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In space-like separated experiments and
other scenarios where multiple parties share
a classical common cause but no cause-
effect relations, quantum theory allows a
variety of nonsignaling resources which are
useful for distributed quantum information
processing. These include quantum states,
nonlocal boxes, steering assemblages, tele-
portages, channel steering assemblages, and
so on. Such resources are often studied
using nonlocal games, semiquantum games,
entanglement-witnesses, teleportation exper-
iments, and similar tasks. We introduce a
unifying framework which subsumes the full
range of nonsignaling resources, as well as the
games and experiments which probe them,
into a common resource theory: that of local
operations and shared randomness (LOSR).
Crucially, we allow these LOSR operations
to locally change the type of a resource, so
that players can convert resources of any type
into resources of any other type, and in par-
ticular into strategies for the specific type of
game they are playing. We then prove sev-
eral theorems relating resources and games of
different types. These theorems generalize a
number of seminal results from the literature,
and can be applied to lessen the assumptions
needed to characterize the nonclassicality of
resources. As just one example, we prove
that semiquantum games are able to per-
fectly characterize the LOSR nonclassicality
of every resource of any type (not just quan-
tum states, as was previously shown). As a
consequence, we show that any resource can
be characterized in a measurement-device-
independent manner.

David Schmid: dschmid@perimeterinstitute.ca

1 Introduction

A key focus in quantum foundations is the study
of nonclassicality. Starting from the Einstein-
Podolsky-Rosen paradox [1], special focus has been
given to experiments involving space-like separated
subsystems. In the modern language of causality [2–
5], the key feature of these scenarios is that the sub-
systems which are being probed share a classical
common cause, but do not share any cause-effect
channels between them. In such scenarios, quan-
tum theory allows for distributed quantum channels
which act as valuable nonclassical resources for ac-
complishing tasks which would otherwise be impos-
sible.

The most common examples of such resources
are entangled quantum states [6] and boxes produc-
ing nonlocal correlations [7]; but there are many
other types of useful resources. We develop a
resource-theoretic [8] framework which unifies a
wide variety of these, including quantum states [9],
boxes [7], steering assemblages [10, 11], channel
steering assemblages [12], teleportages [13, 14], dis-
tributed measurements [15], measurement-device-
independent steering channels [16], Bob-with-input
steering channels [17], and generic no-signaling
quantum channels [9]. Free (or classical) resources
are those that can be generated freely by local oper-
ations and shared randomness (LOSR), encompass-
ing the specific cases of separable quantum states,
local boxes, unsteerable assemblages, and so on.
Any resource which cannot be simulated by LOSR
operations is said to be nonfree, or nonclassical. A
resource is said to be at least as nonclassical as an-
other resource if it can be transformed to the second
using LOSR transformations. Crucially, such com-
parisons can be made for resources of arbitrary and
potentially differing types.

Some works in the past have focused on LOSR
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as a resource theory in specific scenarios, such as
for quantum states [18, 19], for nonlocal correla-
tions [19–22], and for steering assemblages [16] (al-
beit under a different name). These previous works
focused on one or two types of resources, and most
commonly on quantum states. Our framework is
more general, but subsumes each of these as a spe-
cial case.

In addition to introducing this encompassing
framework, our second primary goal herein is to
study how the type of a resource impacts the meth-
ods by which one can characterize its nonclassical-
ity in practice. For example, nonlocal boxes have
classical inputs and outputs, and so only weak as-
sumptions [23, 24] about one’s laboratory instru-
ments are required for their characterization. How-
ever, when a resource has a quantum output, one
requires a well-characterized quantum measurement
to probe that output and consequently the re-
source [25]. In such a case, the test of nonclassi-
cality is said to be device-dependent, while in adver-
sarial scenarios such as cryptography, the terminol-
ogy of trust is also used [26]. The same idea ap-
plies to a quantum input, which must be probed us-
ing a well-characterized quantum state preparation
device. Thus, only nonlocal boxes can be probed
in a device-independent manner; a priori, quantum
states require well-characterized quantum measure-
ment devices; while other objects, such as steering
assemblages, require a mixture of both [27]. Con-
sequently, it is important to determine under what
circumstances devices of one type may be converted
into devices of a second type in a manner that does
not degrade their usefulness as a resource. If such
a conversion is possible, then one may be able to
lessen the assumptions and technological require-
ments needed to characterize one’s devices.

In some particular cases, previous work has stud-
ied this question of whether the nonclassicality of a
quantum state can be characterized by first applying
free operations which convert it to another type of
resource. For example, we know that some Werner
states [28, 29] have a local model for all measure-
ments; such nonclassical states can only be trans-
formed into classical boxes, and so all information
about their nonclassicality is lost in the conversion.
In contrast, the main result of Ref. [18] proves that
every entangled state can have its nonclassicality
encoded in a semiquantum channel. Additionally,
in Ref. [14], it is shown that every entangled state
can generate a type of no-signaling channel (recently

termed a teleportage [13]) which could not be gen-
erated by any separable state and which is useful for
some task related to quantum teleportation [30].

It is useful to distinguish between qualitative ver-
sus quantitative characterizations of nonclassical-
ity. To highlight the distinction, it is instructive to
examine one particular line of research. Ref. [18]
is often advertised as proving that the nonclassi-
cality of every entangled state can be revealed in
a generalization of nonlocal games termed semi-
quantum games (which were later used to construct
measurement-device-independent entanglement wit-
nesses [31]). However, this claim is actually a (quali-
tative) corollary of the (quantitative) main theorem,
which showed that the performance of states in semi-
quantum games exactly reproduces the classification
of entangled states under LOSR transformations.
Subsequent works [31, 32] focused on the qualita-
tive distinction between classical and nonclassical
resources, but still later works reinterpreted the pay-
offs of semiquantum games as measures of entan-
glement [33, 34], thus reconnecting with the quan-
titative nature of Buscemi’s original work. Note
also that the quantitative study of entanglement is
historically linked to entanglement monotones [35].
However, the study of nonclassicality cannot be re-
duced to a single such measure, as there are many
inequivalent species of nonclassicality even in the
simplest cases [22]. Informed by the recent formal-
ization of resource theories [8], we study the fun-
damental mathematical object—the preorder of re-
sources under LOSR transformations. One can then
derive specific nonclassicality witnesses and mono-
tones [36], each of which provides an incomplete
characterization of the preorder.

As implied just above, the mathematical struc-
ture which best allows for comparison between ob-
jects that need not be strictly ordered is a preorder.
Formally, a preorder is an ordering relation that is
reflexive (a � a) and transitive (a � b and b � c
implies a � c)1. Our work focuses on three distinct
preorders, which the reader should be careful to dis-
tinguish. First, there is the preorder R �LOSR R′

(sometimes denoted R
LOSR7−−−−→ R′) that indicates if a

resource R can be converted into another resource
R′ by LOSR transformations (Definition 1). Sec-
ond, there is the preorder �type over resource types
that orders those types according to their ability to

1A preorder is distinguished from a partial order by the
fact that a � b and b � a need not imply a = b. In a partial
order, a � b and b � a implies a = b.
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encode nonclassicality (Definition 3). Finally, there
is the preorder �GT that ranks resources according
to their performance with respect to the set GT of
all games of a particular type T (Definition 6).

