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What can one infer about the dynam-
ical evolution of quantum systems just
by symmetry considerations? For Marko-
vian dynamics in finite dimensions, we
present a simple construction that assigns
to each symmetry of the generator a fam-
ily of scalar functions over quantum states
that are monotonic under the time evo-
lution. The aforementioned monotones
can be utilized to identify states that are
non-reachable from an initial state by the
time evolution and include all constraints
imposed by conserved quantities, provid-
ing a generalization of Noether’s theorem
for this class of dynamics. As a special
case, the generator itself can be consid-
ered a symmetry, resulting in non-trivial
constraints over the time evolution, even
if all conserved quantities trivialize. The
construction utilizes tools from quantum
information-geometry, mainly the theory
of monotone Riemannian metrics. We an-
alyze the prototypical cases of dephasing
and Davies generators.

1 Introduction

One of the main tasks in the study of non-
relativistic quantum dynamical systems is pre-
dicting how quantum states and observables
evolve over time given some dynamical law, for
instance, a Hamiltonian operator and the associ-
ated equations of motion. It is often the case,
however, that in practice the trajectory either
does not admit an explicit closed form, or even
if it does, it can be complicated to draw conclu-
sions to physical questions of interest from it. It
is therefore important to have accessible methods
and tools that allow one to extract the essential
features of the evolution directly from the dynam-
ical laws.

Georgios Styliaris: styliari@usc.edu

At the heart of such approaches lies the far-
reaching idea of symmetry. The most prominent
example is perhaps provided by Noether’s theo-
rem which, in the context of Lagrangian mechan-
ics, yields a conserved quantity for each differ-
entiable symmetry of the generator [1]. In the
quantum realm, the theorem indicates that all
moments of an observable that is a symmetry of
the time evolution are conserved [2].

In this paper we consider open quantum sys-
tems in finite dimensions evolving under Marko-
vian dynamics [3]. We address the question:
Given the generator of the dynamics and an ini-
tial state, what constraints can symmetry consid-
erations impose on the set of states that are reach-
able under the time evolution?

Open quantum dynamics is, in general, dissi-
pative. As such, the role of conserved quantities
can be rather limited. For instance, Markovian
dynamics with a unique steady state does not ad-
mit any non-trivial conserved quantities [4]. For
this reason, we approach the problem by instead
seeking to utilize symmetries to obtain mono-
tones, i.e., functions of the quantum state that
are monotonic (in our case, non-increasing) un-
der the time evolution. Similarly to conserved
quantities, monotones can be utilized to exclude
state transitions that are impossible under the
dynamics, i.e., states that do not belong in the
trajectory of a given initial state.

An accessible discussion regarding the connec-
tion between symmetries and conserved quanti-
ties for Markovian dynamics can be found in the
papers by Baumgartner and Narnhofer [5], and
by Albert and Jiang [4]. Symmetries have also
been discussed for the closely related case of iter-
ated quantum channels [6]. From the viewpoint
of quantum resource theories [7], consequences of
symmetries in quantum dynamics have been sys-
tematically considered in the theory of reference
frames and asymmetry [8, 9]. There, one inves-
tigates the allowed state transitions under quan-
tum dynamics that respects a specified symme-
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try1. In particular, Marvian and Spekkens estab-
lished the fact that, for the case of Hamiltonian
dynamics, asymmetry monotones yield conserved
quantities that can be independent of the Noether
ones [10]. Asymmetry monotones have also been
utilized to put constraints on the evolution of
quantum coherences by Lostaglio et al. [11]. Sym-
metry considerations have moreover been invoked
to study transport in a Markovian model of open
spin chains by Buča and Prosen [12].

Monotones generalize the concept of a con-
served quantity and, as we show in our construc-
tion, in fact one can deduce from them the full
set of conserved quantities. Our main result con-
sists of a method to assign to each pair of sym-
metries of the generator a one-parameter family
of monotones for the time evolution. As a spe-
cial case, the generator itself can be considered
a symmetry of the dynamics, resulting in non-
trivial constraints over the time evolution, even
if all conserved quantities trivialize.

The basic idea we invoke to obtain monotones
of the time evolution relies on the “infinitesi-
mal version” of quantum data-processing inequal-
ities. Distinguishability measures D(ρ, σ) ≥ 0,
defined over pairs of quantum states such that
D(ρ, ρ) = 0, are said to obey the data-processing
inequality if they are non-increasing under the
joint action of a quantum operation on both ar-
guments and play a central role in quantum infor-
mation theory [13, 14]. Since Markovian dynam-
ics is fully characterized by its generator, we in-
voke an infinitesimal version of distinguishability
measures, connecting with monotone Riemannian
metrics in the space of quantum states. Such met-
rics have proven useful for the study of Markovian
quantum dynamics, as for instance for the study
of the mixing time and convergence rates [15–17].

The paper is organized as follows. In section 2
we begin by first non-rigorously presenting the
basic idea for establishing the correspondence be-
tween symmetries and monotones of the evolu-
tion. We then present the general construction,
which is related to monotone Riemannian metrics
and, after giving a simple example, we establish
a connection with the Noether conserved quanti-

1More specifically, given a group G, one investigates
the possibility of state transitions under the class of quan-
tum operations that are symmetric with respect to a uni-
tary representation of G, namely the operations such that
[E ,Ug] = 0 ∀g ∈ G.

ties in open systems. We also briefly discuss how
one can construct symmetries for the generator of
the dynamics and the monotones. In section 3,
we apply the method to dephasing generators and
in section 4 for generators of the Davies form, ex-
tracting in both cases the qualitative features of
the evolution with symmetry considerations. We
conclude in section 5.

