1P2, for some P1, P2 ∈ {σX , σZ}. The

tuple (P1, u2j−1, P2, u2j) determines a ‘logical’ measurement result that could equally
have been obtained by measuring Hrjσ, where σ is the unencoded witness state. We
denote this measurement result by λ. If λ = −sign(dj), add one to Count.

(c) Let Ur be the circuit obtained from the following procedure:
i. For each j ∈ {1, . . . ,m}, replace any σXs in the term Hsj with H (Hadamard) gates,

and replace any σZs in Hsj with I. (For example, if Hrj = πjσX,`1σZ,`2 , where the
second subscript denotes the index of the qubit on which the observable in question
acts, then Uj = H`1I`2 , where the subscripts `1 and `2 once again the denote the
indices of the qubits on which the gates H and I act.)

ii. Apply Uj to the qubits indexed (j − 1)n+ 1 through jn.
It must then be the case that 〈zi1 · · · zi2m |U⊗Nr |ti1 · · · ti2m〉 6= 0 (where each ti is an
N -bit string that represents the pattern of trap qubits which was concatenated to the
ith logical qubit during step 1 of Protocol 2.17).

Definition 2.19 (Redefinition of Q). Let c1, . . . , cn, d1, . . . , dn ∈ {0, 1}2N be the unique strings
such that

U⊗2N
r (Xa1Zb1 ⊗ · · · ⊗XanZbn) = α(Xc1Zd1 ⊗ · · · ⊗XcnZdn)U⊗2N

r

for some α ∈ {1, i,−1,−i}. (It is possible to efficiently compute c = c1, . . . , cn and d = d1, . . . , dn
given a, b and Ur. In particular, recalling that Ur is a tensor product of H and I gates, we have
that ci = ai and di = bi for all i such that the ith gate in U⊗2N

r is I, and ci = bi, di = ai for all i
such that the ith gate in U⊗2N

r is H.) The predicate Q is then defined by

Q(t, π, a, b, r, u) = Rr(t, π, u⊕ ci1 · · · cik) ,

where Rr is as in Definition 2.18.

Lemma 2.20. The modified proof system for QMA in Protocol 2.17 is computationally zero-
knowledge for quantum polynomial-time verifiers.
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Proof. We follow the argument from [BJSW16, Section 5]. Steps 1 to 3 only make use of the security
of the coin-flipping protocol, the security of the commitment scheme, and the zero-knowledge
properties of the NP proof system, none of which we have modified. Step 4 replaces the real
witness state ρ with a simulated witness ρr that is guaranteed to pass the challenge indexed by
r; this we can do also (see Remark 2.8). Step 5 uses the Pauli one-time-pad to twirl the cheating
verifier, presuming that the honest verifier would have applied a Clifford term indexed by r before
measuring. We note that, since Ur is a Clifford, the same reasoning applies to our modified proof
system.

Finally, using the fact that the Pauli twirl of step 5 restricts the cheating verifier to XOR attacks,
step 6 from [BJSW16, Section 5] proves the following statement: if the difference |p0 − p1| is
negligible (where p0 and p1 are the probabilities that ρ and ρr respectively pass the verifier’s test in
an honest prover-verifier interaction indexed by r), then the channels Ψ0 and Ψ1 implemented by the
cheating verifier in each case are also quantum computationally indistinguishable. It follows from
this statement that the protocol is zero-knowledge, since, in an honest verifier-prover interaction
indexed by r, ρr would pass with probability 1, and ρ would pass with probability 1 − negl(N).
(This latter statement is true both in their original and in our modified protocol.) The argument
presented in [BJSW16] considers two exclusive cases: the case when |v|1 < K, where v is the string
that the cheating verifier XORs to the measurement results, |v|1 is the Hamming weight of that
string, and K is the minimum Hamming weight of a nonzero codeword in DN ; and the case when
|v|1 ≥ K. The analysis in the former case translates to Protocol 2.17 without modification, but in
the latter case it needs slight adjustment.

In order to address the case when |v|1 ≥ K, Broadbent et al. use a lemma which—informally—
states that the action of a Clifford on k qubits, each of which is initialised uniformly at random
to one of |0〉 , |+〉, or |+〉y, has at least a 3−k chance of leaving at least one out of k qubits in
a standard basis state. We may hesitate to replicate their reasoning directly, because our k (the
number of qubits on which our Hamiltonian acts) is not a constant. While it is possible that a
mild modification suffices to overcome this problem, we note that in our case there is a simpler
argument for an analogous conclusion: since Ur is a tensor product of only H gates and I gates, it
is straightforward to see that, if each of the 2m qubits on which it acts is initialised either to |0〉
or to |+〉, then 1) each of the 2m qubits has exactly a 50% chance of being left in a standard basis
state, and 2) the states of these 2m qubits are independent.

Now we consider the situation where a string v = v1 v2 · · · v2m, of length 4mN and of Hamming
weight at least K, is permuted (‘permuted’, here, means that π ∈ S2N is applied to each vi
individually) and then XORed to the result of measuring 4mN qubits (2m blocks of 2N qubits each)
in the standard basis after Ur has been transversally applied to those qubits. It is straightforward
to see, by an application of the pigeonhole principle, that there must be at least one vi whose
Hamming weight is ≥ K

2m . Consider the result of XORing this vi to its corresponding block of
measured qubits. Half of the 2N qubits in that block would originally have been encoding qubits,
and half would have been trap qubits; half again of the latter, then, would have been trap qubits
left in a standard basis state by the transversal action of Ur. As such, the probability that none
of the 1-bits of vi are permuted into positions which are occupied by the latter kind of qubit is
(3

4)−
K

2m , which is negligibly small as long as K is made to be a higher-order polynomial in N than
2m is. The remainder of the argument in [BJSW16, Section 5] follows directly.
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3 The protocol

In this section, we present our construction of a zero-knowledge argument system for QMA. Our ar-
gument system allows a classical probabilistic polynomial-time verifier and a quantum polynomial-
time prover to verify that any problem instance x belongs to any particular language L ∈ QMA,
provided that the prover has access to polynomially many copies of a valid quantum witness for an
instance of the 2-local XZ local Hamiltonian problem to which x is mapped by the reduction im-
plicit in Theorem 2.5. The argument system is sound (against quantum polynomial-time provers)
under the following assumptions:

Assumptions 3.1.

1. The Learning With Errors problem (LWE) [Reg09] is quantum computationally intractable.
(Specifically, we make the same asssumption about the hardness of LWE that is made
in [Mah18, Section 9] in order to prove the soundness of the measurement protocol.)

2. There exists a commitment scheme (gen, initiate, commit, reveal, verify) of the form described in
Appendix C that is unconditionally binding and quantum computationally concealing. (This
assumption is necessary to the soundness of the proof system presented in [BJSW16].) It is
known that a commitment scheme with the properties required can be constructed assuming
the quantum computational hardness of LWE [CVZ19], although the parameters may be
somewhat different from those required for soundness.

The following exposition of our protocol relies on definitions from Section 2, and we encourage the
reader to read that section prior to approaching this one. We also direct the reader to Figures 1
and 2 for diagrams that chart the protocol’s structure.

Protocol 3.2. Zero-knowledge, classical-verifier argument system for QMA.

Notation. Let L be any promise problem in QMA, and let (H =
∑S
s=1 dsHs, a, b) be an instance of

the 2-local XZ Hamiltonian problem to which L can be reduced (see Definition 2.3 and Theorem 2.5).
Define

πs = |ds|∑
s |ds|

.