This paper is best read alongside Ref. [36]. In
the current paper, we present a general framework
to study quantum resources of arbitrary types, and
we quantify the nonclassicality of these resources
within a type-independent resource theory of lo-
cal operations and shared randomness. Here, our
main results center on showing how resources of
one type can be more easily characterized by first
converting them to resources of a second type. In
Ref. [36], our aim is practical and computational,
focusing on how data can be used to characterize
one’s resources using off-the-shelf software. There,
we include type-independent techniques for comput-
ing witnesses which can certify the nonclassicality of
a resource, as well as techniques for computing the
value of type-independent monotones (which we in-
troduce therein).

1.1 Organization of the paper
In Section 2, we discuss various types of resources.
We inventory the 9 possible types of a single party’s
partition of a resource, where that party’s input and
output may each be trivial, classical, or quantum.
Focusing on the 81 bipartite resource types for sim-
plicity, we recognize 10 types that have been stud-
ied in the literature and identify 5 new nontrivial
resource types. All other bipartite resource types
are either trivial or equivalent up to a symmetry.
We then define LOSR transformations between re-
sources of arbitrary types, as well as the ordering
over resources that this induces.

In Section 3, we define a precise sense in which
some types can express the LOSR nonclassicality
of other types. In many cases, conversions from
a resource of one type to another type necessar-
ily degrade the nonclassicality of the resource, as
in Werner’s example. In other cases, one can per-
fectly encode the nonclassicality of any given re-
source into some resource of the target type, as in
Buscemi’s example. For every single-party type, we
ask which can perfectly encode the nonclassicality
of which others, and we answer this question for
almost every pair, with the exception of one open
question. From these considerations of single party
types, one can deduce encodings of more compli-
cated resource types which involve multiple parties.
Most strikingly, we show that semiquantum chan-

nels (with quantum inputs and classical outputs)
are universal, in the sense that the nonclassicality
of all resources can be encoded into them.

In Section 4, we give an abstract framework for
probing the nonclassicality of resources, subsuming
as special cases the notions of nonlocal games [37],
semiquantum games [18], steering [10, 16] and tele-
portation [14] experiments, and entanglement wit-
nessing [38]. In our framework, every type of re-
source has a corresponding type of game, where a
game of some type maps every resource of that type
to a real number. (E.g., in nonlocal and semiquan-
tum games, this number is the usual average game
payoff). We then show how resources of any type
can be used to play a game designed for one spe-
cific type. In some cases, games of one type can
completely characterize the nonclassicality of every
resource of another type. For example, Ref. [18]
showed that the LOSR nonclassicality of every quan-
tum state is perfectly characterized by the set of
semiquantum games. We generalize these ideas by
proving that if one type can encode another, then
games of the first type can perfectly characterize the
LOSR nonclassicality of all resources of the second
type. Together with our results on which types can
encode which others, this expands the known meth-
ods for quantifying LOSR nonclassicality in practice
and in theory. For example, our result on the uni-
versality of the semiquantum type implies that any
resource of any type can be characterized by some
semiquantum game, and hence can be characterized
in a measurement-device-independent manner.

In Section 5, we relate our work to existing results.
First, we note how our results generalize the main
result of Ref. [18], showing that semiquantum games
can completely characterize the LOSR nonclassical-
ity of arbitrary resource, not just of quantum states.
Next, we show that the results of Ref. [16] are a spe-
cial case of two of our theorems when one applies
steering experiments to quantify the nonclassicality
of quantum states; further, our theorems provide
a generalization of these arguments to more gen-
eral experiments and types of resources. Finally, we
show that the LOSR nonclassicality of every quan-
tum state is completely characterized by the set of
teleportation games, and thus that the results of
Ref. [14] can be extended to be quantitative as well
as qualitative.

3



2 Resource types and LOSR transfor-
mations between them
We are interested in scenarios where the relevant
parties share a classical common cause but do not
share any cause-effect channels. For example, par-
ties who perform experiments at space-like sepa-
ration cannot access classical communication. For
simplicity, we henceforth focus on bipartite scenar-
ios; however, all of our results generalize imme-
diately to arbitrarily many parties. We will con-
sider only nonsignaling resources [39, 40] through-
out this work.2 We will not specifically consider
post-quantum channels in this work, although one
might naturally extend our work to include these as
resources. Hence, in this work a resource is a com-
pletely positive [42, 43], trace-preserving, nonsignal-
ing quantum channel. The parties may share various
types of resources, which we now classify by type.

2.1 Partition-types and global types
In this paper, we use the term type (of a resource)
to refer exclusively to whether the various input and
output systems are trivial (I), classical (C), or quan-
tum (Q). A system is said to be trivial if it has
dimension one, is said to be classical if all operators
on its Hilbert space are diagonal, and is otherwise
said to be quantum. (See Ref. [36] for more details.)
Additionally, if a resource has more than one input
(output), which may be of different types, we imag-
ine grouping them together, yielding an effective in-
put (output) whose type is the least expressive type
which embeds all those in the grouping, where quan-
tum systems embed classical systems, which embed
trivial systems.

We will denote the type of a single party’s share of
a resource by Ti := Xi→Yi, where i labels the party
and X,Y ∈ {I,C,Q}, with X labeling whether the
input to that party is trivial (I), classical (C), or
quantum (Q) and Y labeling the output similarly.
We will refer to Ti as the partition-type of party
i.

2In fact, if one wishes to interpret resourcefulness as non-
classicality, then one must further restrict the enveloping the-
ory to those resources which can be generated by local op-
erations and quantum common causes. For non-signaling re-
sources that cannot be realized in this manner [41], resource-
fulness may originate in the nonclassicality of a common-
cause process or in classical communication channels (which
are fine-tuned so as to not exhibit signaling).

We can then denote the global type of an n-
party resource as T := T1T2...Tn ' X1X2...Xn→
Y1Y2...Yn. Note that while the specification of the
global type of a resource fixes the number of parties
and the types of their partitions of the resource, the
specification of a partition-type does not constrain
either the number of other parties who share the re-
source, nor the types of those other partitions. One
could also consider partition-types for partitions of
a resource which involve more than one party, but
this paper makes use only of partition-types which
involve a single party.

We now describe the ten examples of resource
types from Fig. 1, setting up some explicit terminol-
ogy and conventions as we go. We graphically depict
trivial, classical, and quantum systems by the lack of
a wire, a single wire, and a double wire, respectively.