2 Monotones of the evolution from
symmetries of the dynamics
2.1 Setting the stage
We consider quantum systems described by a
state ρ ∈ S(H) ⊆ B(H), where the Hilbert
space H ∼= Cd is finite dimensional2. We as-
sume that the dynamics is Markovian and time-
homogeneous, i.e.,

d

dt
ρt = L(ρt) (1)

where the generator of the dynamics L, also
known as the Lindbladian, is a time independent
superoperator and hence can be expressed in the
standard form

L(X) = −i [H,X] +
∑
i

(
LiXL

†
i −

1
2
{
L†iLi, X

})
(2)

(see, e.g., Ref. [3] for more details). Equation (1)
gives rise to a one-parameter family of time-
evolution superoperators

Et = exp (tL) , t ≥ 0 , (3)

forming a semigroup3 in the space of Completely
Positive and Trace Preserving (CPTP) maps, also
known as quantum channels. We define as sym-
metries of a Lindbladian those superoperators
that commute with L, i.e.,

Sym(L) := {M ∈ B (B (H)) | [M,L] = 0} . (4)

We first informally present the basic idea of
how one can obtain monotones of the evolution

2We use B(H) to denote the space of (bounded) linear
operators. S(H) denotes the space of non-negative linear
operators with unit trace.

3I.e., E0 = I and EtEt′ = Et+t′ for all t, t′ ≥ 0. This
type of quantum dynamics is also called semigroup evolu-
tion.
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from symmetries of the generator. Let us con-
sider a distinguishability measure, i.e., a function
D(ρ, σ) over pairs of states with

D(ρ, σ) ≥ 0 and D(ρ, ρ) = 0 , (5a)

such that it respects the data-processing inequal-
ity

D(ρ, σ) ≥ D (E(ρ), E(σ)) (5b)

for all states ρ, σ and quantum channels E . Let
us also define

fs(ρ) = D(ρ, esMρ) , withM∈ Sym (L) ,
(6)

which is a measure of the difference between a
state ρ and its variation4 generated by the sym-
metryM.

The data-processing inequality, together with
the fact that M is a symmetry of the time evo-
lution, implies that

fs(ρ) ≥ fs(etLρ) , ∀t ≥ 0 , (7)

i.e., that fs is a monotone of the dynamics. How-
ever, to calculate fs for a finite value of the pa-
rameter s one needs to first calculate the action of
the exponential exp(sM) on ρ, which in general is
impractical. Instead, if the function fs is suitably
well-behaved, one can examine its expansion

fs(ρ) = skhM(ρ) +O(sk+1) , k ∈ N , (8)

where the form of hM depends on D and M.
Since the inequality (7) is valid for all s ≥ 0, no
matter how small, it follows that also hM(ρ) is a
monotone of the evolution

hM(ρ) ≥ hM(Et (ρ)) , t ≥ 0 . (9)

Before proceeding to formalize the previ-
ous observation via basic tools from quantum
information-geometry, let us consider an exam-
ple. If the distinguishability measure is taken to
be the relative α-Rényi entropy with α = 1/2,
i.e.,

D(ρ, σ) = S 1
2
(ρ, σ) = −2 log

(
Tr
[√
ρ
√
σ
])

(10)

4Notice that for exp(sM)(ρ) to be a valid quantum
state for s ∈ [0, T ) ⊆ R≥0, the superoperator M should
obey certain constraints, as for instance thatM(ρ) is her-
mitian and traceless. We will later generalize this con-
struction to include anyM∈ Sym (L).

then it is not hard to show that the expansion (8)
yields k = 2 and

hM(ρ) =
∑
ij

|〈i|M(ρ)|j〉|2(√
pi +√pj

)2 , (11)

where we spectrally decomposed ρ =
∑
i pi |i〉〈i|.

A detailed derivation of Eq. (11) via elementray
methods can be found in Appendix A. The above
quantity is well-known in quantum information-
geometry as the Wigner-Yanase metric [18], here
evaluated onM (ρ).

2.2 Monotones of the evolution and monotone
Riemannian metrics
In the previous section we discussed a way of
obtaining monotones for a Markovian evolution
given a distinguishability measure and a symme-
try M of the generator, as in the example of
Eq. (11). This raises the question of how to sys-
tematically perform the expansion (8) for a suit-
ably wide class of distinguishability measures, a
question that naturally leads to the consideration
of monotone Riemannian metrics.