Following [BJSW16], we take the security parameter for this protocol to be N , the number of
qubits in which the concatenated Steane code used during the encoding step of the protocol (step
1) encodes each logical qubit. We assume, accordingly, that N is polynomial in the size of the
problem instance x.

Parties.

The protocol involves

1. A verifier, which runs in classical probabilistic polynomial time;

2. A prover, which runs in quantum polynomial time.

Inputs. The protocol requires the following primitives:
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• A perfectly binding, quantum computationally concealing commitment protocol (gen, initiate,
commit, reveal, verify) (which will be used twice: once for the prover’s commitment in step 2,
and then again for the coin-flipping protocol in step 3). We assume that this commitment
protocol is of the form described in Appendix C.

• A zero-knowledge proof system for NP.

• An extended trapdoor claw-free function family (ETCFF family), as defined in [Mah18].
(Note that we fall short of using the ETCFF family as a black box: for the trapdoor check of
step 8, we rely on the specific properties of the LWE-based construction of an ETCFF family
that [Mah18] provides. See Appendix A for details.)

Apart from the above cryptographic primitives, we assume that the verifier and the prover also
receive the following inputs.

1. Input to the verifier: the Hamiltonian H and the numbers a and b.
2. Input to the prover: the Hamiltonian H, the numbers a and b, and the quantum state
ρ = σ⊗m, where σ is a ground state of the Hamiltonian H.

Protocol.

1. The prover encodes the witness. The prover encodes the quantum witness ρ by applying the
following steps:
(a) Apply concatenated Steane code
(b) Concatenate trap qubits |t〉
(c) Apply a random permutation π

(d) Apply a Pauli one-time-pad XaZb

The encoding process here is the same as that from step 1 of Protocol 2.17; we direct the reader
to Protocol 2.17, and the Protocol 2.13 to which it refers, for a more detailed explanation of
the steps. Denote the application of the prover’s encoding to the state ρ by E(ρ).

2. The prover commits to its encoding keys. The prover commits to the strings (π, a, b) from
the previous step, using randomness sp. Call the prover’s commitment string z, so that
z = commit((π, a, b), sp).

3. The verifier and the prover execute the first half of a two-stage coin-flipping protocol.7 The
verifier commits to rv, its part of the random string that will be used to determine which
random terms in the Hamiltonian H it will check in subsequent stages of the protocol. Let
c = commit(rv, sv). The prover sends the verifier rp, which is its own part of the random
string. The random terms will be determined by r = rv ⊕ rp. (r is used to determine these
terms in the same way that r is used in Protocol 2.6.)

4. The verifier initiates the measurement protocol. (Refer to Protocol 2.9 for an outline of
the steps in said measurement protocol.) The verifier chooses the measurement bases h =

7We need to execute the coin-flipping protocol in two stages because, in our (classical-verifier) protocol, the prover
cannot physically send the quantum state E(ρ) to its verifier before the random string r is decided, as the prover of
Protocol 2.13 does. If we allow our prover to know r at the time when it performs measurements on the witness ρ,
it will trivially be able to cheat.
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h1 · · ·h2nN in which it wishes to measure the state E(ρ). 2kN out of the 2nN bits of h—
corresponding to k logical qubits—are chosen so that the verifier can determine whether σ
satisfies the Hamiltonian terms specified by r = rv ⊕ rp. In our particular case, k = 2m,
where m is the number of Hamiltonian terms that the verifier will check are satisfied. For
the remaining qubits i, the verifier sets hi to 0. The verifier sends the function keys κ =
κ1, . . . , κ2nN to the prover.

5. The prover commits to its encoded witness state, as per the measurement protocol. The prover
commits to the quantum state E(ρ) by concatenating a preimage register to each qubit in
E(ρ), applying the functions specified by κ1, . . . , κ2nN in superposition as Protocol 2.9 de-
scribes, measuring the resulting output superpositions, and sending the outcomes y1, . . . , y2nN
to the verifier.

6. The verifier chooses at random to run either a test round or a Hadamard round. Each option
is chosen with probability 1

2 .
(a) If a test round is chosen, the verifier requests standard basis measurements of each

committed qubit |ψi〉 in E(ρ) and its associated preimage register, and receives mea-
surement results βi, xi for i ∈ {1, . . . , 2nN} from the prover. It then checks, for each
i ∈ {1, . . . , 2nN}, whether the ith measurement result is a preimage of yi. (See Def-
inition 2.11 for a definition of the phrase ‘preimage of y’.) More precisely: if hi = 0,
the verifier accepts iff yi is in the support of gκi(βi‖xi) (recalling that gκi(βi‖xi) is a
probability distribution); and if hi = 1, the verifier accepts iff yi is in the support of
fκi(βi‖xi).

(b) If a Hadamard round is chosen, the verifier requests Hadamard basis measurements
of each committed qubit and its associated preimage register, and receives βi, di for
i ∈ {1, . . . , 2nN} from the prover. It then obtains the measurement results it desires
using the procedure outlined in Section 2.2 of [Mah18]:

i. If hi = 0, the verifier ignores the measurement results βi, di, and uses the trapdoor
τκi to invert yi. The inversion procedure outputs a preimage (mi, xmi,yi); the verifier
stores mi as the standard-basis measurement outcome. (If the inverse does not exist,
the verifier stores a random bit as mi and rejects.)

ii. If hi = 1, the verifier computes the two preimages x0,i and x1,i to yi under fκi
using the trapdoor τκi . It then stores βi ⊕ di · (x0,i ⊕ x1,i) as the Hadamard basis
measurement outcome. (Once again, if either inverse does not exist, the verifier
stores a random bit as mi and rejects.)

7. The verifier opens its commitment, and sends the prover its measurement outcomes and func-
tion trapdoors. If a test round was chosen in the previous step, the verifier now accepts the
prover directly, provided that the preimage test was satisfied for all i. (If not all the preim-
age tests passed, the verifier directly rejects the prover.) If a Hadamard round was chosen,
and the verifier instead opens its commitment to rv and sends its measurement outcomes
m = m1, . . . ,m2nN to the prover, along with its trapdoors τκ1 , . . . , τκ2nN .

8. The prover checks that the verifier’s measurement outcomes and trapdoors were consistent; it
then proves that the verifier’s measurement outcomes were consistent. The prover checks that
τκ1 , . . . , τκ2nN are indeed trapdoors for the functions specified by κ1, . . . , κ2nN , and also that
κ1, . . . , κ2nN are valid ETCFF keys, using the procedure described in Protocol A.2. It also
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defines u = ui1 · · ·ui2m (each ui is 2N bits long) = m`1 · · ·m`4mN , where `1, . . . , `4mN are the
indices of the qubits on which U⊗2N

r acts nontrivially, and checks that u causes the predicate
Q(t, π, a, b, r, u) to be satisfied. (The Q we refer to here is the Q of Definition 2.19. We define
Ur in the same way that Ur was defined in Definition 2.18.) If either of these tests fails, the
prover aborts. If both tests pass, then the prover proves, using an NP zero-knowledge proof
system,8 that the verifier’s outcomes are consistent in the following sense:

The verifier’s outcomes u are consistent if there exists a string sp and an encoding key
(t, π, a, b) such that z = commit((π, a, b), sp) and Q(t, π, a, b, r, u) = 1.

Figure 1: Diagrammatic representation of an honest execution of Protocol 3.2. We omit communication between
the different parts of the prover for neatness, and we also omit the initial messages i (see Appendix C) from
executions of the perfectly binding, quantum computationally concealing commitment protocol which we refer to
in Assumptions 3.1. The blue parts of the diagram indicate what occurs in the case of a test round, and the red
parts indicate what occurs in the case of a Hadamard round.

