Accessible coherence in open quantum system dynamics

María García Díaz1, Benjamin Desef2, Matteo Rosati1, Dario Egloff2,3, John Calsamiglia1, Andrea Smirne2,4, Michaelis Skotiniotis1, and Susana F. Huelga2

1Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
2Institute of Theoretical Physics and IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
3Institute of Theoretical Physics, Technical University Dresden, D-01062 Dresden, Germany
4Dipartimento di Fisica Aldo Pontremoli, Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Quantum coherence generated in a physical process can only be cast as a potentially useful resource if its effects can be detected at a later time. Recently, the notion of non-coherence-generating-and-detecting (NCGD) dynamics has been introduced and related to the classicality of the statistics associated with sequential measurements at different times. However, in order for a dynamics to be NCGD, its propagators need to satisfy a given set of conditions for $all$ triples of consecutive times. We reduce this to a finite set of $d(d-1)$ conditions, where $d$ is the dimension of the quantum system, provided that the generator is time-independent. Further conditions are derived for the more general time-dependent case. The application of this result to the case of a qubit dynamics allows us to elucidate which kind of noise gives rise to non-coherence-generation-and-detection.

► BibTeX data

► References

[1] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Science 345, 420 (2014).
https:/​/​doi.org/​10.1126/​science.1252319

[2] E. T. Campbell, B. M. Terhal, and C. Vuillot, Nature 549, 172 (2017).
https:/​/​doi.org/​10.1038/​nature23460

[3] J. Preskill, Quantum 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[4] N. Gisin and R. Thew, Nature Photonics 1, 165 (2007).
https:/​/​doi.org/​10.1038/​nphoton.2007.22

[5] A. Galindo and M. A. Martín-Delgado, Rev. Mod. Phys. 74, 347 (2002).
https:/​/​doi.org/​10.1103/​RevModPhys.74.347

[6] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014).
https:/​/​doi.org/​10.1103/​RevModPhys.86.153

[7] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photonics 5, 222 (2011).
https:/​/​doi.org/​10.1038/​nphoton.2011.35

[8] G. Tóth and I. Apellaniz, J. Phys. A: Math. and Theor. 47, 424006 (2014).
https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424006

[9] C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017).
https:/​/​doi.org/​10.1103/​RevModPhys.89.035002

[10] J. Åberg, ``Quantifying superposition,'' (2006), arXiv:quant-ph/​0612146 [quant-ph].
arXiv:quant-ph/0612146

[11] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.140401

[12] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89, 041003 (2017).
https:/​/​doi.org/​10.1103/​RevModPhys.89.041003

[13] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.120404

[14] D. Egloff, J. M. Matera, T. Theurer, and M. B. Plenio, Phys. Rev. X 8, 031005 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.031005

[15] K. Ben Dana, M. García Díaz, M. Mejatty, and A. Winter, Phys. Rev. A 95, 062327 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.062327

[16] M. García Díaz, K. Fang, X. Wang, M. Rosati, M. Skotiniotis, J. Calsamiglia, and A. Winter, Quantum 2, 100 (2018).
https:/​/​doi.org/​10.22331/​q-2018-10-19-100

[17] T. Theurer, D. Egloff, L. Zhang, and M. B. Plenio, Phys. Rev. Lett. 122, 190405 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.190405

[18] Y. Liu and X. Yuan, Phys. Rev. Research 2, 012035 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.012035

[19] G. Gour and A. Winter, Phys. Rev. Lett. 123, 150401 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.150401

[20] A. Smirne, D. Egloff, M. García Díaz, M. B. Plenio, and S. F. Huelga, Quantum Science and Technology 4, 01LT01 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aaebd5
http:/​/​stacks.iop.org/​2058-9565/​4/​i=1/​a=01LT01

[21] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
https:/​/​books.google.es/​books?id=0Yx5VzaMYm8C

[22] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Journal of Mathematical Physics 17, 821 (1976).
https:/​/​doi.org/​10.1063/​1.522979

[23] G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
https:/​/​doi.org/​10.1007/​BF01608499

[24] B.-G. Englert and G. Morigi, ``Coherent evolution in noisy environments,'' (Springer-Verlag, 2002) Chap. Five Lectures on Dissipative Master Equations, pp. 55–106.
https:/​/​doi.org/​10.1007/​3-540-45855-7_2

[25] A. Rivas and S. F. Huelga, Open Quantum Systems (Springer, 2012).
https:/​/​doi.org/​10.1007/​978-3-642-23354-8

[26] V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. Sudarshan, Reports on Mathematical Physics 13, 149 (1978).
https:/​/​doi.org/​10.1016/​0034-4877(78)90050-2

