Variational Quantum Fidelity Estimation

Marco Cerezo1,2, Alexander Poremba3, Lukasz Cincio1, and Patrick J. Coles1

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
2Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
3Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Computing quantum state fidelity will be important to verify and characterize states prepared on a quantum computer. In this work, we propose novel lower and upper bounds for the fidelity $F(\rho,\sigma)$ based on the ``truncated fidelity'' $F(\rho_m, \sigma)$, which is evaluated for a state $\rho_m$ obtained by projecting $\rho$ onto its $m$-largest eigenvalues. Our bounds can be refined, i.e., they tighten monotonically with $m$. To compute our bounds, we introduce a hybrid quantum-classical algorithm, called Variational Quantum Fidelity Estimation, that involves three steps: (1) variationally diagonalize $\rho$, (2) compute matrix elements of $\sigma$ in the eigenbasis of $\rho$, and (3) combine these matrix elements to compute our bounds. Our algorithm is aimed at the case where $\sigma$ is arbitrary and $\rho$ is low rank, which we call low-rank fidelity estimation, and we prove that no classical algorithm can efficiently solve this problem under reasonable assumptions. Finally, we demonstrate that our bounds can detect quantum phase transitions and are often tighter than previously known computable bounds for realistic situations.

In the past few years, there has been tremendous progress towards the development of near-term quantum devices. Today's quantum computers have limited number of qubits to work with, and are prone to noise-induced error. Nevertheless, despite those limitations, it has been recently shown that they can outperform our current supercomputers, being able to prepare quantum states that cannot be classically simulated. Hence, a very important question becomes: How do we verify and characterize these states prepared on a quantum computer?

Estimating a state's fidelity to a target state provides a $mean$ to verify and characterize the state. However, estimating the fidelity is known to $\textit{be a computationally}$ difficult task for a classical or even a quantum computer. Specifically, no classical or quantum algorithm exists to efficiently compute such quantities. In this work we introduce a hybrid quantum-classical algorithm to estimate the fidelity for the practically important case when one of the two states is low rank. Specifically, we introduce new lower and upper bounds for the fidelity which can be refined to arbitrary tightness, and we show that these bounds can outperform other known computable state-of-the-art bounds for the fidelity. Second, we introduce a near-term algorithm for computing our bounds.

► BibTeX data

► References

[1] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5: 4213, 2014. https:/​/​​10.1038/​ncomms5213.

[2] Katherine L Brown, William J Munro, and Vivien M Kendon. Using quantum computers for quantum simulation. Entropy, 12 (11): 2268–2307, 2010. https:/​/​​10.3390/​e12112268.

[3] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations. Physical review letters, 103 (15): 150502, 2009. https:/​/​​10.1103/​PhysRevLett.103.150502.

[4] Armin Uhlmann. The "transition probability" in the state space of a$\star$-algebra. Reports on Mathematical Physics, 9 (2): 273–279, 1976. https:/​/​​10.1016/​0034-4877(76)90060-4.

[5] Richard Jozsa. Fidelity for mixed quantum states. Journal of modern optics, 41 (12): 2315–2323, 1994. https:/​/​​10.1080/​09500349414552171.

[6] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. December 2010. https:/​/​​10.1017/​CBO9780511976667.

[7] M. M. Wilde. Quantum Information Theory. Cambridge University Press, 2 edition, 2017. https:/​/​​10.1017/​9781316809976.

[8] Yeong-Cherng Liang, Yu-Hao Yeh, Paulo E M F Mendonça, Run Yan Teh, Margaret D Reid, and Peter D Drummond. Quantum fidelity measures for mixed states. Reports on Progress in Physics, 82 (7): 076001, jun 2019. https:/​/​​10.1088/​1361-6633/​ab1ca4.

[9] Markus Hauru and Guifre Vidal. Uhlmann fidelities from tensor networks. Physical Review A, 98 (4): 042316, 2018. https:/​/​​10.1103/​PhysRevA.98.042316.

[10] John Watrous. Quantum statistical zero-knowledge. arXiv:quant-ph/​0202111, 2002. URL https:/​/​​abs/​quant-ph/​0202111.

[11] Hui Li and F. D. M. Haldane. Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states. Phys. Rev. Lett., 101: 010504, Jul 2008. https:/​/​​10.1103/​PhysRevLett.101.010504.

[12] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006. URL https:/​/​​gp/​book/​9780387310732.