8It was shown in [Wat09] that the second item in Assumptions 3.1 suffices to guarantee the existence of a proof
system for languages in NP that is zero-knowledge against quantum polynomial-time verifiers. Our proof that our
protocol is zero-knowledge for classical verifiers only requires that the NP proof system used here is (likewise) zero-
knowledge against classical verifiers; however, it becomes necessary to require post-quantum security of this proof
system if we want our protocol also to be zero-knowledge for potentially quantum malicious verifiers.
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Figure 2: Diagrammatic representation of Protocol 3.2 with a cheating verifier. The cheating verifier V ∗ may
take some (classical) auxiliary input Z0, store auxiliary information (represented by Z1 and Z2), and produce a
final output Z3 that deviates from that specified by the protocol.

4 Completeness of protocol

Lemma 4.1. Suppose that the instance x = (H, a, b) of the 2-local XZ Hamiltonian problem that is
provided as input to the verifier and prover in Protocol 3.2 is a yes-instance, i.e. the ground energy
of H is smaller than a. Then, the probability that the honest verifier accepts after an interaction
with the honest prover in Protocol 3.2 is 1− µ(|x|), for some negligible function µ.

Proof. The measurement protocol outlined in section 2.3 has the properties that

1. for any n-qubit quantum state ρ and for any choice of measurement bases h, the honest prover
is accepted by the honest verifier with probability 1− negl(n), and

2. the distribution of measurement outcomes obtained by the verifier from an execution of the
measurement protocol (the measurement outcomes mi in step 6(b) of Protocol 3.2) is negli-
gibly close in total variation distance to the distribution that would have been obtained by
performing the appropriate measurements directly on ρ.

These properties are stated in Claim 5.3 of [Mah18]. It is evident (assuming the NP zero-knowledge
proof system has perfect completeness) that if the verifier of Protocol 3.2 had obtained the out-
comes m through direct measurement of ρ, it would accept with exactly the same probability with
which the verifier of Protocol 2.6 would accept ρ = σ⊗n. By Claim 2.7, this latter probability is
exponentially close to 1. Lemma 4.1 follows.
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5 Soundness of protocol

Let the honest verifier of the argument system in Protocol 3.2 be denoted V , and let an arbitrary
quantum polynomial-time prover with which V interacts be denoted P. For this section, we will
require notation from Section 5.3 of [Mah18], the proof of Theorem 8.6 of the same paper, and
Section 4 of [BJSW16]. We will by and large introduce this notation as we proceed (and some
of it has been introduced already in Sections 2.3 and 2.4, the sections containing outlines of the
measurement protocol from [Mah18] and the zero-knowledge proof system from [BJSW16]), but
the reader should refer to the above works if clarification is necessary.

We begin by making some preliminary definitions and proving a claim, from which the soundness
of Protocol 3.2 (Lemma 5.6) will naturally follow. Firstly, we introduce some notation from Section
4 of [BJSW16]:

Definition 5.1 (Projection operators Π0 and Π1). Define N as it is defined in Protocol 3.2. Let
D0
N be the set of bitstrings x such that the encoding of |0〉 under the concatenated Steane code of

Protocol 2.13 (or of Protocol 3.2) is
∑
x∈D0

N
|x〉, and let D1

N likewise be the set of bitstrings x such
that the encoding of |1〉 under the concatenated Steane code is

∑
x∈D1

N
|x〉. (See Definition 2.15,

and Section A.6 of [BJSW16], for details about the concatenated Steane code. The first condition
in Definition 2.15 will provide some motivation for the following definitions of Π0 and Π1.) Define

Π0 =
∑
x∈D0

N

|x〉 〈x| , Π1 =
∑
x∈D1

N

|x〉 〈x| .

Definition 5.2 (Projection operators ∆0 and ∆1). Define N as it is defined in Protocol 3.2. Let
∆0 and ∆1 be the following projection operators:

∆0 = I⊗N + Z⊗N

2 , ∆1 = I⊗N − Z⊗N

2 .

∆0 is the projection onto the space spanned by all even-parity computational basis states, and ∆1
is its equivalent for odd-parity basis states. Note that, since all the codewords in D0 have even
parity, and all the codewords in D1 have odd parity, it holds that Π0 ≤ ∆0 and that Π1 ≤ ∆1.

Definition 5.3 (The quantum channel Ξ). Define a quantum channel mapping N qubits to one
qubit as follows:

ΞN (σ) = 〈I
⊗N , σ〉I + 〈X⊗N , σ〉X + 〈Y ⊗N , σ〉Y + 〈Z⊗N , σ〉Z

2 .

Loosely, ΞN can be thought of as a simplification of the decoding operator to the concatenated
Steane code that the honest prover applies to its quantum witness in Protocol 2.13 (or in Protocol
3.2). Its adjoint is specified by

Ξ∗N (σ) = 〈I, σ〉I
⊗N + 〈X,σ〉X⊗N + 〈Y, σ〉Y ⊗N + 〈Z, σ〉Z⊗N

2 ,

and has the property that

Ξ∗N (|0〉 〈0|) = ∆0 , Ξ∗N (|1〉 〈1|) = ∆1 ,

a property which we will shortly use.
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Let z be prover P’s commitment string from step 2 of Protocol 3.2. Because the commitment
protocol is perfectly binding, there exists a unique, well-defined tuple (π, a, b) and a string sp such
that z = commit((π, a, b), sp).

Definition 5.4. For notational convenience, we define a quantum procedure M on a 2nN -qubit
state ρ as follows:

1. Apply XaZb to ρ, to obtain a state ρ′.

2. Apply π−1 to each 2N -qubit block in the state ρ′, to obtain a state ρ′′.

3. Discard the last N qubits of each 2N -qubit block in ρ′′, to obtain a state ρ′′′.

4. To each N -qubit block in ρ′′′, apply the map ΞN .

We also define the procedure M̃ as the application of the first three steps in M , again for notational
convenience.

Intuitively, we think of M as an inverse to the prover’s encoding procedure E. M may not actually
invert the prover’s encoding procedure, if the prover lied about the encoding key that it used when
it sent the verifier z = commit((π, a, b), sp); however, this is immaterial.

We now prove a claim from which the soundness of Protocol 3.2 will follow. Before we do so,
however, we make a remark about notation for clarity. When we write ‘V accepts the distribution
Dξ,h with probability p’ (or similar phrases), we mean that, in [Mah18]’s notation from section 8.2,∑

h∈{0,1}2nN

vh(1− p̃h(Dξ,h)) = p.

Here, h represents the verifier’s choice of measurement bases, as before; vh is the probability that
the honest verifier will select the basis choice h, and 1 − p̃h(D) is defined, for any distribution D
over measurement outcomes m ∈ {0, 1}2nN , as the probability that the honest verifier will accept
a string drawn from D on basis choice h. (When we refer to the latter probability, we assume,
following [BJSW16, Section 4], that the prover behaves optimally—in terms of maximising the
verifier’s eventual probability of acceptance—after the verifier sends it measurement outcomes at
the end of step 6 in Protocol 3.2. For the purposes of the present soundness analysis, therefore,
we can imagine that the verifier checks the predicate Q itself after step 6, instead of relying on the
prover to prove to it during step 8 that Q is satisfied.)

Claim 5.5. Suppose there exists a quantum state ξ such that the honest verifier V accepts the
distribution Dξ,h with probability p. Then the state M(ξ) is accepted by the verifier of Protocol 2.6
with probability at least p.

Proof. Fix a choice of r (see step 3 of Protocol 3.2 for a definition of r). Let Zr be the subset of
{0, 1}n such that the verifier of Protocol 2.6 accepts if and only if the n-bit string that results from
concatenating the measurement results it obtains in step 4 of said protocol is a member of Zr. It
is unimportant to the analysis what Zr actually is; it matters only that it is well-defined.

