Accessible coherence in open quantum system dynamics
1Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
2Institute of Theoretical Physics and IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
3Institute of Theoretical Physics, Technical University Dresden, D-01062 Dresden, Germany
4Dipartimento di Fisica Aldo Pontremoli, Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy
Published: | 2020-04-02, volume 4, page 249 |
Eprint: | arXiv:1910.05089v2 |
Doi: | https://doi.org/10.22331/q-2020-04-02-249 |
Citation: | Quantum 4, 249 (2020). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Quantum coherence generated in a physical process can only be cast as a potentially useful resource if its effects can be detected at a later time. Recently, the notion of non-coherence-generating-and-detecting (NCGD) dynamics has been introduced and related to the classicality of the statistics associated with sequential measurements at different times. However, in order for a dynamics to be NCGD, its propagators need to satisfy a given set of conditions for $all$ triples of consecutive times. We reduce this to a finite set of $d(d-1)$ conditions, where $d$ is the dimension of the quantum system, provided that the generator is time-independent. Further conditions are derived for the more general time-dependent case. The application of this result to the case of a qubit dynamics allows us to elucidate which kind of noise gives rise to non-coherence-generation-and-detection.
► BibTeX data
► References
[1] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Science 345, 420 (2014).
https://doi.org/10.1126/science.1252319
[2] E. T. Campbell, B. M. Terhal, and C. Vuillot, Nature 549, 172 (2017).
https://doi.org/10.1038/nature23460
[3] J. Preskill, Quantum 2, 79 (2018).
https://doi.org/10.22331/q-2018-08-06-79
[4] N. Gisin and R. Thew, Nature Photonics 1, 165 (2007).
https://doi.org/10.1038/nphoton.2007.22
[5] A. Galindo and M. A. Martín-Delgado, Rev. Mod. Phys. 74, 347 (2002).
https://doi.org/10.1103/RevModPhys.74.347
[6] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014).
https://doi.org/10.1103/RevModPhys.86.153
[7] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photonics 5, 222 (2011).
https://doi.org/10.1038/nphoton.2011.35
[8] G. Tóth and I. Apellaniz, J. Phys. A: Math. and Theor. 47, 424006 (2014).
https://doi.org/10.1088/1751-8113/47/42/424006
[9] C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017).
https://doi.org/10.1103/RevModPhys.89.035002
[10] J. Åberg, ``Quantifying superposition,'' (2006), arXiv:quant-ph/0612146 [quant-ph].
arXiv:quant-ph/0612146
[11] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014).
https://doi.org/10.1103/PhysRevLett.113.140401
[12] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89, 041003 (2017).
https://doi.org/10.1103/RevModPhys.89.041003
[13] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016).
https://doi.org/10.1103/PhysRevLett.116.120404
[14] D. Egloff, J. M. Matera, T. Theurer, and M. B. Plenio, Phys. Rev. X 8, 031005 (2018).
https://doi.org/10.1103/PhysRevX.8.031005
[15] K. Ben Dana, M. García Díaz, M. Mejatty, and A. Winter, Phys. Rev. A 95, 062327 (2017).
https://doi.org/10.1103/PhysRevA.95.062327
[16] M. García Díaz, K. Fang, X. Wang, M. Rosati, M. Skotiniotis, J. Calsamiglia, and A. Winter, Quantum 2, 100 (2018).
https://doi.org/10.22331/q-2018-10-19-100
[17] T. Theurer, D. Egloff, L. Zhang, and M. B. Plenio, Phys. Rev. Lett. 122, 190405 (2019).
https://doi.org/10.1103/PhysRevLett.122.190405
[18] Y. Liu and X. Yuan, Phys. Rev. Research 2, 012035 (2020).
https://doi.org/10.1103/PhysRevResearch.2.012035
[19] G. Gour and A. Winter, Phys. Rev. Lett. 123, 150401 (2019).
https://doi.org/10.1103/PhysRevLett.123.150401
[20] A. Smirne, D. Egloff, M. García Díaz, M. B. Plenio, and S. F. Huelga, Quantum Science and Technology 4, 01LT01 (2018).
https://doi.org/10.1088/2058-9565/aaebd5
http://stacks.iop.org/2058-9565/4/i=1/a=01LT01
[21] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
https://books.google.es/books?id=0Yx5VzaMYm8C
[22] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Journal of Mathematical Physics 17, 821 (1976).
https://doi.org/10.1063/1.522979
[23] G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
https://doi.org/10.1007/BF01608499
[24] B.-G. Englert and G. Morigi, ``Coherent evolution in noisy environments,'' (Springer-Verlag, 2002) Chap. Five Lectures on Dissipative Master Equations, pp. 55–106.
https://doi.org/10.1007/3-540-45855-7_2
[25] A. Rivas and S. F. Huelga, Open Quantum Systems (Springer, 2012).
https://doi.org/10.1007/978-3-642-23354-8
[26] V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. Sudarshan, Reports on Mathematical Physics 13, 149 (1978).
https://doi.org/10.1016/0034-4877(78)90050-2
[27] G. Kiršanskas, M. Franckié, and A. Wacker, Phys. Rev. B 97, 035432 (2018).
https://doi.org/10.1103/PhysRevB.97.035432
[28] D. G. Walls and G. J. Milburn, Quantum Optics, 2nd ed. (Springer-Verlag, 2008).
https://doi.org/10.1007/978-3-540-28574-8
[29] T. Brandes, Physics Reports 408, 315 (2005).