[13] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv:1411.4028, 2014. URL https:/​/​​abs/​1411.4028.

[14] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18 (2): 023023, 2016. https:/​/​​10.1088/​1367-2630/​18/​2/​023023.

[15] J. Romero, J. P. Olson, and A. Aspuru-Guzik. Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology, 2: 045001, December 2017. https:/​/​​10.1088/​2058-9565/​aa8072.

[16] Ying Li and Simon C Benjamin. Efficient variational quantum simulator incorporating active error minimization. Physical Review X, 7 (2): 021050, 2017. https:/​/​​10.1103/​PhysRevX.7.021050.

[17] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, and P. J. Coles. Quantum-assisted quantum compiling. Quantum, 3: 140, May 2019. ISSN 2521-327X. https:/​/​​10.22331/​q-2019-05-13-140.

[18] Ryan LaRose, Arkin Tikku, Étude O'Neel-Judy, Lukasz Cincio, and Patrick J Coles. Variational quantum state diagonalization. npj Quantum Information, 5 (1): 8, 2019. https:/​/​​10.1038/​s41534-019-0167-6.

[19] A. Arrasmith, L. Cincio, A. T. Sornborger, W. H. Zurek, and P. J. Coles. Variational consistent histories as a hybrid algorithm for quantum foundations. Nature communications, 10 (1): 3438, 2019. https:/​/​​10.1038/​s41467-019-11417-0.

[20] Kunal Sharma, Sumeet Khatri, M Cerezo, and Patrick J Coles. Noise resilience of variational quantum compiling. New Journal of Physics, 2020. https:/​/​​10.1088/​1367-2630/​ab784c.

[21] Cristina Cirstoiu, Zoe Holmes, Joseph Iosue, Lukasz Cincio, Patrick J Coles, and Andrew Sornborger. Variational fast forwarding for quantum simulation beyond the coherence time. arXiv:1910.04292, 2019. URL https:/​/​​abs/​1910.04292.

[22] Jaroslaw Adam Miszczak, Zbigniew Puchala, Pawel Horodecki, Armin Uhlmann, and Karol Zyczkowski. Sub- and super-fidelity as bounds for quantum fidelity. Quantum Information & Computation, 9 (1): 103–130, 2009. https:/​/​​10.26421/​QIC9.1-2.

[23] Jing-Ling Chen, Libin Fu, Abraham A Ungar, and Xian-Geng Zhao. Alternative fidelity measure between two states of an n-state quantum system. Physical Review A, 65 (5): 054304, 2002. https:/​/​​10.1103/​PhysRevA.65.054304.

[24] Paulo EMF Mendonça, Reginaldo d J Napolitano, Marcelo A Marchiolli, Christopher J Foster, and Yeong-Cherng Liang. Alternative fidelity measure between quantum states. Physical Review A, 78 (5): 052330, 2008. https:/​/​​10.1103/​PhysRevA.78.052330.

[25] Zbigniew Puchała and Jarosław Adam Miszczak. Bound on trace distance based on superfidelity. Phys. Rev. A, 79: 024302, Feb 2009. https:/​/​​10.1103/​PhysRevA.79.024302.

[26] Todd A Brun. Measuring polynomial functions of states. Quantum Information & Computation, 4 (5): 401–408, 2004. URL https:/​/​​abs/​quant-ph/​0401067.

[27] Karol Bartkiewicz, Karel Lemr, and Adam Miranowicz. Direct method for measuring of purity, superfidelity, and subfidelity of photonic two-qubit mixed states. Phys. Rev. A, 88: 052104, Nov 2013. https:/​/​​10.1103/​PhysRevA.88.052104.

[28] L. Cincio, Y. Subaşi, A. T. Sornborger, and P. J. Coles. Learning the quantum algorithm for state overlap. New J. Phys., 20: 113022, Nov 2018. https:/​/​​10.1088/​1367-2630/​aae94a.

[29] J. C. Garcia-Escartin and P. Chamorro-Posada. Swap test and Hong-Ou-Mandel effect are equivalent. Phys. Rev. A, 87: 052330, May 2013. https:/​/​​10.1103/​PhysRevA.87.052330.

[30] Marco Tomamichel, Roger Colbeck, and Renato Renner. Duality between smooth min-and max-entropies. IEEE Transactions on Information Theory, 56 (9): 4674–4681, 2010. https:/​/​​10.1109/​TIT.2010.2054130.