27



For this choice of r, we can express the probability that the verifier of Protocol 2.6 accepts a state
τ as ∑

z∈Zr

〈
U∗r |z1, . . . , zn〉 〈z1, . . . , zn|Ur, τ

〉
.

(Though only 2m of the n qubits in τ are relevant to Ur, we assume here for notational simplicity
that Ur is a gate on n qubits, and that the verifier measures all n qubits of Urτ and ignores those
measurement results which are irrelevant.)

For the same choice of r, we can express the probability that the verifier V from Protocol 3.2 will
eventually accept the distribution Dξ,h as

pr =
∑
z∈Zr

〈
(U∗r )⊗N (Πz1 ⊗ · · · ⊗Πzn)(Ur)⊗N , M̃(ξ)

〉
.

Following [BJSW16], we note that

∑
z∈Zr

〈
(U∗r )⊗N (Πz1 ⊗ · · · ⊗Πzn)(Ur)⊗N , M̃(ξ)

〉

≤
∑
z∈Zr

〈
(U∗r )⊗N (∆z1 ⊗ · · · ⊗∆zn)(Ur)⊗N , M̃(ξ)

〉

=
∑
z∈Zr

〈
(U∗r )⊗N

(
Ξ∗N (|z1〉 〈z1|)⊗ · · · ⊗ Ξ∗N (|zn〉 〈zn|)

)
(Ur)⊗N , M̃(ξ)

〉

=
∑
z∈Zr

〈
(Ξ⊗nN )∗U∗r |z1, . . . , zn〉 〈z1, . . . , zn|Ur, M̃(ξ)

〉

=
∑
z∈Zr

〈
U∗r |z1, . . . , zn〉 〈z1, . . . , zn|Ur,M(ξ)

〉
.

For the second-to-last equality above, we have used the observation that, for any n-qubit Clifford
operation C, and every nN -qubit state σ,

Ξ⊗nN (C⊗Nσ(C⊗N )∗) = CΞ⊗nN (σ)C∗.

This is equation (35) in [BJSW16], and can be verified directly by considering the definition of ΞN .

We conclude that, if the distribution Dξ,h is accepted by V with probability p =
∑
r vrpr =∑

h vh(1 − p̃h(Dξ,h)) (where vr is the probability that a given r will be chosen, and the second
expression is simply a formulation in alternative notation of the first), the state M(ξ) is accepted
by the verifier of Protocol 2.6 with probability at least p.

Now we turn to arguing that Protocol 3.2 has a soundness parameter s which is negligibly close to
3
4 .
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Lemma 5.6. Suppose that the instance x = (H, a, b) of the 2-local XZ Hamiltonian problem that is
provided as input to the verifier and prover in Protocol 3.2 is a no-instance, i.e. the ground energy
of H is larger than b. Then, provided that Assumptions 3.1 hold, the probability that the honest
verifier V accepts in Protocol 3.2 after an interaction with any quantum polynomial-time prover P
is at most 3

4 + negl(|x|).

Proof. Claim 2.12 guarantees that, for any arbitrary quantum polynomial-time prover P who exe-
cutes the measurement protocol with V , there exists a state ξ, a prover P′ and a negligible function
µ such that

‖DC
P,h −DP′,h‖TV ≤

√
ph,T + ph,H + µ , and

DP′,h ≈c Dξ,h . (2)

(See the paragraph immediately above Claim 2.12 for relevant notation.)

It follows from (2) that, if V accepts the distribution DP′,h with probability p, it must accept the dis-
tribution Dξ,h with probability p− negl(N), because the two are computationally indistinguishable
and the verifier V is efficient. Therefore (using Claim 5.5), if V accepts DP′,h with probability p, the
verifier of Protocol 8.3 from [Mah18] accepts the state M(ξ) with probability at least p− negl(N).
By the soundness of Protocol 2.6 (Claim 2.7), we conclude that p = negl(N) when the problem
Hamiltonian is a no-instance.

We now apply a similar argument to that which is used in Section 8.2 of [Mah18] in order to
establish an upper bound on the probability φ that V accepts P in a no-instance. Let EHP,h denote
the event that the verifier V does not reject the prover labelled P in a Hadamard round indexed by
h during the measurement protocol phase of Protocol 3.2. Let ETP,h denote the analogous event in a
test round. Furthermore, let EP,h denote the event that the verifier accepts the prover P in the last
step of Protocol 3.2. The total probability that V accepts P is the average, over all possible basis
choices h, of the probability that V accepts P after a test round indexed by h, plus the probability
that V accepts P after a Hadamard round indexed by h. As such,

φ =
∑

h∈{0,1}2nN

vh( 1
2Pr[E

T
P,h] + 1

2Pr[E
H
P,h ∩ EP,h] )

=
∑

h∈{0,1}2nN

vh( 1
2Pr[E

T
P,h] + 1

2Pr[E
H
P,h]Pr[EP,h|EHP,h] )

=
∑

h∈{0,1}2nN

vh( 1
2(1− ph,T ) + 1

2(1− ph,H)(1− p̃h(DC
P,h)) ) .

Since Lemma 3.1 of [Mah18] and Claim 2.12 taken together yield the inequality

p̃h(DP′,h)− p̃h(DC
P,h) ≤ ‖DC

P,h −DP,h‖TV ≤
√
ph,T + ph,H + µ ,
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it follows that

φ ≤
∑

h∈{0,1}2nN

vh( 1
2(1− ph,T ) + 1

2(1− ph,H)(1− p̃h(DP′,h) +√ph,T + ph,H + µ) )

≤ 1
2µ+ 1

2
∑

h∈{0,1}2nN

vh(1− ph,T + (1− ph,H)(ph,H +√ph,T )) + 1
2

∑
h∈{0,1}2nN

vh(1− p̃h(DP′,h))

≤ 1
2µ+ 3

4 + 1
2p .

The upper bound of 3
4 in the last line can be obtained by straightforward calculation.9 We conclude

that Protocol 3.2 has a soundness parameter s which is negligibly close to 3
4 .

6 Zero-knowledge property of protocol

In this section, we establish that Protocol 3.2 is zero-knowledge against arbitrary classical proba-
bilistic polynomial time (PPT) verifiers. Specifically, we show the following:

Lemma 6.1. Suppose that the instance x = (H, a, b) of the 2-local XZ Hamiltonian problem that is
provided as input to the verifier and prover in Protocol 3.2 is a yes-instance, i.e. the ground energy
of H is smaller than a. Then (provided that Assumptions 3.1 hold) there exists a polynomial-
time generated PPT simulator S such that, for any arbitrary PPT verifier V ∗, the distribution
of V ∗’s final output after its interaction with the honest prover P in Protocol 3.2 is (classical)
computationally indistinguishable from S’s output distribution.

Remark 6.2. Lemma 6.1 formulates the zero-knowledge property in terms of classical verifiers and
computational indistinguishability against classical distinguishers, because this is the most natural
setting for a protocol in which verifier and interaction are classical. However, the same proof can
be adapted to show that, for any quantum polynomial-time verifier executing Protocol 3.2, there
exists a quantum polynomial-time generated simulator whose output is QPT indistinguishable in
yes-instances from that of the verifier. (In particular, the latter follows from the fact that the second
item in Assumptions 3.1 implies an NP proof system which is zero-knowledge against quantum
polynomial-time verifiers, an implication shown to be true in [Wat09].)