To see that, consider to the case where√
D(ρ, σ) is a distance function over the manifold
S>0(H) of positive definite states such that

√
D

arises from a Riemannian metric5 g. In that case,
the expansion (8) yields k = 2 and the function
hM(ρ) is nothing else that (squared) length of
the tangent vector M(ρ) over the tangent space
Tρ S>0(H), i.e.,

hM(ρ) = gρ (M(ρ),M(ρ)) . (12)

More importantly, the monotonicity property (9)
is satisfied if the metric is contractive under the
action of quantum channels T , namely

gρ(X,X) ≥ gT (ρ)(T (X), T (X)) . (13)

The aforementioned class of Riemannian met-
rics, called monotone metrics [19–22], constitute
the quantum analog of the Fisher metric for prob-
ability distributions (see also Ref. [23] for an ac-
cessible introduction to the subject). While the
latter is uniquely determined from the mono-
tonicity property under classical stochastic maps
(up to a normalization constant), the same does

5I.e., the distance between two states is the length of
the geodesic connecting them.
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not hold for its quantum counterparts, which
show a rich variety6.

We include for completeness an elementary dis-
cussion of monotone Riemannian metrics in Ap-
pendix B.

For the purposes of this work, the crucial prop-
erty of such quantities is that they satisfy the
data-processing inequality, Eq. (13). This mono-
tonicity property can be understood as a conse-
quence of a key operator inequality, first proved
in Ref. [25], which we repeat here due to its cen-
tral importance for what follows.

Theorem (Lesniewski and Ruskai [25]).

Tr
[
A† (Rσ + λLτ )−1 (A)

]
≥

Tr
[
E(A)†

(
RE(σ) + λLE(τ)

)−1
[E(A)]

]
, (14)

where A ∈ B(H) is a linear operator, Lσ(X) :=
σX (Rτ (X) := Xτ) is the superoperator repre-
senting left (right) multiplication, E is a quan-
tum channel and λ ∈ R≥0. The operators σ, τ ∈
B>0(H) are positive definite, assuring that the su-
peroperator inverses entering the inequality are
well-defined, as well as that the resulting traces
are non-negative.

Let us now return to considering quantum
Markovian dynamics generated by some time-
independent Lindbladian L. For our purposes,
the quantum channel in the inequality (14) is
specialized to the time evolution superoperator
Et := exp (tL) for t ≥ 0. Letting ρ ∈ S>0(H) be
a full-rank state, we take

A =M(ρ) , whereM∈ Sym (L) (15)
σ = τ = N (ρ) , where N ∈ Sym (L) (16)

such that N (ρ) ∈ B>0(H) is positive definite for
all ρ ∈ S>0(H). We will refer to any such super-
operatorsM and N as symmetries of the dynam-
ics.

The resulting inequality, due to the commuta-
tion relations [M, Et] = [N , Et] = 0, expresses the

6In fact, monotone metrics are also closely related
to generalized relative entropies [24], as every monotone
Riemannian metric arises from a generalized relative en-
tropy [25]. Hence the previous discussion can be general-
ized to D corresponding to a relative entropy, as in our
example (11).

fact that the quantity

JρK(λ)
M,N := Tr

[
M(ρ)†

(
RN (ρ) + λLN (ρ)

)−1
[M(ρ)]

]
(17)

satisfies

JρK(λ)
M,N ≥ JEt(ρ)K(λ)

M,N for λ, t ≥ 0. (18)

We have shown the following.

Proposition 1. If M,N are symmetries of the
dynamics and λ ≥ 0, then the function

JρK(λ)
M,N : S>0(H)→ R≥0

defined in Eq. (17) is non-increasing under the
time evolution generated by L.

In the rest of this paper, we will mainly focus
on two cases.

(i) N = I, in which case for simplicity we de-
note the resulting family of monotones as

JρK(λ)
M = Tr

[
M(ρ)† (Rρ + λLρ)−1 [M(ρ)]

]
.

(19)

(ii) If the dynamics admits a full-rank station-
ary state ω, then N (X) = Tr (X)ω is a
symmetry. In that case, it is convenient to
denote directly the fixed state ω instead of
the symmetry, i.e., write

JρK(λ)
M,ω = Tr

[
M(ρ)† (Rω + λLω)−1 [M(ρ)]

]
.

(20)

The monotones JρK(λ)
M can be also expressed in

coordinates via spectrally decomposing the argu-
ment ρ =

∑
i pi |i〉〈i|. Substituting, one gets

JρK(λ)
M =

∑
ij

1
λpi + pj

|〈i|M(ρ)|j〉|2 . (21)

Similarly, for the case of JρK(λ)
M,ω one can decom-

pose ω =
∑
i qi |iω〉〈iω| resulting in

JρK(λ)
M,ω =

∑
ij

1
λqi + qj

|〈iω|M(ρ)|jω〉|2 . (22)

For Hamiltonian dynamics, L(X) = KH(X) :=
−i [H,X], the monotones (17) are, in fact, con-
served. This follows because unitary channels are
invertible, hence for this case Eq. (18) holds true
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for t ∈ R. This forces monotones to maintain a
constant value along the orbit.

For every family {JρK(λ)
M,N }λ, one can consider

convex combinations according to the measure
µ(λ), namely

{JρK(λ)
M,N }λ 7→

∫
dµ(λ)JρK(λ)

M,N . (23)

From this construction one obtains valid mono-
tones, possibly admitting a convenient mathe-
matical form for an appropriate choice of the
measure (for explicit expressions of measures,
see [18]). However, notice that the resulting func-
tions do not impose any additional constraints
compared to the ones from the parent functions7.