[31] Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations, volume 5. Springer, 2015. https:/​/​​10.1007/​978-3-319-21891-5.

[32] John A. Smolin, Jay M. Gambetta, and Graeme Smith. Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise. Phys. Rev. Lett., 108: 070502, Feb 2012. https:/​/​​10.1103/​PhysRevLett.108.070502.

[33] Alexei Gilchrist, Nathan K. Langford, and Michael A. Nielsen. Distance measures to compare real and ideal quantum processes. Phys. Rev. A, 71: 062310, Jun 2005. https:/​/​​10.1103/​PhysRevA.71.062310.

[34] Alexey E Rastegin. Sine distance for quantum states. quant-ph/​0602112, 2006. URL https:/​/​​abs/​quant-ph/​0602112.

[35] M J. D. Powell. The bobyqa algorithm for bound constrained optimization without derivatives. Technical Report, Department of Applied Mathematics and Theoretical Physics, 01 2009. URL http:/​/​​user/​na/​NA_papers/​NA2009_06.pdf.

[36] Jonas M Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J Coles. An adaptive optimizer for measurement-frugal variational algorithms. arXiv preprint arXiv:1909.09083, 2019. URL https:/​/​​abs/​1909.09083.

[37] Paolo Zanardi, H. T. Quan, Xiaoguang Wang, and C. P. Sun. Mixed-state fidelity and quantum criticality at finite temperature. Phys. Rev. A, 75: 032109, Mar 2007a. https:/​/​​10.1103/​PhysRevA.75.032109.

[38] Paolo Zanardi, Paolo Giorda, and Marco Cozzini. Information-theoretic differential geometry of quantum phase transitions. Phys. Rev. Lett., 99: 100603, Sep 2007b. https:/​/​​10.1103/​PhysRevLett.99.100603.

[39] H. T. Quan and F. M. Cucchietti. Quantum fidelity and thermal phase transitions. Phys. Rev. E, 79: 031101, Mar 2009. https:/​/​​10.1103/​PhysRevE.79.031101.

[40] Frank Verstraete, J Ignacio Cirac, and José I Latorre. Quantum circuits for strongly correlated quantum systems. Physical Review A, 79 (3): 032316, 2009. https:/​/​​10.1103/​PhysRevA.79.032316.

[41] Alba Cervera-Lierta. Exact Ising model simulation on a quantum computer. Quantum, 2: 114, December 2018. ISSN 2521-327X. https:/​/​​10.22331/​q-2018-12-21-114.

[42] Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. pages 217–228, 2019. https:/​/​​10.1145/​3313276.3316310.

[43] András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension. arXiv preprint arXiv:1811.04909, 2018. URL https:/​/​​abs/​1811.04909.

[44] E. Knill and R. Laflamme. Power of one bit of quantum information. Physical Review Letters, 81: 5672–5675, 1998. https:/​/​​10.1103/​PhysRevLett.81.5672.

[45] K. Fujii, H. Kobayashi, T. Morimae, H. Nishimura, S. Tamate, and S. Tani. Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error. Physical Review Letters, 120: 200502, May 2018. https:/​/​​10.1103/​PhysRevLett.120.200502.

[46] Tomoyuki Morimae. Hardness of classically sampling one clean qubit model with constant total variation distance error. 2017. https:/​/​​10.1103/​PhysRevA.96.040302.

[47] Christian Schwemmer, Lukas Knips, Daniel Richart, Harald Weinfurter, Tobias Moroder, Matthias Kleinmann, and Otfried Gühne. Systematic errors in current quantum state tomography tools. Physical review letters, 114 (8): 080403, 2015. https:/​/​​10.1103/​PhysRevLett.114.080403.

[48] Gael Sentís, Johannes N Greiner, Jiangwei Shang, Jens Siewert, and Matthias Kleinmann. Bound entangled states fit for robust experimental verification. Quantum, 2: 113, 2018. https:/​/​​10.22331/​q-2018-12-18-113.

[49] Zbigniew Puchała, Jarosław Adam Miszczak, Piotr Gawron, and Bartłomiej Gardas. Experimentally feasible measures of distance between quantum operations. Quantum Information Processing, 10 (1): 1–12, 2011. https:/​/​​10.1007/​s11128-010-0166-1.