We show that Protocol 3.2 is zero-knowledge by replacing the components of the honest prover with
components of a simulator one at a time, and demonstrating that, when the input is a yes-instance,
the dishonest verifier’s output after each replacement is made is at the least computationally in-
distinguishable from its output before. The argument proceeds in two stages. In the first, we show
that the honest prover can be replaced by a quantum polynomial-time simulator that does not
have access to the witness ρ. In the second, we de-quantise the simulator to show that the entire

9For example, one can obtain this bound by maximising the quantity f(ph,T , ph,H) = 1
2

(
1−ph,T +(1−ph,H)(ph,H+

√
ph,T )

)
under the assumption that ph,T and ph,H lie in [0, 1]. The function f has one stationary point (ph,T =

1
9 , ph,H = 1

3 ) in [0, 1]2; checking f at this point, in addition to its maxima on each of the boundaries of [0, 1]2, reveals
that the choice of (ph,T , ph,H) ∈ [0, 1]2 which yields the maximum value of f is ( 1

9 ,
1
3 ), giving f = 2

3 . Of course,
2
3 <

3
4 ; we use the bound of 3

4 for consistency with [Mah18].
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execution can be simulated by a classical simulator who likewise does not have access to ρ. (The
latter is desirable because the verifier is a classical entity.)

We begin with the protocol execution between the honest prover P and an arbitrary cheating
verifier V ∗, the latter of whom may take some (classical) auxiliary input Z0, store information
(represented by Z1 and Z2), and produce an arbitrary final output Z3. A diagram representing the
interaction between V ∗ and P can be found in Figure 2.

6.1 Eliminating the coin-flipping protocol

Our first step in constructing a simulator is to eliminate the coin-flipping protocol, which is designed
to produce a trusted random string r, and replace it with the generation of a truly random string.
(This step is entirely analogous to step 1 of Section 5 in [BJSW16], and we omit the analysis.) The
new diagram is shown below. In this diagram, coins represents a trusted procedure that samples a
uniformly random string r of the appropriate length.

6.2 Introducing an intermediary

Our next step is to introduce an intermediary, denoted by I, which pretends—to the cheating verifier
of Protocol 3.2—to be its prover P , while simultaneously playing the role of verifier to the prover
from the zero-knowledge proof system of Protocol 2.17 10. (We denote the honest prover and honest
verifier for the proof system of Protocol 2.17 by P and V, respectively, to distinguish them from
the prover(s) P and verifier(s) V of the classical-verifier protocol currently under consideration.)
We remark, for clarity, that I is a quantum polynomial-time procedure. The essential idea of this
section is that I will behave so it is impossible for the classical verifier V to tell whether it is
interacting with the intermediary or with its honest prover. (We achieve this simply by making I
output exactly the same things that P would.) Given that this is so, the map that V implements

10Protocol 2.17 is identical in structure to the protocol presented in [BJSW16]. We refer the reader to Figure 4 in
that paper for a diagram representing the appropriate interactions.
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from its input to its output, including its auxiliary registers, cannot possibly be different in the
previous section as compared to this section.

Figure 3: The intermediary interacting with the honest prover from the proof system of Protocol 2.17, denoted
by P, and also with the cheating classical verifier V ∗. I1 receives the encoded quantum witness, which we have
denoted by Y , from P, in addition to P’s commitment z. It then sends z to V ∗1 , along with Z1, the auxiliary
input that V ∗1 is supposed to receive, and r, the random string generated by coins. I2 passes on any output V ∗1
produces to V ∗2 , performs itself the procedure for committing to a quantum state from [Mah18], and executes
the measurement protocol with V ∗2 . I3 receives the measurement outcomes u and the trapdoors τ from V ∗2 , and
checks whether the trapdoors are valid. If they are invalid, it aborts directly; if they are valid, it sends u on to
P3 and passes Z2 to V ∗3 , so that P3 and V ∗3 can execute the NP zero-knowledge proof protocol. (Each part of I
should also send everything it knows to its successor, but we have omitted these communications for the sake of
cleanliness, as we omitted the communication between parts of the prover in previous diagrams.)

6.3 Simulating the protocol with a quantum simulator

We now note that Figure 3 looks exactly like Figure 4 from [BJSW16], if we consider the inter-
mediary I and the cheating classical verifier V ∗ taken together to be a cheating verifier V ′ for the
proof system of Protocol 2.17.
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Figure 4: Compare to Figure 4 of [BJSW16]. Note that S1 includes the behaviour of an arbitrary V ′1; the reason
it is called S1 and not V ′1 is because V ′1 obtains r from a coin-flipping protocol, while S1 generates r using coins.
In all other respects, S1 is the same as V ′1.

Using similar reasoning as in [BJSW16] (and recalling that, by Lemma 2.20, it still works when the
Hamiltonian being verified is an XZ Hamiltonian), therefore, we conclude that we can replace ρ in
Figure 4 with ρr—where ρr is a quantum state specifically designed to pass the challenge indexed
by r—without affecting the verifier’s output distribution (to within computational indistinguisha-
bility). See Remark 2.8 for a procedure that explicitly constructs ρr. Note that, if our objective
was to achieve a quantum simulation without knowing the witness state ρ, our task would already
be finished at this step. However, our verifier is classical; therefore, in order to prove that our
classical verifier’s interaction with its prover does not impart to it any knowledge (apart from the
fact that the problem instance is a yes-instance) that it could not have generated itself, we need to
achieve a classical simulation of the argument system.

6.4 Simulating the protocol with a classical simulator

6.4.1 Replacing P0 and I1

If we want to simulate the situation in Figure 4 classically, then we need to de-quantise P0, I1 and
I2. (I3 and P3 are already classical.) Our first step is to replace P0 and I1 with a single classical
entity, I ′1.

I ′1 simply chooses encoding keys (t, π, a, b) and generates z, a commitment to the encoding keys
(π, a, b). It then sends z, r and Z1 to V ∗1 , as I1 would have. Because I ′1 has exactly the same output
as I1, the verifier’s output in Figure 5 is the same as its output in Figure 4. (We assume that the
still-quantum I2 now generates ρr for itself.)
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Figure 5: P0 and I1 have been replaced by I ′1.

6.4.2 Some simplifications (which make it possible to de-quantise I2)

Following [BJSW16], we make some alterations to Figure 5 that will allow us to eventually de-
quantise I2. The alterations are as follows:

1. Replace V ∗3 and P3 with an efficient simulation S3. (An efficient simulation of the NP proof
protocol execution between V ∗3 and P3 is guaranteed to exist because the NP proof protocol
is zero-knowledge.) Recall that the statement P3 is meant to prove to V ∗3 in a zero-knowledge
way is as follows: ‘There exists a string sp and an encoding key (t, π, a, b) such that z =
commit((π, a, b), sp) and Q(t, π, a, b, r, u) = 1.’ The zero-knowledge property of the NP proof
system guarantees that, for yes-instances, the output of S3 is indistinguishable from the
output of the protocol execution between V ∗3 and P3. In our case, I ′1 always holds sp and
(π, a, b) such that z = commit((π, a, b), sp), and the honest prover will abort the protocol if
Q(t, π, a, b, r, u) = 0. Therefore, whenever the prover does not abort, the output of S3 is
computationally indistinguishable from that of V ∗3 and P3. We assume, following [BJSW16],
that S3 also behaves as V ∗3 would when the prover aborts. If it does, then Figure 6 is
computationally indistinguishable from Figure 5.
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Figure 6: V ∗3 and P3 have been replaced by S3. Note that S3 does not require access to the witness (sp, t, π, a, b),
and so sp can be discarded immediately after I ′1 is run.