Figure 1: Common types of no-signaling resources, where
classical systems are represented by single wires and quan-
tum systems are represented by double wires. (a) A quan-
tum state ρ has type II→QQ. (b) A box Ebox has type
CC → CC. (c) A steering assemblage Esteer has type
CI→CQ. (d) A teleportage Etel has type QI→CQ. (e)
A semiquantum channel ESQ has type QQ→ CC. (f)
A measurement-device-independent steering channel EMDI
has type CQ→CC. (g) A channel steering assemblage EChS
has type CQ→CQ. (h) A Bob-with-input steering channel
EBWI has type CC→CQ. (i) An ensemble-preparing chan-
nel Eens has type CC→QQ. (j) A quantum channel E has
type QQ→QQ.

Fig. 1(a) depicts a quantum state, the canon-
ical quantum resource. Bipartite quantum states
have type II→QQ; that is, they have no inputs and
both outputs are quantum. The nonclassicality of
quantum states is often quantified using the resource
theory of local operations and classical communi-
cation (LOCC). While this is appropriate in some
contexts, allowing classical communication for free
is not appropriate in the context of space-like sepa-
rated experiments, nor in any other scenario where
distributed systems are unable to causally influence
one another. In such cases, LOSR operations are
the relevant ones for quantifying nonclassicality of
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any resource, including quantum states, and it is
LOSR-entanglement, not LOCC-entanglement, that
is relevant, as argued extensively in Ref. [19].

Fig. 1(b) depicts another canonical type of re-
source [7, 40], often termed a correlation or a box-
type resource, or box for short. Bipartite boxes
have type CC→ CC; that is, both parties have a
classical input and a classical output. Extensive re-
search has been done on boxes, e.g. to characterize
the set of local boxes [7] and the possible LOSR
conversions between them [22, 44, 45]. The fact
that we wish to subsume boxes in our framework
provides another reason to focus on LOSR as op-
posed to LOCC, since LOSR has been argued to be
the appropriate set of free operations in this con-
text [22] Furthermore, under unbounded LOCC all
boxes would be deemed free, even nonlocal or sig-
naling boxes.

Fig. 1(c) depicts the type of resource that arises
naturally in a steering scenario [1, 10, 11, 46–50],
often termed an assemblage [51]. Such resources
have type CI→ CQ; that is, the first party has a
classical input and classical output, while the second
party has no input and a quantum output.

Fig. 1(d) depicts a type of resource that arises
naturally in a teleportation scenario [14, 52], termed
teleportages [13]. Such resources have type QI→
CQ. Intuitively, given a teleportage, one would com-
plete the standard teleportation protocol by apply-
ing one of a set of unitaries on the quantum output,
conditioned on the classical output. The precise op-
erational sense in which these teleportages relate to
the possibility of implementing an effective quantum
channel is still being investigated [30]3.

Fig. 1(e) depicts the type of resource that arises
naturally in semiquantum games, namely type QQ→
CC. We will term these distributed measure-
ments or semiquantum channels, since they
arise in multiple contexts where one term [15] or
the other [18] is more natural.

Fig. 1(f) depicts the type of resource that
arises naturally in measurement-device-independent
(MDI) steering scenarios [16], namely type CQ→CC.
We will term these MDI-steering channels.

Fig. 1(g) depicts the type of resource that arises

3While LOSR is clearly the correct set of free operations
for studying resources in Bell scenarios and other common
cause scenarios, the same is not true for teleportation exper-
iments, which might be better described by another resource
theory (such as LOCC). The surprising insight which follows
from Ref. [14] is that a great deal can nonetheless be learned
about teleportation scenarios by studying LOSR.

naturally in channel steering scenarios [12], often
termed a channel assemblage. Such resources
have type CQ→CQ.

Fig. 1(h) depicts the type of resource that arises
when one generalizes a steering scenario to have
a classical input on the steered party [17], termed
a Bob-with-input steering channel. Such re-
sources have type CC→CQ.

Fig. 1(i) depicts a distributed classical-to-
quantum channel, of type CC→QQ. We will term
these ensemble-preparing channels. An inter-
esting example of such a channel can be found in
Ref. [41] (see Eq. 82).

Fig. 1(j) depicts a generic bipartite quantum
channel, of type QQ→QQ.

This list is not exhaustive. Even in the bipar-
tite case, one might wonder how many nontrivial re-
source types there are, and whether all of these have
been studied. First, note that the partition-type I→I
corresponds to a trivial party. As there are no non-
classical resources involving only one party, all bi-
partite types involving partition-type I→I for either
party are trivial. Two other partition-types, C→I,
and Q→I, are also trivial, since the no-signaling prin-
ciple guarantees that their input cannot affect the
operation of the remaining parties [36]. Moreover,
some global types are equivalent up to exchange of
parties, in which case we will consider only a sin-
gle representative. This leads us to our first open
question.

Open Question 1. Even in the bipartite case,
there are five nontrivial global types of resources that
have not (to our knowledge) been previously studied,
namely QC→CQ, CQ→QQ, IQ→QQ, QQ→CQ, and
CI→QQ. Do any of these correspond to scenarios
which are interesting in their own right?

At the very least, each new type implies a novel
form of ‘nonlocality’. What remains to be seen is
whether these will be directly relevant for quantum
information processing tasks.

2.2 Free versus nonfree resources
A nonsignaling resource (of any type) is free with
respect to LOSR, or classical4, if the parties can
generate it freely using local operations and shared
randomness. This notion of being free with respect

4In reference to the fact such resources can be generated
by classical common causes. Classicality of a resource is not
to be confused with classicality of input and output systems.
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to LOSR subsumes the established notions of clas-
sicality for every type of resource in Fig. 1; e.g. for
states it coincides with separability [6], for boxes, it
coincides with admitting of a local hidden variable
model [7], for assemblages it coincides with unsteer-
ability [11, 50], for teleportages it coincides with the
inability to outperform classical teleportation [14],
and so on, as pictured in Fig. (2).

Figure 2: Free LOSR resources are those which can be sim-
ulated by local operations (in black) and shared random-
ness (in purple). We depict four canonical types of free
resources here: separable states, local boxes, unsteerable
assemblages, and classical teleportages.

Any resource which cannot be simulated by local
operations and shared randomness is non-free and
constitutes a resource of LOSR nonclassicality. The
purpose of our type-independent resource theory of
LOSR is to quantitatively characterize nonfree re-
sources of arbitrary types, as we now do.

2.3 Type-changing LOSR operations
Two parties in an LOSR scenario transform re-
sources using free LOSR operations. Most previ-
ous works which studied LOSR focused on conver-
sions between specific types of resources; for exam-
ple, Refs. [20–22] considered LOSR conversions from
boxes to boxes, Ref. [18] considered LOSR conver-
sions from quantum states to quantum states, and
Ref. [16] considered LOSR conversions5 from quan-
tum states to assemblages. In keeping with our aim
to unify a range of scenarios in one framework, and
because local operations can freely change the type
of a resource, we do not restrict attention to con-
versions among resources of fixed type, but rather
allow conversions among resources of all types.