[50] Martin Müller-Lennert, Frédéric Dupuis, Oleg Szehr, Serge Fehr, and Marco Tomamichel. On quantum rényi entropies: A new generalization and some properties. Journal of Mathematical Physics, 54 (12): 122203, 2013. https:/​/​​10.1063/​1.4838856.

[51] Mark M Wilde, Andreas Winter, and Dong Yang. Strong converse for the classical capacity of entanglement-breaking and hadamard channels via a sandwiched rényi relative entropy. Communications in Mathematical Physics, 331 (2): 593–622, 2014. https:/​/​​10.1007/​s00220-014-2122-x.

[52] Patrick J. Coles, M. Cerezo, and Lukasz Cincio. Strong bound between trace distance and hilbert-schmidt distance for low-rank states. Phys. Rev. A, 100: 022103, Aug 2019. https:/​/​​10.1103/​PhysRevA.100.022103.

[53] Bernhard Baumgartner. An inequality for the trace of matrix products, using absolute values. arXiv:1106.6189, 2011. URL https:/​/​​abs/​1106.6189.

[54] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990. https:/​/​​10.1017/​CBO9780511810817.

[55] H. Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen, 71 (4): 441–479, 1912. https:/​/​​10.1007/​BF01456804.

[56] A. S. Kholevo. On quasiequivalence of locally normal states. Theoretical and Mathematical Physics, 13 (2): 1071–1082, Nov 1972. ISSN 1573-9333. https:/​/​​10.1007/​BF01035528.

[57] Koenraad M. R. Audenaert. Comparisons between quantum state distinguishability measures. Quantum Info. Comput., 14 (1–2): 31–38, January 2014. ISSN 1533-7146. https:/​/​​10.26421/​QIC14.1-2.

Cited by

[1] Peixun Long and Jianjun Zhao, "Testing Multi-Subroutine Quantum Programs: From Unit Testing to Integration Testing", ACM Transactions on Software Engineering and Methodology 3656339 (2024).

[2] Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkoff, Andrew T. Sornborger, and Patrick J. Coles, "Absence of Barren Plateaus in Quantum Convolutional Neural Networks", Physical Review X 11 4, 041011 (2021).

[3] Kok Chuan Tan and Tyler Volkoff, "Variational quantum algorithms to estimate rank, quantum entropies, fidelity, and Fisher information via purity minimization", Physical Review Research 3 3, 033251 (2021).

[4] Valeria Saggio and Philip Walther, "Few‐Copy Entanglement Detection in the Presence of Noise", Annalen der Physik 534 7, 2100597 (2022).

[5] M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles, "Variational quantum state eigensolver", npj Quantum Information 8 1, 113 (2022).

[6] Anqi Zhang, Chunhui Wu, and Shengmei Zhao, "Gray Code based Gradient-Free Optimization Algorithm for Parameterized Quantum Circuit", Chinese Physics B 33 2, 020311 (2023).

[7] Niklas Euler and Martin Gärttner, "Detecting High-Dimensional Entanglement in Cold-Atom Quantum Simulators", PRX Quantum 4 4, 040338 (2023).

[8] Sheng-Hsuan Lin, Rohit Dilip, Andrew G. Green, Adam Smith, and Frank Pollmann, "Real- and Imaginary-Time Evolution with Compressed Quantum Circuits", PRX Quantum 2 1, 010342 (2021).

[9] Xiao-Qi Liu, Yue-Di Qu, Jing Wang, Ming Li, and Shu-Qian Shen, "Solving the Fully Entangled Fraction on Near-Term Quantum Devices", International Journal of Theoretical Physics 62 3, 69 (2023).

[10] Fan-Xu Meng, Ze-Tong Li, Yu Xu-Tao, and Zai-Chen Zhang, "Quantum algorithm for MUSIC-based DOA estimation in hybrid MIMO systems", Quantum Science and Technology 7 2, 025002 (2022).

[11] Chenfeng Cao, Yunlong Yu, Zipeng Wu, Nic Shannon, Bei Zeng, and Robert Joynt, "Mitigating algorithmic errors in quantum optimization through energy extrapolation", Quantum Science and Technology 8 1, 015004 (2023).

[12] Peixun Long and Jianjun Zhao, "Equivalence, identity, and unitarity checking in black-box testing of quantum programs", Journal of Systems and Software 211, 112000 (2024).