2. Replace the generation of the genuine commitment z with the generation of a commitment
z′ = commit((π0, a0, b0), sp), where π0, a0 and b0 are fixed strings independent of the encoding
key (t, π, a, b) that I ′1 chooses. Because the commitment protocol is (computationally) con-
cealing, and the commitment is never opened (recall that sp is discarded after I ′1 is run), V ∗1
should not be able to tell (computationally speaking) that z has been replaced by z′.

The genuine encoding key is still used to evaluate the predicate Q. Note that, because z
has been replaced with z′, the statement for which S3 must simulate the execution of a
zero-knowledge proof between V ∗3 and P3 is now as follows: ‘There exists a string sp and
an encoding key (t, π, a, b) such that z′ = commit((π, a, b), sp) and Q(t, π, a, b, r, u) = 1.’
This statement is, in general, no longer true, because the commitment protocol is perfectly
binding. However, if the predicate Q is still satisfied for the encoding key (t, π, a, b) that I3
sent, then S3 will proceed to generate a transcript for the no-instance that is computationally
indistinguishable from a transcript for a yes-instance. If Q is no longer satisfied, then S3
will abort, as before. In effect, therefore, the cheating verifier V ∗ will not be able to tell
(up to computational indistinguishability) that z has been replaced by z′, and that the NP
statement being ‘proven’ to it is no longer true.

6.4.3 De-quantising I2

We now replace I2 with a classical entity I ′2. In the process, we require modifications to the
behaviour of I3.

Knowing r, I ′2 can calculate for itself what ρr should be, though it cannot physically produce this
state. As we noted in Remark 2.8, ρr is a simple state: it is merely the tensor product of |0〉 , |1〉 , |+〉
and |−〉 qubits. Applying the concatenated Steane code to ρr will then result in a tensor product
of N -qubit states that look like∑

x∈D0
N

|x〉 ,
∑
x∈D1

N

|x〉 ,
∑
x∈D0

N

|x〉+
∑
x∈D1

N

|x〉 , and
∑
x∈D0

N

|x〉 −
∑
x∈D1

N

|x〉 , (3)
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after appropriate normalisation.

A brief argument will suffice to establish that it is possible to classically simulate standard or
Hadamard basis measurements on the qubits in E(ρr). Each qubit of E(ρr) is either an encoding
qubit or a trap qubit, up to the application of a random single-qubit Pauli operator. Simulating
standard-basis measurements of encoding qubits is classically feasible, because D0

N and D1
N are

polynomially sized, and the expressions in (3) only involve superpositions over those sets with
equal-magnitude coefficients. Simulating standard-basis measurements of trap qubits, which are
always initialised either to |0〉 or |+〉, is trivially feasible.

To simulate a Hadamard basis measurement, we can take advantage of the transversal properties
of the encoding scheme, and apply H before we apply the concatenated Steane code. Denote the
application of the concatenated Steane code to ρr by S(ρr). We have that

S(H⊗nρrH⊗n) = H⊗nNS(ρr)H⊗nN

by transversality. To simulate a Hadamard basis measurement of E(ρr), we then

1. Apply H⊗n to ρr. This is easy to classically simulate, because ρr is a tensor product of
|0〉 , |1〉 , |+〉 and |−〉 qubits.

2. Apply the concatenated Steane code to H⊗nρrH
⊗n. Simulating this is classically feasible,

by the same argument that we used for standard basis measurements, because H⊗nρrH
⊗n is

still a tensor product of |0〉 , |1〉 , |+〉 and |−〉 qubits.

3. Concatenate trap qubits to each N -qubit block in S(H⊗nρrH⊗n) = H⊗nNS(ρr)H⊗nN . Sim-
ulate the application of H to each trap qubit (which is, once again, classically easy to do
because each trap qubit is initialised either to |0〉 or to |+〉).

4. Apply the permutation π to each 2N -tuple.

5. Simulate a standard basis measurement of the result.

6. XOR the string b to the measurement outcome (b was previously the Z-key for the Pauli
one-time pad).

Having established that it is possible to classically simulate standard and Hadamard basis mea-
surements of the qubits in E(ρr), we now describe the procedure that the classical I ′2 should follow
for each qubit i in the state E(ρr).

1. During the commitment phase, I ′2 simulates a standard basis measurement on the ith qubit,
obtains a simulated measurement result βi, and then chooses a uniformly random preimage
xi from the domain of the function specified by κi. It applies the function specified by κi to
βi‖xi and sets yi = ηκi(βi‖xi).

2. If the verifier requests a test round, I ′2 sends βi‖xi to the verifier. This is exactly what the
quantum prover I2 would send in the case of a test round, so the verifier cannot tell that it
is interacting with I ′2 instead of I2.

3. If the verifier requests a Hadamard round, I ′2 sends a uniformly random string si ∈ {0, 1}w+1

to the verifier, where w is the length of the preimages. In the same situation, the quantum
I2 would have sent Hadamard basis measurements of the w + 1 qubits in the ith committed
qubit in E(ρ) and its associated preimage register.
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(a) If hi = 0, the outcomes of these measurements are uniformly distributed and thus
indistinguishable from the distribution of strings si reported by I ′2.

(b) Let |ψi〉 be the state of the ith qubit of E(ρ), let x0,i and x1,i be the two preimages to
yi under the function fκi , and let bi be the ith bit of the one-time-pad Z-key b from I ′1’s
encoding key (t, π, a, b). If hi = 1, the outcomes of I2’s Hadamard basis measurements
can be represented as a tuple (βi, di), where di is uniformly random, and

βi = di · (x0,i ⊕ x1,i)⊕ bi ⊕Meas(H |ψi〉) .

(Meas here denotes a standard basis measurement.)

Note that the distribution over (bi, βi, di) which one would obtain by measuring |ψi〉 in
the Hadamard basis, choosing di and bi uniformly at random, and letting

βi = di · (x0,i ⊕ x1,i)⊕ bi ⊕Meas(H |ψi〉)

is equivalent to the one that one would obtain choosing a uniformly random si, measuring
|ψi〉 in the Hadamard basis, calculating

bi = si,1 ⊕ di · (x0,i ⊕ x1,i)⊕Meas(H |ψi〉) ,

and finally setting βi = si,1, di = si,2 · · · si,w+1.

The former set of actions is equivalent to the set of actions that I2 performs. The latter
set of actions is (as we will shortly show) classically feasible provided that we have the
verifier’s trapdoors. Note that I ′2 only needs to send the verifier si, and can rely on
its successor I3, who will have access to the verifier’s trapdoors, to calculate the bits bi
retroactively. It follows that, given that I3 can produce correct bits bi (we will shortly
show that it can), the distribution of strings reported by I ′ is identical to the distribution
of outcomes reported by I.

Having established that I ′2 and I2 are the same from V ∗2 ’s perspective (meaning that it must have
the same behaviour that it did in Figure 5 after I2 is replaced with I ′2), it remains to ensure that
the choice of the one-time pad Z-key b is consistent with the si that I ′2 picked. We relegate the task
of making this choice to I ′3, our new version of I3, because it has access to the verifier’s trapdoors
τ . If any of the trapdoors that it receives from the verifier are invalid, or if any of the ETCFF
keys κ which the verifier chose are invalid, I ′3 aborts, as specified in Protocol 3.2. (‘Validity’, here,
means the following: 1) all the κs which the verifier sent earlier well-formed, and 2) for each yi, the
trapdoor τκi correctly inverts the function specified by κi. We expand on this notion of ‘validity’
in Appendix A.) Presuming upon valid keys and valid trapdoors, I ′3 then deduces the verifier’s
choices of measurement basis, h, from τ . Given that the trapdoors are valid and that the keys are
well-formed, I ′3 can be confident that its deductions in this regard will lead it to behave in the same
way that the honest prover would, because (given valid keys and trapdoors) I ′3 will know exactly
which superpositions the honest prover would have obtained during the measurement protocol after
following the verifier’s instructions.