We denote the set of all operations which can be
generated by local operations and shared random-
ness by LOSR. As depicted in Fig. 3(a), the most

5In this last case, the authors introduced the term local
operations with steering and shared randomness (LOSSR);
however, the operations they consider involve all and only
the subset of LOSR operations from quantum states to as-
semblages, so there is no need for the new term LOSSR.

general local operation on a given party is given by
a comb [53], and the different parties may correlate
their choice of comb using their shared randomness.
Note that this shared randomness can be transmit-
ted down the side channel of each local comb, which
implies that this depiction of LOSR is completely
general and is convex [22] for conversions from one
fixed type to another. We will denote an element
of this set by τ ∈ LOSR and a generic resource of
arbitrary type by R.

As in any resource theory [8], the set of free opera-
tions induces a preorder over the set of all resources.

Here, we write R
LOSR7−−−−→ R′ whenever there exists

some τ ∈ LOSR such that R′ = τ ◦ R, and we say
that R is at least as nonclassical (as resource-
ful) as R′. We denote the ordering relation for the
preorder defined by LOSR conversions as �LOSR:

Definition 1. For resources R and R′ of differ-
ent and arbitrary type, we say that R �LOSR R′ iff
R

LOSR7−−−−→ R′.

This definition allows us to make rigorous, quanti-
tative comparisons of LOSR nonclassicality among
resources of arbitrary types. The relation �LOSR is
a preorder, as there exists an identity LOSR trans-
formation (reflexivity), and LOSR transformations
compose (transitivity).

Two resources R and R′ are equally nonclassi-
cal if they are interconvertible under LOSR; that

is, if R
LOSR7−−−−→ R′ and R′

LOSR7−−−−→ R. We denote this

R
LOSR←−−→ R′, and we say that R and R′ are in the

same LOSR equivalence class.
We give several examples of conversions among re-

source types in Fig. 3, depicting wires of unspecified
(and arbitrary) type by dashed double lines.

Figure 3: Some type-changing operations (in green), as
described in the main text. Dashed wires denote systems
of arbitrary and unspecified type. (a) A generic bipartite
type-changing LOSR transformation. (b) A transformation
taking partition-type Q→Q to C→C. (c) A transformation
taking partition-type Q→I to I→Q. (d) A transformation
taking partition-type C→Q to Q→C.

6



Fig. 3(a) depicts a generic bipartite type-changing
LOSR operation. Fig. 3(b) depicts an example of
a specific transformation which takes the left par-
tition of the resource from Q→ Q to C→ C. It
is generated by composition with a local ensemble-
preparing channel and a local measurement channel,
respectively. Fig. 3(c) depicts an example of a spe-
cific transformation which takes the left partition of
the resource from Q→I to I→Q. The transforma-
tion is generated by (sequential) composition with
half of an entangled state and parallel composition
with a classical system in some fixed state. In this
example, the output system type is quantum, since
it is comprised of a classical and quantum system.
Fig. 3(d) depicts an example of a specific transfor-
mation which takes the left partition of the resource
from C→Q to Q→C, generated by a stochastic trans-
formation on the classical input to the resource and
performing a joint quantum measurement channel
on the quantum output of the resource together with
some new quantum input.

3 Encoding nonclassicality of one
type of resource in another type
We now consider a preorder over types of resources
(rather than over the resources themselves). This
allows us to formally compare the different manifes-
tations of nonclassicality. For example, this preorder
provides a formal sense in which entanglement and
nonlocality are incomparable types of nonclassical-
ity. Surprisingly, we will also show that not all types
of nonclassicality are incomparable.

Definition 2. Global type T encodes the non-
classicality of global type T ′, denoted T �type T

′, if
for every resource R′ of type T ′, there exists at least
one resource R of type T such that R′ LOSR←−−→ R.

In other words, there exists some resource of the
higher type in every equivalence class of resources
of the lower type. Several well-known examples of
such encodings will be given shortly.

To study the preorder over global types, it is also
useful to consider a preorder over partition-types;
that is, over the nine possible types Ti := Xi→Yi of a
single party’s share of a resource. Considering with-
out loss of generality the first party, denoted by sub-
script 1, we say that type T1 is higher in the preorder
than type T ′1 if for every resource of type T ′1T2...Tn,
there exists a resource of type T1T2...Tn which is in

the same LOSR equivalence class (for all numbers of
parties n). Equivalently, this means that the LOSR
equivalence class of any resource with partition-type
T ′1 on the first party always contains at least one re-
source of partition-type T1 (on the first party). We
denote this second ordering relation �type:

Definition 3. We say that T1 �type T
′
1 iff for all R′

of type T ′1T2...Tn (as one ranges over all T2, ..., Tn
and all n), there exists R of type T1T2...Tn in the
LOSR equivalence class of R′, that is, satisfying
R′

LOSR←−−→ R.

In such cases, we say that partition-type T1 encodes
(the nonclassicality of) all resources of partition-
type T ′1, or more simply that type T1 encodes type
T ′1.

If every partition-type of some given global type
is higher than the corresponding partition-type of a
second global type on every partition, then the first
type is necessarily higher in the preorder over global
types. Hence, orderings over global types can often
be deduced from orderings over partition-types.

As a trivial example, it is clear that the global
type QQ→ QQ (that of bipartite quantum chan-
nels) is above every other bipartite type. For ex-
ample, it is above the global type II→QQ (that of
bipartite quantum states) in the preorder, so that
QQ→QQ �type II→QQ, since the former is an in-
stance of the latter where the inputs to the chan-
nel are trivial. In other words: given any bipartite
quantum state, there is a bipartite quantum chan-
nel which is in the same LOSR equivalence class—
namely, the quantum state itself, viewed as a chan-
nel from the trivial system to a quantum system
on each partition. We will refer to such trivial in-
stances of ordering among types as embeddings of
one type into the other.

Two resource types are in the same equivalence
class over types if any resource of either type can be
converted into a resource of the other type which is
in the same LOSR equivalence class. For example,
the three partition-types I→I, C→I, and Q→I are all
in the lowest equivalence class over partition-types,
since (as discussed above) they never play any role
in the nonclassicality of any nonsignaling resource.

Understanding the scope of nonclassicality-
preserving conversions between resources of differ-
ent global types is particularly useful for devising
experimental measures and witnesses of nonclassi-
cality, as we discuss in Section 4.3 (and in Ref. [36]).
Abstractly, this is because one type is above another
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type if there exists an embedding of the partial or-
der over equivalence classes of resources of the lower
type into the partial order of the higher type. When
this is the case, techniques for characterizing the
preorder of the higher type give direct information
about the preorder of the lower type.

3.1 Determining which types encode the non-
classicality of which others
In this section, we derive all but two of the order-
ing relations that hold between the possible pair-
ings of partition-types by leveraging various results
from the literature. These results are summarized in
Table 1. As discussed above, orderings over global
types can be deduced from these.