[13] Shaoxuan Wang, Yingtong Shen, Xinjian Liu, Haoying Zhang, and Yukun Wang, "Variational quantum entanglement classification discrimination", Physica A: Statistical Mechanics and its Applications 637, 129530 (2024).

[14] Lukasz Cincio, Kenneth Rudinger, Mohan Sarovar, and Patrick J. Coles, "Machine Learning of Noise-Resilient Quantum Circuits", PRX Quantum 2 1, 010324 (2021).

[15] Fan-Xu Meng, Ze-Tong Li, Xu-Tao Yu, and Zai-Chen Zhang, "Quantum Circuit Architecture Optimization for Variational Quantum Eigensolver via Monto Carlo Tree Search", IEEE Transactions on Quantum Engineering 2, 1 (2021).

[16] Akash Kundu and Jarosław Adam Miszczak, "Variational certification of quantum devices", Quantum Science and Technology 7 4, 045017 (2022).

[17] Yuxuan Du, Yang Qian, Xingyao Wu, and Dacheng Tao, "A Distributed Learning Scheme for Variational Quantum Algorithms", IEEE Transactions on Quantum Engineering 3, 1 (2022).

[18] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan, "Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation", Journal of the Physical Society of Japan 90 3, 032001 (2021).

[19] Zoë Holmes, Andrew Arrasmith, Bin Yan, Patrick J. Coles, Andreas Albrecht, and Andrew T. Sornborger, "Barren Plateaus Preclude Learning Scramblers", Physical Review Letters 126 19, 190501 (2021).

[20] Carlos Bravo-Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles, "Variational Quantum Linear Solver", Quantum 7, 1188 (2023).

[21] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles, "Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus", PRX Quantum 3 1, 010313 (2022).

[22] Ieva Čepaitė, Brian Coyle, and Elham Kashefi, "A continuous variable Born machine", Quantum Machine Intelligence 4 1, 6 (2022).

[23] Andrew Arrasmith, Zoë Holmes, M Cerezo, and Patrick J Coles, "Equivalence of quantum barren plateaus to cost concentration and narrow gorges", Quantum Science and Technology 7 4, 045015 (2022).

[24] Kunal Sharma, M. Cerezo, Lukasz Cincio, and Patrick J. Coles, "Trainability of Dissipative Perceptron-Based Quantum Neural Networks", Physical Review Letters 128 18, 180505 (2022).

[25] Andrew Arrasmith, M. Cerezo, Piotr Czarnik, Lukasz Cincio, and Patrick J. Coles, "Effect of barren plateaus on gradient-free optimization", Quantum 5, 558 (2021).

[26] Hanrui Wang, Zhiding Liang, Jiaqi Gu, Zirui Li, Yongshan Ding, Weiwen Jiang, Yiyu Shi, David Z. Pan, Frederic T. Chong, and Song Han, Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design 1 (2022) ISBN:9781450392174.

[27] Akira Sone, M. Cerezo, Jacob L. Beckey, and Patrick J. Coles, "Generalized measure of quantum Fisher information", Physical Review A 104 6, 062602 (2021).

[28] Jaiteg Singh, Farman Ali, Babar Shah, Kamalpreet Singh Bhangu, and Daehan Kwak, "Emotion Quantification Using Variational Quantum State Fidelity Estimation", IEEE Access 10, 115108 (2022).

[29] Ankit Kulshrestha, Xiaoyuan Liu, Hayato Ushijima-Mwesigwa, and Ilya Safro, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 263 (2023) ISBN:979-8-3503-4323-6.

[30] Kunal Sharma, M. Cerezo, Zoë Holmes, Lukasz Cincio, Andrew Sornborger, and Patrick J. Coles, "Reformulation of the No-Free-Lunch Theorem for Entangled Datasets", Physical Review Letters 128 7, 070501 (2022).

[31] Corey Jason Trahan, Mark Loveland, Noah Davis, and Elizabeth Ellison, "A Variational Quantum Linear Solver Application to Discrete Finite-Element Methods", Entropy 25 4, 580 (2023).

[32] M Cerezo and Patrick J Coles, "Higher order derivatives of quantum neural networks with barren plateaus", Quantum Science and Technology 6 3, 035006 (2021).

[33] Yang Qian, Xinbiao Wang, Yuxuan Du, Xingyao Wu, and Dacheng Tao, "The Dilemma of Quantum Neural Networks", IEEE Transactions on Neural Networks and Learning Systems 35 4, 5603 (2024).