[27] G. Kiršanskas, M. Franckié, and A. Wacker, Phys. Rev. B 97, 035432 (2018).
https:/​/​doi.org/​10.1103/​PhysRevB.97.035432

[28] D. G. Walls and G. J. Milburn, Quantum Optics, 2nd ed. (Springer-Verlag, 2008).
https:/​/​doi.org/​10.1007/​978-3-540-28574-8

[29] T. Brandes, Physics Reports 408, 315 (2005).
https:/​/​doi.org/​10.1016/​j.physrep.2004.12.002

[30] E. Chitambar and G. Gour, Phys. Rev. Lett. 117, 030401 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.030401

[31] Z.-W. Liu, X. Hu, and S. Lloyd, Phys. Rev. Lett. 118, 060502 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.060502

[32] M. Lax, J. Math. Phys. 172, 350 (1968).
https:/​/​doi.org/​10.1103/​PhysRev.172.350

[33] S. Swain, J. Phys. A: Math. Gen. 14, 2577 (1981).
https:/​/​doi.org/​10.1088/​0305-4470/​14/​10/​013

[34] H. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, 1993).
https:/​/​doi.org/​10.1007/​978-3-540-47620-7

[35] G. Guarnieri, A. Smirne, and B. Vacchini, Phys. Rev. A 90, 022110 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.90.022110

[36] W. Feller, An introduction to probability theory and its applications, Vol. 2 (John Wiley & Sons Inc., New York, 1971).

[37] A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
https:/​/​doi.org/​10.1103/​PhysRevLett.54.857

[38] C. Emary, N. Lambert, and F. Nori, Reports on Progress in Physics 77, 016001 (2014).
https:/​/​doi.org/​10.1088/​0034-4885/​77/​1/​016001

[39] S. F. Huelga, T. W. Marshall, and E. Santos, Phys. Rev. A 52, R2497 (1995).
https:/​/​doi.org/​10.1103/​PhysRevA.52.R2497

[40] A. Smirne, T. Nitsche, D. Egloff, S. Barkhofen, S. De, I. Dhand, C. Silberhorn, S. F. Huelga, and M. B. Plenio, ``Experimental Control of the Degree of Non-Classicality via Quantum Coherence,'' (2019), arXiv:1910.11830 [quant-ph].
arXiv:1910.11830

[41] P. Strasberg and M. G. Díaz, Phys. Rev. A 100, 022120 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.100.022120

[42] S. Milz, D. Egloff, P. Taranto, T. Theurer, M. B. Plenio, A. Smirne, and S. F. Huelga, ``When is a non-Markovian quantum process classical?'' (2019), arXiv:1907.05807 [quant-ph].
arXiv:1907.05807

[43] J. Segercrantz, The American Mathematical Monthly 99, 42 (1992).
https:/​/​doi.org/​10.1080/​00029890.1992.11995803

[44] R. Chaves, J. B. Brask, M. Markiewicz, J. Kołodyński, and A. Acín, Phys. Rev. Lett. 111, 120401 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.111.120401

[45] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).
https:/​/​doi.org/​10.1103/​PhysRevLett.79.3865

[46] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Phys. 7, 406 (2011).
https:/​/​doi.org/​10.1038/​nphys1958

[47] R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, Nat. Commun. 3, 1063 (2012).
https:/​/​doi.org/​10.1038/​ncomms2067

[48] J. F. Haase, A. Smirne, J. Kołodyński, R. Demkowicz-Dobrzański, and S. F. Huelga, Quantum Meas. Quantum Metrol. 5, 13 (2018).
https:/​/​doi.org/​10.1515/​qmetro-2018-0002

[49] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, in Progress in Optics, Vol. 60, edited by E. Wolf (Elsevier, 2015) pp. 345–435.
https:/​/​doi.org/​10.1016/​bs.po.2015.02.003

[50] P. Sekatski, M. Skotiniotis, J. Kołodyński, and W. Dür, Quantum 1, 27 (2017).
https:/​/​doi.org/​10.22331/​q-2017-09-06-27

[51] R. Demkowicz-Dobrzański, J. Czajkowski, and P. Sekatski, Phys. Rev. X 7, 041009 (2017).
https:/​/​doi.org/​10.1103/​PhysRevX.7.041009

[52] S. Zhou, M. Zhang, J. Preskill, and L. Jiang, Nature Communications 9, 78 (2018).
https:/​/​doi.org/​10.1038/​s41467-017-02510-3

Cited by

[1] A Smirne, T Nitsche, D Egloff, S Barkhofen, S De, I Dhand, C Silberhorn, S F Huelga, and M B Plenio, "Experimental control of the degree of non-classicality via quantum coherence", Quantum Science and Technology 5 4, 04LT01 (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2020-10-21 20:37:14). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2020-10-21 20:37:14).