2.3 A first example: Dephasing of a qubit
It might be useful at this stage to consider a sim-
ple example to illustrate the formalism. Let us
analyze a two-level system with dephasing dy-
namics described by the Lindbladian

L(X) = −ig [σz, X] + σzXσz −X , g ∈ R .
(24)

The time evolution in terms of the Bloch vector
representation of the state ρ(t) = 1

2 (I + v · σ) is,
in cylindrical coordinates,

rt = r0e
−2t , φt = φ0 + 2gt , zt = z0 . (25)

That is, the Bloch vector lies onto a horizontal
plane evolving inwards in a spiral motion.

Let us now illustrate how one can deduce the
qualitative features of the evolution just by sym-
metry considerations, by use of Eq. (19). Since
the Hamiltonian H = gσz and the single Lind-
blad operator L = σz are both diagonal in the
σz := |0〉〈0| − |1〉〈1| eigenbasis, clearly the left
multiplication superoperators L|0〉〈0| and L|1〉〈1| are
symmetries of the Lindbladian. One immediately
gets that the populations

JρK(0)
L|i〉〈i| = Tr (ρ |i〉〈i|) , i = 0, 1 (26)

are non-increasing. However, since the evolution
is trace preserving, each of the populations is sep-
arately conserved. Notice that these are exactly

7I.e., if the possibility of a transition ρ 7→ σ is ruled
out by the inequality

∫
dµ(λ)JρK(λ)

M,N <
∫
dµ(λ)JσK(λ)

M,N ,
then there exists a (non-zero measure) set of λ’s for which
also JρK(λ)

M,N < JσK(λ)
M,N .

the two linearly independent conserved quantities
of the evolution predicted by Noether’s theorem
for Lindbladians, which we discuss momentarily.

Now we consider again Eq. (19) but for the
symmetry M(X) = Kσz and λ = 1. Spectrally
decomposing ρ = p+P+ + p−P− and invoking
Eq. (21), we have

JρK(1)
Kσz = 2 Tr (P+σzP−σz) (p+ − p−)2

= 2 |〈0|ρ|1〉|2 , (27)

that is, coherences are non-increasing under the
time evolution.

The monotones from Eqs. (26) and (27) jointly
limit the set of states R that are (possibly) reach-
able under time evolution. The aforementioned
set consists of all Bloch vectors lying on horizon-
tal disk with radius equal to r0 (the radial dis-
tance of the initial Bloch vector from the z-axis.)

In fact, the set R of our example is as con-
strained as possible, in the sense that additional
symmetry arguments (relying on the set Sym(L))
cannot restrict it more. To see this, first notice
that the set of symmetries of our dephasing Lind-
bladian does not depend on the value of the pa-
rameter g, as long as g 6= 0. On the other hand,
by varying g, all points in the bulk of R can
be reached by the trajectories of Eq. (25) (for
any fixed initial condition). This is because g
controls the frequency of the rotational motion,
which can be made arbitrarily high. Therefore no
more points in R can be excluded by symmetry
arguments.

2.4 Monotones imply Noether conserved quan-
tities
We will say that an operator Y ∈ B(H) is con-
served if

Tr
[
Y † exp(tL)(ρ)

]
= const ∀ρ and t ≥ 0 .

(28)

We will also refer to such functions of the state as
Noether conserved quantities, since they general-
ize the corresponding Hamiltonian construction.
It is well-known that

Y is conserved ⇐⇒ Y ∈ KerL∗ (29)

(the adjoint is with respect to the Hilbert-
Schmidt inner product). The claim follows by
noticing that the above trace can be expressed
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via the Hilbert-Schmidt inner product (〈A,B〉 :=
Tr
(
A†B

)
for A,B ∈ B(H)) as

Tr
[
Y † exp(tL)(ρ)

]
= 〈Y, exp(tL)(ρ)〉

= 〈exp(tL∗)(Y ), ρ〉 .

A consequence is that the number of linearly in-
dependent conserved quantities equals the dimen-
sion of the subspace spanned by the steady states
of the evolution, a fact also noted in [4]. This ob-
servation follows from the identity dim Ker(L) =
dim Ker(L∗). In particular, if there is a unique
fixed point of the evolution then all conserved
quantities trivialize, in the sense that they are
necessarily proportional to the trace of the (time-
evolved) state, since always I ∈ KerL∗.

On the other hand, the monotones JρK(λ)
M im-

pose non-trivial, in general, constraints on the
reachable states of the evolution, for instance by
taking M = L (a specific example is given later
in Figure 1). What is more, if a steady state ω
is known (regardless whether it is unique or not),
then also monotones of the form JρK(λ)

M,ω can be
utilized, imposing additional constraints.

A natural question to be asked is whether the
constraints imposed by the Noether conserved
quantities are included in the monotones arising
from Proposition 1 or not. The answer is affirma-
tive.

Proposition 2. If the Lindbladian admits a full-
rank stationary state, then for each conserved op-
erator Y there is an appropriate choice of the
symmetries M,N in the family of monotones
JρK(0)
M,N that implies the conservation.

Notice, however, the converse is not true; con-
straints imposed by the monotones JρK(0)

M,N can-
not necessarily be inferred from conservation
laws.