[34] Santosh Kumar, "Wishart and random density matrices: Analytical results for the mean-square Hilbert-Schmidt distance", Physical Review A 102 1, 012405 (2020).

[35] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles, "Variational quantum algorithms", Nature Reviews Physics 3 9, 625 (2021).

[36] Enrico Fontana, M. Cerezo, Andrew Arrasmith, Ivan Rungger, and Patrick J. Coles, "Non-trivial symmetries in quantum landscapes and their resilience to quantum noise", Quantum 6, 804 (2022).

[37] Soorya Rethinasamy, Rochisha Agarwal, Kunal Sharma, and Mark M. Wilde, "Estimating distinguishability measures on quantum computers", Physical Review A 108 1, 012409 (2023).

[38] Hrushikesh Patil, Yulun Wang, and Predrag S. Krstić, "Variational quantum linear solver with a dynamic ansatz", Physical Review A 105 1, 012423 (2022).

[39] Aritra Laha and Santosh Kumar, "Random density matrices: Closed form expressions for the variance of squared Hilbert-Schmidt distance", Physics Letters A 129591 (2024).

[40] Zhenyu Xu, Aurelia Chenu, Tomaž Prosen, and Adolfo del Campo, "Thermofield dynamics: Quantum chaos versus decoherence", Physical Review B 103 6, 064309 (2021).

[41] Brian Coyle, Mina Doosti, Elham Kashefi, and Niraj Kumar, "Progress toward practical quantum cryptanalysis by variational quantum cloning", Physical Review A 105 4, 042604 (2022).

[42] Chenfeng Cao, Hiroshi Yano, and Yuya O. Nakagawa, "Accelerated variational quantum eigensolver with joint Bell measurement", Physical Review Research 6 1, 013205 (2024).

[43] M Cerezo, Akira Sone, Jacob L Beckey, and Patrick J Coles, "Sub-quantum Fisher information", Quantum Science and Technology 6 3, 035008 (2021).

[44] Benoît Vermersch, Aniket Rath, Bharathan Sundar, Cyril Branciard, John Preskill, and Andreas Elben, "Enhanced Estimation of Quantum Properties with Common Randomized Measurements", PRX Quantum 5 1, 010352 (2024).

[45] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).

[46] Ranyiliu Chen, Zhixin Song, Xuanqiang Zhao, and Xin Wang, "Variational quantum algorithms for trace distance and fidelity estimation", Quantum Science and Technology 7 1, 015019 (2022).

[47] Nic Ezzell, Elliott M Ball, Aliza U Siddiqui, Mark M Wilde, Andrew T Sornborger, Patrick J Coles, and Zoë Holmes, "Quantum mixed state compiling", Quantum Science and Technology 8 3, 035001 (2023).

[48] Shiqing Tang, Chong Yang, Dongxiao Li, and Xiaoqiang Shao, "Implementation of Quantum Algorithms via Fast Three-Rydberg-Atom CCZ Gates", Entropy 24 10, 1371 (2022).

[49] Haiyang Qin, Liangyu Che, Chao Wei, Feng Xu, Yulei Huang, and Tao Xin, "Experimental Direct Quantum Fidelity Learning via a Data-Driven Approach", Physical Review Letters 132 19, 190801 (2024).

[50] Michael R. Geller, Zoë Holmes, Patrick J. Coles, and Andrew Sornborger, "Experimental quantum learning of a spectral decomposition", Physical Review Research 3 3, 033200 (2021).

[51] Aritra Laha and Santosh Kumar, "Random density matrices: Analytical results for mean fidelity and variance of squared Bures distance", Physical Review E 107 3, 034206 (2023).

[52] Xin Wang, Zhixin Song, and Youle Wang, "Variational Quantum Singular Value Decomposition", Quantum 5, 483 (2021).

[53] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J. Coles, "Noise-induced barren plateaus in variational quantum algorithms", Nature Communications 12 1, 6961 (2021).

[54] Jiaju Zhang and M. A. Rajabpour, "Subsystem distances between quasiparticle excited states", Journal of High Energy Physics 2022 7, 119 (2022).

[55] Zhu Cao, "Deep Ising Born Machine", Advanced Quantum Technologies 6 7, 2300033 (2023).