Table 1: A green check mark in a given cell indicates that
the column type T is higher in the order over partition-types
than the row type T ′ (denoted T �type T

′), while a red
cross indicates that it is not higher (denoted T 6�type T

′.
The text in each cell alludes to the proof (given in the main
text) of that ordering relation. Two relations are unknown,
as indicated by blue question marks.

As discussed above, there are no nonfree resources
which nontrivially involve the types I→I, C→I, or Q→
I, so we need not discuss them further. There remain
6 nontrivial types, and hence 36 ordering relations
to check. These are all shown in the table. If the
column resource type T is higher in the order than
the row type T ′, so that T �type T

′, then we indicate
this with a green check mark in the corresponding
cell in the table. If instead T 6�type T

′, we indicate
this with a red cross. In each case, we briefly allude
to the logic behind the proofs for that particular
ordering—proofs which we now give.

As stated in Section 3, a type is higher in the or-
der than all types which it embeds, where quantum
systems embed classical systems, which embed triv-

ial systems. In the table, we indicate these trivial
ordering relations by the word ‘embed’.

Next, recall that Werner proved the existence of
entangled states which cannot violate any Bell in-
equality involving projective measurements [28]. It
was subsequently proved that this holds true even
for arbitrary local measurements [29], a result that
holds even if the choice of local measurements are
made in a correlated fashion using shared random-
ness. This constitutes the most general LOSR con-
version scheme from quantum states to boxes. In
other words, an entangled Werner state cannot be
converted into any nonfree box, much less into a box
that is in its LOSR equivalence class (as would be
required for encoding its nonclassicality into a box-
type resource). It follows that global type CC→CC is
not above global type II→QQ, which in turn implies
that partition-type C→C is not above partition-type
I→Q. That is, C→C 6�type I→Q, as is indicated in
the table by the phrase ‘Werner states’.

In addition, it is well known that LOCC can gen-
erate arbitrary boxes and yet cannot generate any
entangled state. Since LOSR operations form a sub-
set of LOCC operations, this implies that LOSR op-
erations applied to any box (of type CC→CC) can-
not generate any nonfree state (of type II→QQ),
much less a state in its LOSR equivalence class.
Hence, global type II→QQ is not above global type
CC→CC, which in turn implies that partition-type
I→Q is not above partition-type C→C. That is,
I→Q 6�type C→C, as is indicated in the table by the
phrase ‘LOSR cannot entangle’.

We can use transitivity of the ordering relation to
prove that I→C is not above I→Q and is not above
C→C, and that none of I→C, I→Q, or C→C are
above any of C→Q, Q→C, and Q→Q. For example,
from the fact that C→C is above I→C and the fact
that C→C is not above I→Q, it must be that I→C is
not above I→Q. If it were otherwise, one would have
C→C above I→C above I→Q =⇒ C→C above I→
Q, which is false. The other transitivity arguments
run analogously. In the table, we indicate all such
ordering relations by the abbreviation ‘trans.’.

One of the authors proved in Ref. [18] that there
exists some semiquantum channel (of type QQ→CC)
in the same equivalence class as any given quantum
state (of type II→QQ). A slight reframing of this
result implies that the semiquantum partition-type
Q→C is higher in the order than I→Q, as we show
below. That is, Q→C �type I→Q, as is indicated in
the table by the phrase ‘semiquantum games’.
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Finally, as we prove in Theorem 1, the semi-
quantum partition-type Q→C is higher in the or-
der than all other partition-types. The ordering
relations that follow from our proof but not from
previous work, namely Q→ C �type C→ Q and
Q→C �type Q→Q, are indicated in the table by
the phrase ‘Thm 3’.

This proves all the results shown in the table.
There remain two unknown ordering relations, in-
dicated in the table by question marks; namely
whether C→Q is higher in the order than either
Q→C or Q→Q. Because Q→C and Q→Q are
in the same equivalence class (at the top of the or-
der), the answer to both of these questions must
be the same; that is, either C→Q encodes them
both, or it encodes neither. Such an encoding could
have dramatic practical consequences. For example,
if the encoding can be done with a fixed transfor-
mation (which is not a function of the resource to
be converted), then this would enable the possibil-
ity of preparation-device-independent quantification
of nonclassicality.

Open Question 2. Can the LOSR nonclassical-
ity of any resource be perfectly characterized in a
preparation-device-independent manner?

3.2 Semiquantum channels are universal en-
coders of nonclassicality
To complete the arguments of the last section, we
prove that the semiquantum partition-type can en-
code any other partition-type. The consequences of
this fact are fleshed out further in Section 4.3.

Theorem 1. The semiquantum partition-type Q→C
is in the unique equivalence class at the top of the
order over partition-types. That is, it can encode the
nonclassicality of all other partition-types.

Proof. Consider a bipartite channel E which has a
quantum output of dimension d, together with arbi-
trary other outputs and inputs (denoted by dashed
double lines), as shown in black in Fig. 4(a). One
can transform E into a resource with a quantum in-
put of dimension d and a classical output of dimen-
sion d2 by composing E with a Bell measurement
as shown in green in Fig. 4(a); that is, by perform-
ing a measurement in a maximally entangled basis
on the quantum output of E and a new quantum
input of the same dimension d. To see that this
transformation preserves LOSR equivalence class, it
suffices to note that there exists a local (and hence

Figure 4: (a) A free transformation (in green) that con-
verts a quantum output to a classical output together with
a new quantum input. (b) This transformation does not
change the LOSR equivalence class, since it has a left in-
verse (shown in pink) which is a free transformation.

free) operation, shown in pink on the left-hand side
of Fig. 4(b), which takes the transformed channel
back to the original channel E . In particular, this
local operation feeds one half of a maximally entan-
gled state Φmax into the Bell measurement, and then
performs a correcting unitary operation U on the
other half of the entangled state, conditioned on the
classical outcome of the Bell measurement. For the
correct choice of correction operations, the overall
transformation on E is just the well-known telepor-
tation protocol [54], and so the equality shown in
Fig. 4(b) holds. Hence, the channel in Fig. 4(a) is in
the same LOSR equivalence class as E , which implies
that every partition of a resource can be transformed
to a resource of type Q→C in the same equivalence
class.

Note that Q→Q is trivially also at the top of the
order, since every other type embeds into it. It is
thus in the same equivalence class as Q→C.

4 A unified framework for distributed
games of all types
A variety of ‘games’ have been studied for the pur-
poses of quantifying nonclassicality of various types
of resources. For instance, the nonclassicality of
quantum states has been studied from the point of
view of nonlocal games and semiquantum games,
as well as teleportation, steering, and entanglement
witnessing experiments. Nonlocal games have also
been used to study the nonclassicality of boxes.

In fact, there is a natural class of distributed tasks
for every type of resource, including one for each of
the common types in Section 2.
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Definition 4. For a given global type T , we define a
distributed T-game as a linear map from resources
of type T to the real numbers.