For notational convenience, let |ψ∗〉 denote the state obtained by applying the first three steps of
E, but not the last step, to ρr. I

′
3 subsequently executes the following procedure for all i such that

hi = 1:
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1. Set di to be the last w bits of si, and compute di · (x0,i ⊕ x1,i) using the trapdoor τκi .

2. Simulate a standard basis measurement of HXai |ψ∗i 〉. Denote the result by βi. (Here, ai
refers to the ith bit of a, where a is taken from I ′1’s initial choice of one-time pad keys, and
|ψ∗i 〉 denotes the ith qubit of |ψ∗〉.)

3. Set b′i (the ith bit of b′, the new Z-key for the one-time pad) to be equal to βi⊕si,1⊕di ·(x0,i⊕
x1,i) (where si,1 refers to the first bit of si). This will cause the equation Meas(H |ψi〉)⊕ di ·
(x0,i ⊕ x1,i) = si,1 to be satisfied:

Meas(H |ψi〉)⊕ di · (x0,i ⊕ x1,i) = si,1

⇐⇒ Meas(HZbiXai |ψ∗i 〉)⊕ di · (x0,i ⊕ x1,i) = si,1

⇐⇒ bi ⊕Meas(HXai |ψ∗i 〉)⊕ di · (x0,i ⊕ x1,i) = si,1

⇐⇒ bi ⊕ βi ⊕ di · (x0,i ⊕ x1,i) = si,1

⇐⇒ bi = βi ⊕ si,1 ⊕ di · (x0,i ⊕ x1,i).

Having done this, I ′3 then feeds (t, π, a, b′) into Q. (Note that replacing b with b′ cannot create
any conflict with the commitment string z′ that the verifier will notice, because z′ was already
independent of the one-time-pad keys (a, b).) In all other respects I ′3 behaves the same way that I3
did.

The final simulation will be as follows:

Since all the entities in this simulation are classical and efficient, and none have access to information
about the witness state ρ, it follows that the protocol is zero-knowledge.

A LWE-based ETCFF family and efficient trapdoor check

In order to explain the trapdoor check that the honest prover of Protocol 3.2 implements during
step 8 of Protocol 3.2, we briefly outline, at a level of detail appropriate for us, how the LWE-based
ETCFF family that is used in [Mah18] is constructed.
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We begin by introducing the instantiations of the keys κ and the trapdoors τ for noisy trapdoor
claw-free (f) and trapdoor injective (g) functions, whose properties we have relied upon in a black-
box way for the rest of this work. For details, we refer the reader to Section 9 of [Mah18].

The key (κ1, κ2) for an noisy two-to-one function f is (A,As + e), where A is a matrix in Zn×mq

and e ∈ Znq is an error vector such that |e| < Bf for some small upper bound Bf . (The specific
properties that Bf should satisfy will be described later.) Here, n,m are integers, and q is a prime
power modulus that should be chosen as explained in [Mah18]. In addition, in order to implement
the trapdoor, we assume that the matrix A is generated using the efficient algorithm GenTrap which
is described in Algorithm 1 in [MP11]. (For convenience, we use the ‘statistical instantiation’ of
the procedure described in Section 5.2 of the paper.) GenTrap produces a matrix A that has the

form A = [A|HG − AR], for some publicly known G ∈ Zm×wq , n ≤ w ≤ m, some A ∈ Zn×(m−w)
q ,

some invertible matrix H ∈ Zn×nq , and some R ∈ Z(m−w)×w, where R = τA is the trapdoor to A.
As shown in [MP11, Theorem 5.4], it is straightforward, given the matrix R, to verify that R is a
‘valid’ trapdoor, in the sense that it allows a secret vector s to be recovered from a tuple of the form
(A, b = As + e) with certainty when e has magnitude smaller than some bound BInvert. Checking
that R is a valid trapdoor involves computing the largest singular value of R and checking that A
is indeed of the form A = [A|HG−AR] for some invertible H and for the publicly known G. Using
any valid trapdoor, recovery can be performed via an algorithm Invert described in [MP11].

The key for an injective function g, meanwhile, is (A, u), where u is a random vector not of the form
As+ e for any e of small enough magnitude. (Again, ‘small enough’ here refers to a specific upper
bound, and what the bound is precisely will be described later. The distribution of u is uniform
over all vectors that satisfy this latter requirement.) The trapdoor τA is still the R corresponding
to the matrix A which is described in the preceding paragraph.

The functions fκ and gκ both take as input a bit b and a vector x and output a probability distribution
(to be more precise, a truncated Gaussian distribution of the kind defined in Section 2.3, equation
4 of [Mah18]). We clarify that, when we say that the functions output a probability distribution,
we mean that they should be thought of as maps from the space of strings to the set of probability
distributions, not that their outputs are randomised. Given a sample y from one such probability
distribution Y , the trapdoor τA can be used to recover the tuple(s) (b, x) which are preimages of y
under the function specified by κ. (See Definition 2.11 for a definition of the phrase ‘preimage of
y’.) The functions fκ and gκ can be defined (using notation explained in the paragraph below the
definition) as follows:

Definition A.1 (Definition of trapdoor claw-free and trapdoor injective functions).

(a) fκ(b, x) = Ax+ e0 + b · (As+ e) ,
where e0 is distributed as a truncated Gaussian with bounded magnitude |e0|max

(b) gκ(b, x) = Ax+ e0 + b · u .

What the above notation means is that one samples from the distribution determined by the input
(b, x) and the function key κ = (κ1, κ2) by sampling e0 from a truncated Gaussian centred at
the origin and then computing κ1x + e0 + b · (κ2). A key feature of the f functions is that the
output distributions given by fκ(0, x) and fκ(1, x− s) are truncated Gaussians which overlap to a
high degree (so that the statistical distance between the distributions fκ(0, x) and fκ(1, x − s) is
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negligible). The g functions, meanwhile, are truly injective in the sense that g(b, x) and g(b′, x′)
never overlap for (b, x) 6= (b′, x′). In order that these two things are true, we require that the e in
Definition A.1(a) is very small (Bf � |e0|max), and that the u in Definition A.1(b) is such that
u 6= As+ e for any |e| < Bg, where Bg > |e0|max. It follows from hardness of the (decisional) LWE
assumption that the keys for the f functions and the keys for the g functions are computationally
indistinguishable.

The trapdoor check that the prover of protocol 3.2 executes in step 8 is as follows:

Protocol A.2 (Trapdoor and key check).

Let κi = (Ai, Aisi + ei). (Note that |ei| need not be smaller than any particular bound in this
definition of κi.) For all i ∈ {1, . . . , 2nN}:

1. Check that τκi is a ‘valid’ trapdoor for Ai, in the sense that was explained in the third
paragraph of this appendix. If it is not, abort.

2. For a choice of Bf , Bg and |e0|max such that Bf � |e0|max < Bg ≤ BInvert and Bg−|e0|max >
|e0|max, check that one of the following three conditions hold:

(a) Invert applied to κ2,i succeeds, and recovers an e such that |e| < Bf , or
(b) Invert applied to κ2,i succeeds, and recovers an e such that Bg < |e|, or
(c) Invert fails.

Figure 7: Diagram illustrating one possible choice of parameters that satisfies the conditions in 2. above. When
a circle is labelled with a number (such as Bf or Bg), the radius of the circle represents the size of that number.