Proof. Let us consider some conserved Y > 0.
The superoperator M(ρ) = Tr (Y ρ)ω, for ω a
full-rank stationary state of the evolution, is a
symmetry of the dynamics. Therefore JρK(0)

M,ω =
Tr (Y ρ)2 is non-increasing under the time evolu-
tion, hence also Tr (Y ρ) is non-increasing.

On the other hand, since ω is a full-rank steady
state and Tr (Y ρ) > 0, also JρK(0)

ω,M = [Tr (Y ρ)]−1

is a valid non-increasing monotone. As a result,
Tr (Y ρ) has to be a constant of the evolution.

To complete the proof, we need to show
that the constraints imposed by conserved Y ∈
B>0(H) are the same as the ones imposed by ar-
bitrary Y ∈ B(H). Indeed, consider some (pos-
sibly non-hermitian) Y ∈ Ker(L∗). Since L∗
preserves hermiticity, then both the hermitian
and anti-hermitian parts of Y are separately con-
served i.e., conservation of Y amounts to conser-
vation of the hermitian operators (Y +Y †)/2 and
(Y −Y †)/(2i). Finally notice that, although these
two operators might fail to be positive, due to
unitality of E∗t it holds that I ∈ Ker (L∗). Hence,
if a hermitian Y is conserved, then also Y +aI is
conserved, which can always be made positive for
large enough a. Notice that this amounts to just
adding the constant a to the value of the Noether
conserved quantity.

The above demonstrate that the monotone
family JρK(0)

M,N imposes at least as many con-
straints as conserved quantities. �

2.5 Symmetries of the generator and the
monotones

We now very briefly address the question of how
one can find symmetries of a Lindbladian, be-
yond those guessed by inspection. Determining
explicitly the entire set of symmetries Sym (L) of
a Lindbladian is usually too complicated to be of
practical importance. Instead, when a represen-
tation of the Lindbladian in Lindblad operators
is known (i.e., a decomposition as in Eq. (2)), it
might be convenient to look at operators simul-
taneously commuting with all elements of the set
S = {H} ∪

{
Li, L

†
i

}
i
. If A is the algebra gener-

ated by S, then the element of the algebra gen-
erated by {LX ,RX}X∈A′ belong to Sym (L) (here
A′ denotes the commutant of the algebra8). We
will use this fact to analyze dephasing generators
later in the paper.

Steady states ω give rise to symmetries, for in-
stance via maps N (X) = Tr(X)ω, as in Eq. (20).
Although Ker (L) is not in general closed with
respect to operator multiplication, it was shown
in Ref. [26] that it forms an Euclidean Jordan
Algebra. More specifically, if the limit F :=
limt→∞ exp (tL) I exists and is full-rank, then for
any A,B fixed points of the evolution it holds

8I.e., the operator subalgebra of B(H) consisting of all
(and only) the elements that commute with every element
of A.
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that

A •FB := 1
2 (AFBF +BFAF ) (30)

is also a fixed point9, whereXF := F−1/2XF−1/2.
In addition, in Ref. [27] the authors constructed

a family of maps that are bijections over the
subspace of fixed points of the dynamics. More
specifically, the mappings can be constructed
with the input of an operator monotone func-
tion [28] and two full-rank steady states. The
above facts can be of use to generate more fixed
points, and hence symmetries, out of a set of
known ones.

Finally, we address the question of how to con-
struct monotones that themselves possess some
symmetry. Let us consider a unitary representa-
tion Ug of a group G such that Ug = Ug(·)U †g is a
symmetry of the Lindbladian for all g ∈ G. Then
one can define a (left) group action on the space
of monotones via

J·K(λ)
M,N

g7−→ J·K(λ)
UgM,N = J·K(λ)

M,Ug−1N . (31)

From the latter, it is straightforward to construct
monotones that are invariant under the action by
invoking the (Haar) group average, i.e., consider

Q
(λ)
M,N (ρ) :=

∫
dµHaar(g)JρK(λ)

UgM,N . (32)

For instance,

Q
(0)
M,ω(ρ) = Tr

[
P
(
M(ρ)†M(ρ)

)
ω−1

]
, (33)

where P(X) :=
∫
dµHaar(g)Ug(X) is the projector

superoperator onto the G-invariant subspace, i.e.,
for any operator X it holds UgP(X) = P(X)Ug
∀g. The projector P can be constructed explic-
itly in terms of the irreducible representations of
{Ug}g using standard techniques from theory of
noiseless subsystems [29, 30].

3 Dephasing generators
Here we consider Lindblad generators of the gen-
eral form (2) such that all elements of the set

9Notice that any operator X ∈ Ker (L) can be decom-
posed into (up to four) steady states by considering the
positive/negative part of 1

2 (X+X†) and 1
2i (X−X

†). Each
of the latter, after proper normalization, forms a steady
state. This follows from the fact that the corresponding
quantum channel Et preserves positivity.

S = {H}∪
{
Li, L

†
i

}
i
mutually commute with each

other. We will refer to this class as dephasing gen-
erators. Notice that this family is a generalization
of the qubit example of section 2.3.