The set GT of all such maps for fixed T is the set
of T -games, and a resource of type T is said to be a
strategy for a T -game. This last terminology is mo-
tivated by the fact that no matter how complicated
the players’ tactics, their score for a given T -game
only depends on the resource of type T that they
ultimately share with the referee. We will refer to
any game of any type as a distributed game.

In Fig. 5, we depict four distributed games to-
gether with the type of resource that acts as a strat-
egy for that game. We represent a game diagram-
matically as a monolithic comb with appropriate in-
put and output structure such that composition of
the comb corresponding to a game GT with a strat-
egy ET of type T yields a circuit with no open inputs
or outputs, representing the real number GT (ET ).

Figure 5: Some games and their strategies. (a) Boxes are
strategies for nonlocal games. (b) Semiquantum channels
are strategies for semiquantum games. (c) Teleportages are
strategies for teleportation games. (d) Entangled states are
strategies for entanglement witnesses.

4.1 Implementations of a game
We have noted that a variety of games and experi-
ments can be viewed abstractly under the umbrella
of T -games. The practical meaning of such games is
made more clear by considering the following two-
step procedure, by which a referee can implements
any game (of any type T ). This procedure is de-
picted on the right-hand side of Fig. 6.

First, the referee performs a tomographically com-
plete measurement on the composite system defined
by the collection of output systems of the given
strategy ET , and implements a preparation drawn
at random from a tomographically complete set of
preparations on the composite system defined by
the collection of all the systems which are inputs
of ET . In fact, it suffices for the referee to per-
form tomographically complete measurements and

preparations independently on every input and out-
put, as depicted in the dashed box in Fig. 6. We
will refer to this process as the application of an
analyzer Z to the given strategy. That is, an
analyzer Z is a linear and tomographically com-
plete map from strategies to correlations of the form
PZ◦ET

(ab|xy) := Z ◦ET , with a, b labeling the values
of the classical outputs of Z and x, y the values of
the classical inputs of Z. Second, the referee uses
a fixed payoff function Fpayoff(abxy) to assign a real
number GT (ET ) =

∑
abxy Fpayoff(abxy)PZ◦ET

(ab|xy)
to strategy ET .

This point of view on games is useful for the proof
of Theorem 2, and it is also useful for establishing
a physical picture of games of each type. For ex-
ample, in a Bell experiment, one applies LOSR op-
erations (or often just LO operations) in order to
convert one’s quantum state to a conditional prob-
ability distribution, and the payoff function in the
game constitutes the Bell inequality that one tests.
As a second example, see Ref. [55] for a study of var-
ious teleportation games. As noted therein, there
are interesting teleportation tasks (which admit of
a simple operational interpretation) beyond merely
attempting to establish an identity channel between
two parties using shared entanglement. However, in
the rest of this paper it will be simpler to view a
game in the abstract (simply as a linear map from
resources of a given type to the real numbers), and
we will leave the further investigation of such games
(beyond the cases which have already been studied)
to future work.

Figure 6: A depiction of the concrete two-step process by
which a referee can implement a game (of any type). The
referee first applies a tomographically complete analyzer Z,
and then assigns a real number to the resulting statistics
using a payoff function Fpayoff .
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4.2 Performance of resources of arbitrary
type with respect to a game
By definition, every T -game assigns a real number to
every resource of type T . At this stage, the number
need not be related in any way to the nonclassicality
of resources; e.g., the score need not behave mono-
tonically under LOSR. Nonetheless, one can use any
T -game to learn about the LOSR ordering of re-
sources of type T ; indeed, the full set of T -games
perfectly characterizes this preorder. (In case this
is not completely obvious, it will follow as a corol-
lary of our Theorem 3.) Furthermore, one can use
a T -game to (partially) quantify the nonclassical-
ity of a resource of arbitrary type, not only of type
T . For example, nonlocal games and semiquantum
games have been used to probe the nonclassicality
of quantum states [18, 33, 34, 56].

This is because—although a T -game does not di-
rectly assign a score to resources of any type other
than T—it can quantify the performance of a re-
source of any type by a maximization over all τ ∈
LOSR which map the given resource to one of type
T . That is:

Definition 5. The (optimal) performance of a re-
source R of arbitrary type with respect to a game GT
of arbitrary type T is given by

ωGT
(R) = max

τ :Type[R]→T
GT (τ ◦R). (1)

Clearly, ωGT
(R) is a measure of how well an ar-

bitrary resource R can perform at LOSR-game GT .
Because of the maximization over LOSR operations,
ωGT

(R) is by construction a monotone with respect
to LOSR. Constructions of this sort are often termed
yield monotones [57]. We discuss monotones further
in Ref. [36], as monotones are useful tools for ob-
taining partial information about the preorder over
resources and for relating the preorder to practical
tasks.

The set GT of all games of a given type T defines
a preorder over all resources of all types, where re-
source R is above R′ in the order if for every T -game,
R can achieve a value at least as high as R′ can. We
denote this third ordering relation �GT :

Definition 6. For resources R and R′ of differ-
ent and arbitrary type, we say that R �GT R′ iff
ωGT

(R) ≥ ωGT
(R′) for every GT ∈ GT .

Next, we prove that if one resource outperforms a
second at all possible games of a given type, then it

can also generate any specific strategy of that type
which the second resource can generate. This is a
nontrivial result, since it need not be the case that
the first resource is higher in the LOSR order.

Theorem 2. For resources R and R′ of different
and arbitrary type and a resource ET of arbitrary
type T , R �GT R′ iff R′

LOSR7−−−−→ ET =⇒ R
LOSR7−−−−→

ET . That is, any strategy ET for games of type T
that can be freely generated from R′ can also be freely
generated from R.

Proof. If R′ LOSR7−−−−→ ET =⇒ R
LOSR7−−−−→ ET , then R

can generate any strategy for any given game GT
that R′ can, and so always performs at least as well
as R′ at T -games, and so R �GT R′.

To prove the converse, consider a set of games of
type T defined by ranging over all possible payoff
functions Fpayoff(abxy) for some fixed analyzer
Z—that is, a specific tomographically complete
measurement for each output system of the re-
source and a specific tomographically complete set
of states for each input system of the resource.
Assume that R′ LOSR7−−−−→ ET for some strategy ET ,
and define PZ◦ET

(ab|xy) = Z ◦ ET . For R �GT R′, it
must be that R LOSR7−−−−→ E ′T for at least one strategy
E ′T satisfying PZ◦E′

T
(ab|xy) = Z ◦ E ′T . If this were

not the case, then the convex set S(R) of all
correlations which R can generate in this scenario,
S(R) := {PZ◦τ◦R(ab|xy) = Z ◦ τ ◦R}τ∈LOSR,
would not contain PZ◦ET

(ab|xy), and the hyper-
plane which separated PZ◦ET

(ab|xy) from S would
constitute a payoff function Fpayoff for which R′

outperformed R, which would be in contradiction
with the claim that R �GT R′. By tomographic
completeness, the preimage of every correlation
under Z contains at most one strategy. Hence, if
two strategies map to the same correlation, then
they must be the same strategy, and so it must be
that ET = E ′T in argument above. That is, we have
shown that if R �SQ R′ and R′

LOSR7−−−−→ ET , then
R

LOSR7−−−−→ ET .