The conditions in step 2 above are intended to ensure that, for all i, κi is a key either for an f
or a g function, and therefore well-formed. An ill-formed key would be of the form κbad = As + e
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for Bf < e < Bg; for some choices of Bf and Bg, a subset of κbads as just defined would behave
neither like keys for f functions nor like keys for g functions, because the distributions ηκbad(0, x)
and ηκbad(1, x−s) would overlap but not to a sufficient degree. The specifications on the parameters
that are made in step 2 above, and the tests prescribed for the prover, are designed to ensure that
Bf and Bg are properly chosen and that the prover can check efficiently that the verifier’s κs are
well-formed according to these appropriate choices of Bf and Bg.

The following claim shows that, given a valid trapdoor (i.e. a matrix R that satisfies the efficiently
verifiable conditions described in the third paragraph of this appendix), and a well-formed key
κ, the trapdoor can be used to successfully recover all the preimages under a function ηκ to any
sample y from a distribution Y in the range of the function ηκ. This claim is needed to justify the
correctness of the “de-quantized” simulator I ′2 considered in Section 6.4.3: if I ′2 can be sure that
it has recovered all the preimages to y, and no others, then it can successfully simulate the honest
prover.

Claim A.3. Let A be a matrix in Zn×mq , let κ = (A, κ2), and let the function ηκ be defined by
ηκ(b, x) = Ax + e0 + b · κ2. (The output of ηκ is, as in Definition A.1, a probability distribution.)
Let τA be a purported trapdoor for A. Suppose that κ passes the test in step 2 of Protocol A.2, and
suppose that the trapdoor τA inverts the matrix A, in the sense that, given r = As + e for some e
of sufficiently small magnitude, τA can be used to recover the unique (s, e) such that As + e = r.
Then one can use τA to efficiently recover all the preimages to any y sampled from any distribution
Y in the range of ηκ.

Proof. By hypothesis, κ2 is either of the form As+ e for some (s, e) (with |e| < Bf ), or it is not of
the form As+ e for any e such that |e| < Bg. We do not know a priori which of these is the case,
but the procedure that we perform in order to recover the preimage(s) to y is the same in both
cases:

1. Use the trapdoor τA to attempt to find (x1, e1) such that Ax1 + e1 = y. If such an (x1, e1)
exists, and |e1| < |e0|max, record 0‖x1 as the first preimage.

2. Use the trapdoor τA to attempt to find (x2, e2) such that Ax2 + e2 = y − κ2. If such an
(x2, e2) exists, and |e2 < |e0|max, record 1‖x2 as the second preimage.

If κ2 = As+ e for some s and e such that |e| � Bf < |e0|max, then this procedure will return two
preimages (except with negligible probability, which happens when y comes from the negligibly-
sized part of the support of a distribution fκ(b, x) which is not in the support of the distribution
fκ(¬b, x+(−1)bs); this can occur if y is a sample such that |e0|+ |e| > |e0|max, using notation from
Definition A.1). Assuming that the latter is not the case, in step 1, the algorithm above will recover
x such that y = Ax + e0 for some e0 < |e0|max, because (under our assumption, and by linearity)
y is always of the form Ax+ e0. In step 2, it will recover x′ = x− s, because x′ = x− s will satisfy
the equation y − (As+ e) = Ax′ + e′ for e′ = e0 − e, and |e0 − e| < |e0|+ |e| < |e0|max. We know
that y has two preimages under our assumption, so we conclude that, when our assumption holds,
the algorithm returns all of the preimages to y under ηκ and no others. In the negligible fraction of
cases when y has only one preimage even though κ2 = As+ e, the algorithm returns one preimage,
which is also the correct number.
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It can be seen by similar reasoning that, when κ2 = u for u 6= As+ e for any e such that |e| < Bg,
this procedure will return exactly one preimage, which is what we expect when κ2 = u.

In the context of Protocol 3.2, the honest prover knows that ηκi has been evaluated correctly for
all i, because the prover evaluated these functions for itself. Therefore, given Claim A.3, if our goal
is to show that the honest prover can efficiently determine whether or not a purported trapdoor
τ ′Ai can be used to recover all the preimages to yi under ηκi , with κi = (Ai, κ2,i), it is sufficient
to show that a procedure exists to efficiently determine whether or not τ ′Ai truly ‘inverts Ai’, i.e.
recovers (s, e) correctly from all possible r = Ais + e with e having sufficiently small magnitude.
This procedure exists in the form of Invert from [MP11].

B Completeness and soundness of Protocol 2.6

For notational convenience, define α = a∑
s

2|ds|
and β = b∑

s
2|ds|

. Fix an arbitrary state ρ sent

by the prover. For j = 1, . . . ,m let Xj be a Bernoulli random variable that is 1 if the j-th
measurement from step 4 of Protocol 2.6 yields −sign(dj) and 0 otherwise. Let X =

∑m
j=1Xj and

Bj = E[X|Xj , . . . , X1]. Then (B1, . . . , Bm) is a martingale. Applying Azuma’s inequality, for any
t ≥ 0

Pr
(
|X − E[X]| ≥ t

)
≤ e−

t2
2m .

In the case of an instance x /∈ L, as mentioned in the main text E[Xj ] ≤ 1
2 − β. Choosing

t = 1
2m(β − α), it follows that in this case

Pr
(
X ≤ 1

2m(1− β − α)
)
≤ 2e−m(β−α)2/8 .

Since β − α is inverse polynomial, by [MNS16], the right-hand side can be made exponentially

small by choosing m to be a sufficiently large constant times |x|
(β−α)2 . The soundness of Protocol

2.6 follows.

Completeness follows immediately from a similar computation using the Chernoff bound, since in
this case we can assume that the witness provided by the prover is in tensor product form.

C Commitment scheme

We provide an informal description of a generic form for a particular (and commonly seen) kind
of commitment scheme. The protocol for making a commitment under this scheme requires three
messages in total between the party making the commitment, whom we refer to as the committer,
and the party receiving the commitment, whom we call the recipient. The first message is an
initial message i from the recipient to the committer; the second is the commitment which the
committer sends to the recipient; and the third message is a reveal message from the committer
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to the recipient. The scheme consists of a tuple of algorithms (gen, initiate, commit, reveal, verify)
defined as follows:

• gen(1`) takes as input a security parameter, and generates a public key pk.

• initiate(pk) takes as input a public key and generates an initial message i (which the recipient
should send to the committer).

• commit(pk, i,m, s) takes as input a public key pk, an initial message i, a message m to which
to commit, and a random string s, and produces a commitment string z.

• reveal(pk, i, z,m, s) outputs the inputs it is given.

• verify(pk, i, z,m, s) takes as argument an initial message i, along with a purported public key,
commitment string, committed message and random string, evaluates commit(pk, i,m, s), and
outputs 1 if and only if z = commit(pk, i,m, s).

For brevity, we sometimes omit the public key pk and the initial message i as arguments in the
body of the paper. The commitment schemes which we assume to exist in the paper have the
following security properties:

• Perfectly binding : If commit(pk, i,m, s) = commit(pk, i,m′, s′), then (m, s) = (m′, s′).
• (Quantum) computationally concealing : For any public key pk ← gen(1`), fixed initial mes-

sage i, and any two messages m,m′, the distributions over s of commit(pk, i,m, s) and
commit(pk, i,m′, s) are quantum computationally indistinguishable.

It is known that a commitment scheme with the above form and security properties exists assuming
the quantum hardness of LWE: see Section 2.4.2 of [CVZ19]. The commitment scheme outlined in
that work is analysed in the common reference string (CRS) model, but the analysis can easily be
adapted to the standard model when an initial message i is allowed to pass from the recipient to
the committer.
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