[56] Kun Wang, Zhixin Song, Xuanqiang Zhao, Zihe Wang, and Xin Wang, "Detecting and quantifying entanglement on near-term quantum devices", npj Quantum Information 8 1, 52 (2022).

[57] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles, "Cost function dependent barren plateaus in shallow parametrized quantum circuits", Nature Communications 12 1, 1791 (2021).

[58] Jacob L. Beckey, M. Cerezo, Akira Sone, and Patrick J. Coles, "Variational quantum algorithm for estimating the quantum Fisher information", Physical Review Research 4 1, 013083 (2022).

[59] Wen Guan, Gabriel Perdue, Arthur Pesah, Maria Schuld, Koji Terashi, Sofia Vallecorsa, and Jean-Roch Vlimant, "Quantum machine learning in high energy physics", Machine Learning: Science and Technology 2 1, 011003 (2021).

[60] Qisheng Wang and Zhicheng Zhang, "Fast Quantum Algorithms for Trace Distance Estimation", IEEE Transactions on Information Theory 70 4, 2720 (2024).

[61] Kun Wang, Yu-Ao Chen, and Xin Wang, "Mitigating quantum errors via truncated Neumann series", Science China Information Sciences 66 8, 180508 (2023).

[62] Qisheng Wang, Zhicheng Zhang, Kean Chen, Ji Guan, Wang Fang, Junyi Liu, and Mingsheng Ying, "Quantum Algorithm for Fidelity Estimation", IEEE Transactions on Information Theory 69 1, 273 (2023).

[63] Igor Chełstowski, Grzegorz Rajchel-Mieldzioć, and Karol Życzkowski, "Operation fidelity explored by numerical range of Kraus operators", Physical Review A 108 2, 022409 (2023).

[64] Jonas M. Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J. Coles, "An Adaptive Optimizer for Measurement-Frugal Variational Algorithms", Quantum 4, 263 (2020).

[65] Zidu Liu, Li-Wei Yu, L.-M. Duan, and Dong-Ling Deng, "Presence and Absence of Barren Plateaus in Tensor-Network Based Machine Learning", Physical Review Letters 129 27, 270501 (2022).

[66] Yunlong Yu, Chenfeng Cao, Carter Dewey, Xiang-Bin Wang, Nic Shannon, and Robert Joynt, "Quantum approximate optimization algorithm with adaptive bias fields", Physical Review Research 4 2, 023249 (2022).

[67] Jiaju Zhang and M. A. Rajabpour, "Trace distance between fermionic Gaussian states from a truncation method", Physical Review A 108 2, 022414 (2023).

[68] Enrico Fontana, Nathan Fitzpatrick, David Muñoz Ramo, Ross Duncan, and Ivan Rungger, "Evaluating the noise resilience of variational quantum algorithms", Physical Review A 104 2, 022403 (2021).

[69] Yuxuan Du, Yibo Yang, Dacheng Tao, and Min-Hsiu Hsieh, "Problem-Dependent Power of Quantum Neural Networks on Multiclass Classification", Physical Review Letters 131 14, 140601 (2023).

[70] Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew Arrasmith, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Long-time simulations for fixed input states on quantum hardware", npj Quantum Information 8 1, 135 (2022).

[71] Aritra Laha, Agrim Aggarwal, and Santosh Kumar, "Random density matrices: Analytical results for mean root fidelity and the mean-square Bures distance", Physical Review A 104 2, 022438 (2021).

[72] Yinfei Li, Sanjib Ghosh, Jiangwei Shang, Qihua Xiong, and Xiangdong Zhang, "Estimating many properties of a quantum state via quantum reservoir processing", Physical Review Research 6 1, 013211 (2024).

[73] Lorenzo Leone, Salvatore F. E. Oliviero, Stefano Piemontese, Sarah True, and Alioscia Hamma, "Retrieving information from a black hole using quantum machine learning", Physical Review A 106 6, 062434 (2022).

[74] Akira Sone, Naoki Yamamoto, Tharon Holdsworth, and Prineha Narang, "Jarzynski-like equality of nonequilibrium information production based on quantum cross-entropy", Physical Review Research 5 2, 023039 (2023).

[75] Max Hunter Gordon, M. Cerezo, Lukasz Cincio, and Patrick J. Coles, "Covariance Matrix Preparation for Quantum Principal Component Analysis", PRX Quantum 3 3, 030334 (2022).