Dephasing Lindbladians are both unital and
Hilbert-Schmidt normal, as can be inferred with a
direct calculation invoking the standard form (2)
of the generator. Hence by the spectral theorem
they admit a complete family of eigenoperators.
The corresponding time evolution can be formally
expressed via resorting to the (maximal) projec-
tors onto the joint eigenspaces of all elements in
S. Let us denote as {Pi}ni=1 (n ≤ d) this com-
plete family of orthogonal projectors, and also
as Pij(X) := PiXPj the corresponding family of
(Hilbert-Schmidt orthogonal) projector superop-
erators. Then, for dephasing generators, the time
evolution can be written as

exp (tL) =
∑
ij

eλijtPij . (34)

Invoking once again the standard form of the gen-
erator (2), it follows that the eigenvalues satisfy
λij = λ∗ji and λii = 0 ∀i, while Re (λij) < 0 for
i 6= j.

The last inequality expresses that fact that
there are no steady states with support over any
of the eigenspaces Pij with i 6= j. This is true
since, for unital Lindbladians, Ker (L) coincides
with A′ [31], where A is the (abelian) algebra
generated by the set S. In our case, this commu-
tant is exactly given by operators in the range of∑
i Pii.
Qualitatively, the evolution dictates that the

diagonal elements
∑
i Pii(ρ) are conserved while

the off-diagonal parts
∑
i Pij(ρ) (i 6= j) decay,

possibly with oscillations, which is the defining
characteristic of dephasing.

Let us now extract the same qualitative in-
formation from a symmetry analysis. Clearly,
[LPi ,L] = 0 ∀i hence

JρK(0)
LPi

= Tr (ρPi) , ∀i (35)

are non-increasing. On the other hand, the evo-
lution is trace-preserving, therefore all Pi are, in
fact, conserved. These are all the linearly inde-
pendent Noether conserved quantities.

In addition, LPiRPj is a symmetry of the evo-
lution since all elements in S mutually commute.
Combining this with the fact that the evolution
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is unital, hence ω = I is a fixed point, we directly
get from Eq. (20) that

JρK(0)
LPiRPj ,I

= Tr (PiρPjρ) (36)

is non-increasing. This corresponds to the decay
of the (i, j)-coherences of the state ρ and is a
generalization of Eq. (27).

We have shown the following general fact.

Proposition 3. Let L be a Lindbladian.

(i) If LP is a symmetry of L, then Tr
(
ρtP

†P
)

is a non-increasing function of time.

(ii) If L is unital and LPRQ is a symmetry, then
Tr
(
P †PρtQ

†Qρt
)
is a non-increasing func-

tion of time.

For P,Q orthogonal projectors, then (i) corre-
sponds to decaying population and (ii) to decay-
ing coherence.

4 Davies generators

4.1 Preliminaries

A physically significant class of Lindbladians is
provided by the Davies generators [32] (for a more
modern treatment, see also Refs. [33–35]). This
family arises from a first-principles derivation un-
der the main assumption that the interaction be-
tween the system and its environment is weak
and gives rise to steady states that are thermal.
Davies generators have the following properties:

(i) The Hamiltonian part commutes with the
dissipative part, i.e., L = KH +D with

[KH ,D] = 0 . (37a)

(ii) It satisfies the quantum detailed balance
condition, i.e., there exists a state τ such
that

DRτ = RτD∗ , (37b)
KH (τ) = 0 . (37c)

For the scope of this paper, we will refer to
any Lindbladian that satisfies the conditions of
Eqs. (37) as a Davies generator.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

vx

v
z

Figure 1: Constraints imposed on the time evolution
by considering as symmetry the Lindbladian L itself.
In this example L is a single qubit Davies generator with
H = σz and jump operators L1 =

√
2σ+, L2 = σ−.

We depict in Bloch coordinates contours separating the
allowed (inside) from the forbidden (outside) regions as
predicted by the monotone JρK(1/2)

L for various ρ. The
monotone is symmetric under rotations around the z-
axis, so we only plot an x − z slice of the Bloch ball.
The corresponding states ρ are marked with a point and
are chosen to correspond to instances of the actual tra-
jectory (as projected onto the x−z plane) of the initially
pure state v = (1/2, 0,−

√
3/2).

Let us recall a few useful mathematical facts
regarding the detailed balance condition [33, 36].
First of all, since I ∈ Ker (D∗), then Eq. (37b)
implies that τ is a fixed point of the evolution.
The detailed balance condition can be equiva-
lently understood as the requirement that D∗ is
hermitian with respect to the (possibly degener-
ate) scalar product

〈A,B〉τ := Tr
(
τA†B

)
. (38)

Assuming that τ is full rank, the detailed balance
condition Eq. (37b) can be recast in a yet another
form, namely D being hermitian with respect to
the scalar product 〈·, ·〉τ−1 . The last claim follows
by multiplying both from the left and the right
Eq. (37b) with R−1

τ .
Let us now express the general form of the

time evolution of a Davies generators. Notice
that Davies generators are always normal oper-
ators, hence admit a complete family of eigenop-
erators. This is because, by assumption, D is her-
mitian with respect to the scalar product (38) (for
τ−1) and it commutes with the Hamiltonian part
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(which is also anti-hermitian with respect to the
same scalar product). Let us formally denote as
{Pi}i the complete family of hermitian (with re-
spect to 〈·, ·〉τ−1) superoperator projectors. Then
the general solution has the form

exp (tL) =
∑
i

eλitPi (39)

with PiPj = δijPi and
∑
i Pi = I.