4.3 Implications from the type of a resource
to its performance at games
We now prove that games of a higher type perfectly
characterize the LOSR nonclassicality of resources
of a lower type.

Theorem 3. If T �type T ′, then for resources
R1, R2 of type T ′, R1 �LOSR R2 iff R1 �GT R2.
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Equivalently: if type T is above type T ′, then for re-
sources of type T ′, the orders defined by �LOSR and
�GT are identical.

Proof. Consider the set GT of all games of type T
and two resources R1 and R2, both of type T ′,
where T �type T

′. Clearly R1 �LOSR R2 implies
R1 �GT R2, since R1 �LOSR R2 implies that R1
can be used to freely generate R2 and hence to
generate any strategy which can be generated us-
ing R2. Next, we prove that R1 �GT R2 implies
R1 �LOSR R2. By assumption, T �type T ′, and
so for R2 of type T ′, there exists a strategy ET for
games of type T such that R2

LOSR←−−→ ET . Since
R1 �GT R2, Theorem 2 tells us that R2

LOSR7−−−−→ ET
implies R1

LOSR7−−−−→ ET , and hence R1
LOSR7−−−−→ R2 by

transitivity. Hence we have proven that the two or-
derings are the same; that is, R1 �LOSR R2 if and
only if R1 �GT R2.

A consequence of this result is that if T �type
T ′, then every nonfree resource of type T ′ is useful
for some T -game. Two special cases of this fact
that were previously proved are that all entangled
states are useful for semiquantum games and that
all entangled states are useful for teleportation.

If one views the encoding of one type into another
type as an embedding of the partial order over equiv-
alence classes of resources of the lower type into the
partial order of the higher type, then this result can
be seen as a consequence of the fact that games of
type T are sufficient for characterizing the partial
order over resources of type T .

A corollary of Theorem 1 and Theorem 3 is that
semiquantum games fully characterize the LOSR or-
dering among all resources of arbitrary type.

Corollary 1. For any resources R and R′ (which
may be of arbitrary and different types), R �LOSR
R′ if and only if R �GSQ R′.

This generalizes the main result of Ref. [18] from
quantum states to resources of arbitrary type. Since
semiquantum games characterize the LOSR non-
classicality of arbitrary resources, and since refer-
ees in semiquantum games do not require any well-
characterized quantum measurement devices [16], it
follows that the nonclassicality of any resource of
any type can be characterized in a measurement-
device-independent manner.

Note that for such tests to be practically use-
ful, it must be possible to convert an unknown re-
source into a semiquantum channel in the same

LOSR equivalence class. This is indeed possible,
because for all resources of a given type, there is
a single transformation which implements the con-
version, namely, the Bell measurement in Fig. 4(a).
Critically, this transformation is not a function of
the resource to be converted.

5 Extending results from the litera-
ture
We now give further applications of our results, in
particular showing how our framework extends a
number of seminal results from the literature.

5.1 Applying semiquantum games to per-
fectly characterize arbitrary quantum channels
Buscemi proved in Ref. [18] that the order over
quantum states with respect to LOSR is equivalent
to the order over quantum states defined by their
performance with respect to semiquantum games.
This result is an instance of our Corollary (1) where
R and R′ are both quantum states.

For concreteness, we now briefly reiterate the ar-
gument in this specific context. The existence of
the invertible transformation in Fig. 4 implies that
II→QQ is below QQ→CC in the order on global
types, and hence that

.

For this σ and ESQ such that σ
LOSR7−−−−→ ESQ, Theo-

rem 2 states that if ρ �GSQ σ, then ρ
LOSR7−−−−→ ESQ.

Since ESQ
LOSR7−−−−→ σ, transitivity gives that ρ �GSQ

σ =⇒ ρ
LOSR7−−−−→ σ. Since the converse implica-

tion is self-evident, one sees that the LOSR order
over quantum states is equivalent to the order over
quantum states defined by their performance with
respect to semiquantum games.

This proof is inspired by the original argument
in Ref. [18], but our framework makes the proof
shorter and more intuitive. As we saw in Corol-
lary (1), it also allowed us to generalize the re-
sult from quantum states to arbitrary resources. As
stated above, this implies that the LOSR nonclas-
sicality of any resource can be witnessed and quan-
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tified in a measurement-device-independent [16, 31]
manner.

5.2 Applying measurement-device-
independent steering games to perfectly
characterize assemblages
Cavalcanti, Hall, and Wiseman proved in Ref. [16]
that the LOSR order over quantum states defined by
subset inclusion over the assemblages that each can
generate via LOSR is equivalent to the order over
quantum states defined by their performance with
respect to steering games. This result is a special
case of our Theorem 2, where R and R′ are quantum
states and ET is a steering assemblage:

Corollary 2. ρ �Gsteer σ iff σ
LOSR7−−−−→ Esteer =⇒

ρ
LOSR7−−−−→ Esteer.

Our Theorem 2 extends this result to arbitrary re-
source types and games.

Additionally, the existence of the invertible trans-
formation in Fig. 4 immediately implies that

.

In other words, CI → CQ is below CQ → CC in
the order on global types. Our Theorem 3 then
gives a new result, which is the direct analogue
of the result in Ref. [18] in this new context: the
LOSR order over assemblages is equivalent to the
order over assemblages defined by performance rela-
tive to all measurement-device-independent steering
games. Explicitly: the fact (proven in Section 3.1)
that TMDI �type Tsteer implies that

Corollary 3. For two assemblages Esteer and E ′steer,
one has Esteer �LOSR E ′steer iff Esteer �GMDI E ′steer.

Indeed, this theorem holds not just for assemblages,
but for any resource type which is lower in the global
order than measurement-device-independent steer-
ing channels, including channel steering assemblages
and Bob-with-input assemblages.

5.3 Applying teleportation games to perfectly
characterize quantum states
Cavalcanti, Skrzypczyk, and Šupić proved in
Ref. [14] that the nonclassicality of every entangled

state can be witnessed by some teleportation ex-
periment. We apply arguments analogous to those
of the last two subsections to strengthen their re-
sults, most notably in Corollary 4, which provides
the quantitative analogue of their (qualitative) main
result.

First, the existence of the invertible transforma-
tion in Fig. 4 again implies that

.

In other words, II→QQ is below QI→CQ in the order
on global types. Our Theorem 3 again yields a re-
sult analogous to that in Ref. [18], namely, that the
LOSR order over entangled states is equivalent to
the order over entangled states with respect to per-
formance at teleportation games6. Explicitly: de-
noting the type of quantum states by Tρ, the fact
that Ttel �type Tρ implies that

Corollary 4. ρ �LOSR σ iff ρ �Gtel σ.