https://doi.org/10.1016/j.physrep.2004.12.002
[30] E. Chitambar and G. Gour, Phys. Rev. Lett. 117, 030401 (2016).
https://doi.org/10.1103/PhysRevLett.117.030401
[31] Z.-W. Liu, X. Hu, and S. Lloyd, Phys. Rev. Lett. 118, 060502 (2017).
https://doi.org/10.1103/PhysRevLett.118.060502
[32] M. Lax, J. Math. Phys. 172, 350 (1968).
https://doi.org/10.1103/PhysRev.172.350
[33] S. Swain, J. Phys. A: Math. Gen. 14, 2577 (1981).
https://doi.org/10.1088/0305-4470/14/10/013
[34] H. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, 1993).
https://doi.org/10.1007/978-3-540-47620-7
[35] G. Guarnieri, A. Smirne, and B. Vacchini, Phys. Rev. A 90, 022110 (2014).
https://doi.org/10.1103/PhysRevA.90.022110
[36] W. Feller, An introduction to probability theory and its applications, Vol. 2 (John Wiley & Sons Inc., New York, 1971).
[37] A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
https://doi.org/10.1103/PhysRevLett.54.857
[38] C. Emary, N. Lambert, and F. Nori, Reports on Progress in Physics 77, 016001 (2014).
https://doi.org/10.1088/0034-4885/77/1/016001
[39] S. F. Huelga, T. W. Marshall, and E. Santos, Phys. Rev. A 52, R2497 (1995).
https://doi.org/10.1103/PhysRevA.52.R2497
[40] A. Smirne, T. Nitsche, D. Egloff, S. Barkhofen, S. De, I. Dhand, C. Silberhorn, S. F. Huelga, and M. B. Plenio, ``Experimental Control of the Degree of Non-Classicality via Quantum Coherence,'' (2019), arXiv:1910.11830 [quant-ph].
arXiv:1910.11830
[41] P. Strasberg and M. G. Díaz, Phys. Rev. A 100, 022120 (2019).
https://doi.org/10.1103/PhysRevA.100.022120
[42] S. Milz, D. Egloff, P. Taranto, T. Theurer, M. B. Plenio, A. Smirne, and S. F. Huelga, ``When is a non-Markovian quantum process classical?'' (2019), arXiv:1907.05807 [quant-ph].
arXiv:1907.05807
[43] J. Segercrantz, The American Mathematical Monthly 99, 42 (1992).
https://doi.org/10.1080/00029890.1992.11995803
[44] R. Chaves, J. B. Brask, M. Markiewicz, J. Kołodyński, and A. Acín, Phys. Rev. Lett. 111, 120401 (2013).
https://doi.org/10.1103/PhysRevLett.111.120401
[45] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).
https://doi.org/10.1103/PhysRevLett.79.3865
[46] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Phys. 7, 406 (2011).
https://doi.org/10.1038/nphys1958
[47] R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, Nat. Commun. 3, 1063 (2012).
https://doi.org/10.1038/ncomms2067
[48] J. F. Haase, A. Smirne, J. Kołodyński, R. Demkowicz-Dobrzański, and S. F. Huelga, Quantum Meas. Quantum Metrol. 5, 13 (2018).
https://doi.org/10.1515/qmetro-2018-0002
[49] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, in Progress in Optics, Vol. 60, edited by E. Wolf (Elsevier, 2015) pp. 345–435.
https://doi.org/10.1016/bs.po.2015.02.003
[50] P. Sekatski, M. Skotiniotis, J. Kołodyński, and W. Dür, Quantum 1, 27 (2017).
https://doi.org/10.22331/q-2017-09-06-27
[51] R. Demkowicz-Dobrzański, J. Czajkowski, and P. Sekatski, Phys. Rev. X 7, 041009 (2017).
https://doi.org/10.1103/PhysRevX.7.041009
[52] S. Zhou, M. Zhang, J. Preskill, and L. Jiang, Nature Communications 9, 78 (2018).
https://doi.org/10.1038/s41467-017-02510-3
Cited by
[1] Si-ren Yang and Chang-shui Yu, "Quantifying dynamical total coherence in a resource non-increasing framework", Quantum Information Processing 22 1, 30 (2022).
[2] Andrea Smirne, Nina Megier, and Bassano Vacchini, "On the connection between microscopic description and memory effects in open quantum system dynamics", Quantum 5, 439 (2021).
[3] Stefano Gherardini, Andrea Smirne, Susana F Huelga, and Filippo Caruso, "Transfer-tensor description of memory effects in open-system dynamics and multi-time statistics", Quantum Science and Technology 7 2, 025005 (2022).
[4] Gerhard Dorn, Enrico Arrigoni, and Wolfgang von der Linden, "Efficient energy resolved quantum master equation for transport calculations in large strongly correlated systems", Journal of Physics A: Mathematical and Theoretical 54 7, 075301 (2021).
[5] A Smirne, T Nitsche, D Egloff, S Barkhofen, S De, I Dhand, C Silberhorn, S F Huelga, and M B Plenio, "Experimental control of the degree of non-classicality via quantum coherence", Quantum Science and Technology 5 4, 04LT01 (2020).
[6] Masaya Takahashi, Swapan Rana, and Alexander Streltsov, "Creating and destroying coherence with quantum channels", Physical Review A 105 6, L060401 (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-05-30 11:12:56). The list may be incomplete as not all publishers provide suitable and complete citation data.
On SAO/NASA ADS no data on citing works was found (last attempt 2023-05-30 11:12:56).
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.