[76] Akash Kundu, Przemysław Bedełek, Mateusz Ostaszewski, Onur Danaci, Yash J Patel, Vedran Dunjko, and Jarosław A Miszczak, "Enhancing variational quantum state diagonalization using reinforcement learning techniques", New Journal of Physics 26 1, 013034 (2024).

[77] Ryuji Takagi, Suguru Endo, Shintaro Minagawa, and Mile Gu, "Fundamental limits of quantum error mitigation", npj Quantum Information 8 1, 114 (2022).

[78] Ayan Sahoo, Utkarsh Mishra, and Debraj Rakshit, "Localization-driven quantum sensing", Physical Review A 109 3, L030601 (2024).

[79] Mirko Consiglio, Tony J. G. Apollaro, and Marcin Wieśniak, "Variational approach to the quantum separability problem", Physical Review A 106 6, 062413 (2022).

[80] Xiaoqian Zhang, Maolin Luo, Zhaodi Wen, Qin Feng, Shengshi Pang, Weiqi Luo, and Xiaoqi Zhou, "Direct Fidelity Estimation of Quantum States Using Machine Learning", Physical Review Letters 127 13, 130503 (2021).

[81] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan, Patrick J. Coles, and M. Cerezo, "Diagnosing Barren Plateaus with Tools from Quantum Optimal Control", Quantum 6, 824 (2022).

[82] Chenfeng Cao and Xin Wang, "Noise-Assisted Quantum Autoencoder", Physical Review Applied 15 5, 054012 (2021).

[83] Xuanqiang Zhao, Benchi Zhao, Zihe Wang, Zhixin Song, and Xin Wang, "Practical distributed quantum information processing with LOCCNet", npj Quantum Information 7 1, 159 (2021).

[84] Quoc Chuong Nguyen, Le Bin Ho, Lan Nguyen Tran, and Hung Q Nguyen, "Qsun: an open-source platform towards practical quantum machine learning applications", Machine Learning: Science and Technology 3 1, 015034 (2022).

[85] Shichuan Xue, Yizhi Wang, Junwei Zhan, Yaxuan Wang, Ru Zeng, Jiangfang Ding, Weixu Shi, Yong Liu, Yingwen Liu, Anqi Huang, Guangyao Huang, Chunlin Yu, Dongyang Wang, Xiang Fu, Xiaogang Qiang, Ping Xu, Mingtang Deng, Xuejun Yang, and Junjie Wu, "Variational Entanglement-Assisted Quantum Process Tomography with Arbitrary Ancillary Qubits", Physical Review Letters 129 13, 133601 (2022).

[86] Filippo M. Miatto and Nicolás Quesada, "Fast optimization of parametrized quantum optical circuits", Quantum 4, 366 (2020).

[87] Jaiteg Singh and Kamalpreet Singh Bhangu, "Quantifying emotions through quantum computations", International Journal of Quantum Information 21 03, 2350004 (2023).

[88] Kunal Sharma, Sumeet Khatri, M. Cerezo, and Patrick J. Coles, "Noise resilience of variational quantum compiling", New Journal of Physics 22 4, 043006 (2020).

[89] Andrew Arrasmith, Lukasz Cincio, Rolando D. Somma, and Patrick J. Coles, "Operator Sampling for Shot-frugal Optimization in Variational Algorithms", arXiv:2004.06252, (2020).

[90] András Gilyén and Alexander Poremba, "Improved Quantum Algorithms for Fidelity Estimation", arXiv:2203.15993, (2022).

[91] Patrick J. Coles, M. Cerezo, and Lukasz Cincio, "Strong bound between trace distance and Hilbert-Schmidt distance for low-rank states", Physical Review A 100 2, 022103 (2019).

[92] Akash Kundu, "Reinforcement learning-assisted quantum architecture search for variational quantum algorithms", arXiv:2402.13754, (2024).

[93] Qisheng Wang and Zhicheng Zhang, "Fast Quantum Algorithms for Trace Distance Estimation", arXiv:2301.06783, (2023).

[94] Tom O'Leary, Lewis W. Anderson, Dieter Jaksch, and Martin Kiffner, "Partitioned Quantum Subspace Expansion", arXiv:2403.08868, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-21 15:05:23) and SAO/NASA ADS (last updated successfully 2024-05-21 15:05:24). The list may be incomplete as not all publishers provide suitable and complete citation data.