Indeed, this theorem holds not just for quantum
states, but for any resource type which is lower in
the global order than teleportages, including, for ex-
ample, steering assemblages.

Our Theorem 2 can also be applied to telepor-
tation games, yielding a result analogous to that
in Ref. [16]. That is, any resource which outper-
forms a second resource at all teleportation games
can generate any specific strategy that the second
can generate:

Corollary 5. R �Gtel R
′ iff R′

LOSR7−−−−→ Etel =⇒
R

LOSR7−−−−→ Etel.

6 Open questions
Our framework suggests a great deal of open ques-
tions for future study, two important examples of
which were highlighted above.

6It is worth noting that there are subtleties in the rela-
tionship between teleportation games (as defined here, and
see also Ref. [55]) and the usual conception of teleportation
experiments (as attempts to establish an identity channel be-
tween two parties using shared entanglement). For exam-
ple, note that any nonfree assemblage constitutes a special
instance of a teleportage which is useless for generating a co-
herent quantum channel between two parties, and yet which
is useful for some teleportation game.
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Ideally, one would have type-independent meth-
ods for characterizing nonclassicality in practice.
We begin developing such a toolbox in Ref. [36].

For each of the fifteen bipartite global types men-
tioned above, it is interesting to study the basic fea-
tures of the (type-specific) LOSR resource theory.
While this has been done for boxes, little attention
has been given to this problem in other cases, even
for quantum states.

Such features include the geometry of the free set
of resources, the LOSR preorder, useful monotones
and witnesses, and so on. Ultimately, we advocate
not just for these type-specific investigations, but
for research in the type-independent context.

Part of the project of characterizing the preorder
will be to characterize the sense in which there ex-
ist inequivalent kinds of nonclassicality. At the top
of the preorder, the situation for bipartite LOCC-
entanglement is quite simple: there is a single max-
imally entangled state of a given dimension, from
which all other states can be obtained by LOCC
transformations. This is no longer the case for mul-
tipartite LOCC-entanglement [58], nor for LOSR-
entanglement even in the bipartite case [19]. For
resources beyond quantum states and for more par-
ties, the situation gets even more complex. As an
example, our work implies that there exist semi-
quantum channels in the equivalence class of Werner
states, and semiquantum channels in the equivalence
class of nonlocal boxes, and that these semiquantum
channels exhibit inequivalent forms of nonclassical-
ity.

Open Question 3. What are the key features of
the type-independent preorder over LOSR resources?
What inequivalent forms of nonclassicality do these
resources exhibit?

If one was interested only in witnessing nonclas-
sicality as opposed to quantifying it, one could con-
sider a preorder over types defined by a less restric-
tive condition, where type T is above type T ′ if every
nonfree resource of type T ′ could freely generate at
least one nonfree resource of type T . All the known
results in Table 1 hold for this definition as well;
however, the two definitions might yield different
answers for the open questions that remain.

One could also consider modifying our Defini-
tion 3 such that local operations were taken to be
free rather than local operations and shared ran-
domness. Note that the operations required in the
proof of Theorem 4 do not make use of any shared

randomness, and so the theorem would still hold.
In fact, one can readily verify that all the orderings
in Figure 1 would continue to hold. However, The-
orem 2 requires convexity (through its use of the
separating hyperplane theorem), as do Theorem 3
and Corollary 1 (since they rely on Theorem 2).

If one were to modify Definition 3 so that local
operations and classical communication were free,
the situation is less clear, as one would presumably
need to widen the scope of applicability to signaling
resources.

Open Question 4. What can be learned by consid-
ering a type-independent framework of LOCC non-
classicality?

This would be the relevant resource theory, for
example, for distributed parties who share quantum
memories and the ability to communicate classically.

Our framework has focused on the divide between
classical and quantum resources. One can also study
the divide between quantum and post-quantum re-
sources, as we do in Ref. [59].

A final open question regards the relationship be-
tween our work and self-testing [60–62]. In self-
testing, correlations (e.g. of type CC→ CC) cer-
tify the existence of an underlying valuable quan-
tum resource (say II→QQ). For example, the quan-
tum correlations violating the CHSH inequality [63]
maximally are a signature of an underlying quan-
tum state that is at least as nonclassical as a singlet
state (see [62] for a pedagogical derivation). Re-
cently, the self-testing line of research has expanded
beyond self-testing of states, and now has also been
applied to steering assemblages [64, 65], entangled
measurements [66, 67], prepare-and-measure scenar-
ios [68], and quantum gates [69]. However, the cor-
relations that are a signature of the given resource
cannot be converted back to that quantum state,
and so are not in the same LOSR equivalence class.
Rather, they merely allow one to infer the prior exis-
tence of the self-tested resource. As such, the precise
relationship with our work is left for exploration.

In the present work, we did not consider the
Hilbert space dimensions as part of the resource
type. One could consider a more fine-grained study
of conversions between resources of different sizes.
For example, the notion of nonclassical dimension
for bipartite quantum states is encoded by the
Schmidt rank [70]. We leave as an open question
the generalization of this notion to other resource
types; note that Ref. [36] includes a discussion of
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Hilbert space dimensions solely for the purposes of
implementing numerical algorithms.

As a final remark, we recall that the semiquan-
tum games introduced in [71] to test bipartite states
in a measurement-device independent fashion [31],
can be transformed into guessing games suitable
for testing, always in a measurement-device inde-
pendent fashion, quantum channels and quantum
memories [72, 73]. More generally, such single-party
guessing games have found application in the con-
text of measurement resources [72, 74, 75] and gen-
eral convex resource theories [76–79]. We leave fur-
ther investigations about relations between these
works and ours for future research.

7 Conclusions
We have presented a resource-theoretic framework
which unifies various types of resources of nonclassi-
cality which arise when multiple parties have access
to classical common causes but no cause-effect rela-
tions. This type-independent resource theory allows
us to compare the LOSR nonclassicality of resources
of arbitrary types and to quantify them using games
of arbitrary types. We then derived several theo-
rems which ultimately can be used to simplify the
methods by which one characterizes the nonclassi-
cality of resources. Our theorems additionally gen-
eralize, unify, and simplify the seminal results of
Refs. [14, 16, 18], and our framework leads to a num-
ber of exciting questions for future work.
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[52] I. Šupić, P. Skrzypczyk, and D. Cavalcanti,
(2018), arXiv:1804.10612 .

[53] G. Chiribella, G. M. D’Ariano, and
P. Perinotti, Phys. Rev. A 80, 022339 (2009).

[54] C. H. Bennett, G. Brassard, C. Crépeau,
R. Jozsa, A. Peres, and W. K. Wootters, Phys.
Rev. Lett. 70, 1895 (1993).

[55] P. Lipka-Bartosik and P. Skrzypczyk, “The op-
erational advantages provided by non-classical
teleportation,” (2019), arXiv:1908.05107
[quant-ph] .
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