4.2 Davies generator: Single qubit
Let us consider a qubit system whose Lindbladian
is described by H = σz together with two Lind-
blad operators {aσ+, bσ−}. The unique steady
state τ = 1

2 (I +w · σ) has a corresponding Bloch
vector lying along the z-axis with wz = a2−b2

a2+b2 .
One can easily check directly that Eqs. (37) are
satisfied, hence L is indeed a valid Davies gen-
erator. Setting g = |a|2 + |b|2, the dynamical
evolution of the Bloch vector is, in cylindrical co-
ordinates,

rt = r0e
−gt/2 , φt = φ0 + 2t ,

zt = (1− e−gt)wz + e−gtz0 . (40)

Let us analyze some of its symmetries now. By
definition of the Davies generator, KH = Kσz is a
symmetry, therefore Eq. (27) is a valid monotone,
indicating that coherences can only decay. This
corresponds to the inward spiral motion of the
trajectory.

Regarding the z-evolution of the Bloch vector
towards the fixed point, let us assume that τ is
known to be a fixed state of the evolution (but
we do not explicitly assume that it is the unique
fixed state). Then by inspection one can verify
thatM(X) = 〈σz, X〉τ−1 σz is a symmetry of the
evolution. Therefore

JρK(0)
M,τ =

∣∣∣∣Tr
(1
τ
σzρ

)∣∣∣∣2 Tr
(
τ−1

)
(41)

is non-increasing, implying that also∣∣Tr
(
τ−1σzρ

)∣∣ is a monotone. In the Bloch
representation, the last quantity equivalently ex-
presses the fact that |vz − wz| is non-increasing,
i.e., the z-component of the Bloch vector
monotonically approaches the steady state.

Finally, we numerically investigate in Figure 1
a example for the constraints imposed on the
qubit time evolution just by considering as sym-
metry the Lindbladian itself.

4.3 Davies generators: General remarks
Let us make a few observations regarding mono-
tones and Davies generators. First of all, notice
that monotones (20) for ω = τ (the detailed bal-
ance fixed point) and λ = 0 are directly related
to the Davies inner product

JρK(0)
M,τ = 〈M(ρ),M(ρ)〉τ−1 . (42)

In particular, the caseM = I expresses the fact
that

JρK(0)
I,τ = Tr

(1
τ
ρ2
)

(43)

is non-increasing under the time evolution, which
is a generalization of the well-known fact that the
purity Pur(ρ) := Tr(ρ2) is non-increasing under
unital dynamics. Equivalently, the distance

‖ρt − τ‖2τ−1 = 〈ρt − τ, ρt − τ〉τ−1 (44)

is non-increasing.
One can easily generalize the construction

of the monotone (41). Each of the projec-
tors in Eq. (39) can be written as Pi(X) =∑di
k=1 〈Yi,k, X〉τ−1 Yi,k, where {Yi,k}i,k is a com-

plete orthonormal family of eigenoperators.
Hence, for any such operator, M(X) =
〈Y,X〉τ−1 Y is clearly a symmetry of the dynam-
ics, and because for these symmetries

JρK(0)
M,τ =

∣∣∣∣Tr
(1
τ
Y †ρ

)∣∣∣∣2 (45)

the functions
∣∣∣Tr

(
τ−1Y †ρ

)∣∣∣ are monotones, gen-
eralizing Eq. (41).

5 Discussion and outlook
Identifying symmetries and their consequences in
physical systems is an important task for var-
ious fields of physics. The present manuscript
constitutes an attempt to provide a simple corre-
spondence between symmetries in the generators
of quantum Markovian dynamics and monotones
of the corresponding evolution. More specifi-
cally, we presented a construction that assigns
to every pair of symmetries of the generator a
one-parameter family of functions over quantum
states that are non-increasing under the time evo-
lution. Such monotonic functions can be em-
ployed in order to identify states that are non-
reachable by the evolution. The construction uti-
lizes powerful tools from quantum information-
geometry, mainly from the theory of monotone
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Riemannian metrics. Finally, we have demon-
strated how one can deduce from symmetries the
qualitative features of the evolution for the proto-
typical cases of dephasing and Davies generators.

One can easily rephrase the question addressed
in the present paper to fit in the framework of
quantum resource theories. Given some fixed
Lindbladian, one can define as free operations
those associated with the time evolution {Et :=
exp (tL)}t≥0. Our main result, Proposition 1,
provides a family of monotones for each pair of
symmetries of the generator. However, even if all
possible symmetries are considered, the resulting
families of monotones are not in general complete,
i.e., they do not exclude all states that are non-
reachable by the evolution. It remains an open
question to find a general construction for a com-
plete family of monotones.

We hope that the present work demonstrates
yet another way in which ideas and tools from
quantum information theory can provide useful
insights to the analysis of quantum dynamics.
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A Derivation of Eq. (11)
We include below an explicit derivation of Eq. (11), i.e., we calculate the expansion of the 1

2 -Rényi
entropy S 1

2
(ρ0, ρs) = −2 log

(
Tr
[√
ρ0
√
ρs
])

for ρs = exp (sM) (ρ0) to the first non-vanishing order in s,
assuming that the state ρ0 is full-rank.

Setting χs = √ρs, we have

Tr (√ρ0
√
ρs) = 〈χ0, χs〉 = 1 + s 〈χ0, χ̇0〉+ s2

2 〈χ0, χ̈0〉+O
(
s3) . (46)

Moreover, from ρs = χ2
s one finds

ρ̇s = χsχ̇s + χ̇sχs = (Lχs + Rχs) χ̇s := Aχs (χ̇s) ,

hence also

χ̇s = A−1
χs (ρ̇s) ,

χ̈s = A−1
χs (ρ̈s) +

dA−1
χs

ds
(ρ̇s) .

Using the above expressions we can calculate the terms in the expansion (46). We have

〈χs, χ̇s〉 = 1
2 〈Aχs(I),A−1

χs (ρ̇s)〉 = 1
2 Tr (ρ̇s) = 0

hence the term linear in s does not contribute. The quadratic term has two parts,

〈χs, χ̈s〉 = 〈χs,A−1
χs (ρ̈s)〉+ 〈χs,

dA−1
χs

ds
(ρ̇s)〉

but one of them vanishes

〈χs,A−1
χs (ρ̈s)〉 = 1

2 Tr (ρ̈s) = 0 .

To calculate the remaining term notice that

Aχs = Aχ0 + s (Lχ̇0 + Rχ̇0) +O
(
s2) =

(
I + sAχ̇0A−1

χ0

)
Aχ0 +O

(
s2)

and therefore

A−1
χs = A−1

χ0

(
I + sAχ̇0A−1

χ0

)−1
+O

(
s2) ,

which gives

dA−1
χs

ds

∣∣∣∣∣
s=0

= −A−1
χ0Aχ̇0A−1

χ0 .

Finally, this equation implies

〈χ0, χ̈0〉 = −1
2 Tr [Aχ̇0 (χ̇0)] = −Tr

[
(χ̇0)2

]
which completes the expansions

Tr (√ρ0
√
ρs) = 1− s2

2 Tr
[
(χ̇0)2

]
and hence

S 1
2
(ρ0, ρs) = s2 Tr

[
(χ̇0)2

]
+O

(
s3) .

The form (11) follows by using once again the fact that χ̇0 = A−1
χ0 (ρ̇0) and via expressing ρ0 =∑

i pi |i〉〈i|.
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B Monotone Riemannian metrics and Eq. (14)
Here we recall for completeness some well-known facts about monotone Riemannian metrics and discuss
how the key inequality (14), obtained by Lesniewski and Ruskai in [25], is related to the monotonicity
property Eq. (13).

Monotone Riemannian metrics over S>0(H), whose defining property is the data-processing inequal-
ity Eq. (13), were first classified completely by Petz [20, 21], who extended an earlier result by Morozova
and Chentsov [19]. In short, every such metric admits the form

gρ(X,Y ) = 〈X,K−1
ρ (Y )〉 (47a)

for X,Y ∈ Tρ S>0(H) (i.e., are hermitian and traceless operators) and

Kρ := k
(
LρR−1

ρ

)
Rρ (47b)

where k : R≥0 → R is an operator monotone function that satisfies

k(t) = tk
(
t−1
)
∀t > 0 . (47c)

It might be instructive at this point to check that the bilinear form gρ indeed defines a Riemannian
metric. Operator monotone functions are always analytic [28], hence the bilinear form (47a) is smooth
with respect to ρ. Equation (47c) guarantees that K−1

ρ preserves hermiticity, making gρ real valued.
Since ρ is a full-rank state, K−1

ρ is always well-defined and positive definite, implying that the bilinear
form (47a) is non-degenerate, and therefore gρ is indeed a Riemannian metric.

One can easily express gρ(X,X) explicitly by invoking the spectral decomposition ρ =
∑
i pi |i〉〈i|,

which yields

gρ(X,X) =
∑
ij

[
pik

(
pj
pi

)]−1
|〈i|X|j〉|2 . (48)

Notice that, for all valid k, the diagonal part i = j corresponds to the Fisher metric (up to proportion-
ality constant). Consequently one recovers the classical analogue result [37] over the (d−1)-dimensional
probability simplex stating that if a Riemannian metric gp satisfies the monotonicity property

gp(x, x) ≥ gT (p)(T (x), T (x)) (49)

under the action of stochastic matrices T then it is necessarily proportional to the Fisher metric, i.e.,

(gp)ij ∝
δij
pi

. (50)

A consequence of the richness of the monotone metrics in the quantum regime is the presence of the
free parameter λ in the monotones JρK(λ)

M,N introduced in the main text.
Let us finally recall how inequality (14) implies the monotonicity property Eq. (13). In [25], the

authors showed that for the class of functions k defined above satisfying k(1) = 1 (which amount to a
mere normalization condition), superoperators K−1

ρ admit the integral representation

K−1
ρ =

∫ ∞
0

(
[λRρ + Lρ]−1 + [Rρ + λLρ]−1

)
Ng(λ)dλ (51)

where Ng(λ)dλ is a singular measure (the detailed definition of can be found in [25, 15]). The important
point is that, due to the above representation, the monotonicity of the metric (13) follows from the
monotonicity of the integrand in Eq. (51); this is what is shown in the theorem of Eq. (14). In
fact, notice that the theorem is slightly more general; it applies to any operator (i.e., not necessarily
hermitian and traceless), a freedom that we take advantage of in the main text.
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