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ψ-epistemic interpretations of quantum theory
maintain that quantum states only represent in-
complete information about the physical states
of the world. A major motivation for this view
is the promise to provide a reasonable account
of state update under measurement by assert-
ing that it is simply a natural feature of updat-
ing incomplete statistical information. Here we
demonstrate that all known ψ-epistemic onto-
logical models of quantum theory in dimension
d ≥ 3, including those designed to evade the con-
clusion of the PBR theorem, cannot represent
state update correctly. Conversely, interpreta-
tions for which the wavefunction is real evade
such restrictions despite remaining subject to
long-standing criticism regarding physical dis-
continuity, indeterminism and the ambiguity of
the Heisenberg cut. This revives the possibil-
ity of a no-go theorem with no additional as-
sumptions, and demonstrates that what is usu-
ally thought of as a strength of epistemic inter-
pretations may in fact be a weakness.

1 Introduction
There are many interpretations of quantum theory1.
Among the many differences between these interpreta-
tions, one that often takes center stage is the stance that
they take towards the wavefunction or quantum state.
Three broad categories have been identified which cap-
ture a number of interpretations. Two of these cate-
gories are more commonly juxtaposed: ψ-ontic inter-
pretations [1–14] posit that the quantum state is a part
of the real (physical) state of a system, whereas ψ-
epistemic interpretations [15–23] argue that the quan-
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1This is an understatement.

tum state is merely a state of knowledge about the real
state of the system. A very thorough review of these
two stances can be found in [24]. A third recently ar-
ticulated category of ψ-doxastic interpretations [25–31]
argue that the quantum state is a state of belief, and
are distinguished from ψ-epistemic interpretations by
the fact that they deny that a system has some ‘real
state.’ While not all interpretations conform to these
three descriptors, they are useful categories insofar as
they allow us to qualitatively discuss certain features
separately from the particular interpretation in which
they are embedded.

The ψ-epistemic class has garnered attention as a
view which provides very appealing explanations of
otherwise paradoxical features of quantum theory like
the state update rule [17], the classical limit under
quantum chaos [20], no cloning [32], and entangle-
ment [33]. For example, through this viewpoint state
update is not a physical ‘collapse’ process and therefore
not subject to paradoxes, indeterminism, and disconti-
nuity; rather it is understood as analogous to the non-
pardoxical ‘collapse’ of a subjective probability distribu-
tion via Bayes’ rule upon consideration of new informa-
tion. While several ψ-epistemic models have been pro-
posed [16, 22, 34–38], they generally have undesirable
features or are restricted to a subtheory of full quan-
tum theory. None achieve all of the features that an
optimistic ψ-epistemicist would expect.

This suggests the possibility that a fully satisfactory
ψ-epistemic interpretation cannot actually explain all
of quantum theory despite the qualitatively compelling
features of such a view2. This suspicion has led to a
number of no-go theorems in recent years which estab-

2As is well-known, the work of Bell [39] has shown that no ψ-
epistemic interpretation can evade the non-locality that manifests
trivially in ψ-ontic interpretations; this trivial manifestation of
non-locality in ψ-ontic interpretations is an oft-forgotten insight
from Einstein [15, 18, 23].
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lish that, given at least one additional assumption, any
consistent interpretation of quantum theory cannot be
ψ-epistemic [36, 40–43]. These no-go theorems are gen-
erally proven within the ontological models formalism,
which describes a large class of existing interpretations
of quantum theory [21, 44, 45].

Within the ontological models formalism3, ψ-
epistemic models can be given a precise mathematical
definition called the ψ-epistemic criterion [22]. This cri-
terion allows the possibility of conclusively ruling out
this type of model. Outside of this framework, it is un-
likely that ψ-epistemic models can be precluded with
any kind of certainty; ψ-doxastic interpretations, for
example, do not fit neatly into the ontological models
framework and thus are not necessarily ruled out by
these no-go theorems. This is despite the fact that they
share many of the features which make ψ-epistemic in-
terpretations appealing. In the present paper we restrict
our attention to the ontological models framework.

The fact that an extra assumption is required to rule
out ψ-epistemic theories has purportedly been demon-
strated by the existence of ψ-epistemic models which,
while being individually unsatisfactory for various rea-
sons, do satisfy at least the bare minimum requirements
of a ψ-epistemic theory [35–37]. All of these models
were specified within a prepare-measure framework, so
they have been proven to reproduce quantum statistics
for all experiments that involve preparing a state and
then measuring it once. In this paper we show that,
if we allow sequential measurements in the operational
description, these models cannot reproduce operational
statistics.

Our main contribution in this work is thus to demon-
strate that the state update rule imposes severe con-
straints on ψ-epistemic models. This is in contrast to
the prevailing view that, as articulated by Leifer, “a
straightforward resolution of the collapse of the wave-
function, the measurement problem, Schrödingers cat
and friends is one of the main advantages of ψ-epistemic
interpretations” [24]. As a consequence, we revive the
possibility of a general no-go theorem for ψ-epistemic
models that doesn’t rely on an additional assumption
such as the locality assumption required in [40] which
conflicts with the non-locality that is implied by Bell’s
theorem [43, 46]. See Appendix A for further discussion
on this point.

Although state update under measurement has been
described in a few specific models [22, 34, 47, 48] and
discussed with regards to contextuality [49], it has yet to
be treated generally or in relation to the ψ-epistemic/ψ-

3A note on potentially confusing terminology—an ontological
model assumes the reality of some kind of state (hence “onto-
logical”), but does not assume the reality of the quantum state
specifically (and so is not necessarily ψ-ontic).

ontic distinction4. Here we take some preliminary steps
in both of these directions, and argue that ψ-epistemic
models are the natural arena in which to investigate in-
teresting behavior of state update under measurement.

In Section 2, we describe the ontological models for-
malism, adding a description of state update under
measurement and motivating its importance. Despite
this motivation, one might still argue that many dis-
tinctly quantum phenomena (e.g. Bell inequality vi-
olations) can be described without reference to state
update; thus, from an operationalist point of view, we
shouldn’t need to consider state update in order to in-
vestigate these phenomena. However, we show in Sec-
tion 3 that the consideration of state update actually
places nontrivial restrictions on how one can represent
even a prepare-and-measure-once experiment. Thus our
results are directly applicable to models which have only
specified behavior for a single measurement. Section 4
reviews a number of examples of ontological models
from the literature; in each case we either specify its
state update rule (in dimension d = 2, for ψ-ontic mod-
els, and for some models of subtheories) or prove its
impossibility (for all known ψ-epistemic models in di-
mension d ≥ 3). Finally, we discuss the implications
of our results and describe some open questions in Sec-
tion 5.

2 Defining measurement update in on-
tological models

2.1 The ontological models formalism
In the standard treatment, an operational theory [44] is
described by a set of preparations P, a set of transfor-
mations T , and a set of measurements M along with a
probability distribution

Pr(k|M,T, P ). (1)

This quantity describes the probability of some mea-
surement outcome k ∈ Z given an experimenter’s choice
of P ∈ P, T ∈ T , and M ∈ M. When consider-
ing transformations this is called the prepare-transform-
measure operational framework, and when we omit
transformations it is the prepare-measure framework.
Often we take P to be the set of pure quantum state
preparations, T to be the full set unitary maps on a
Hilbert space, andM to be all projective measurements
on this Hilbert space. In this case, we say we are de-

4Although the Leggett-Garg inequalities [50, 51] might be con-
strued as a general treatment of state update, it is more accurate
to say that they are about the absence of state update.
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scribing the full quantum theory5; in contrast, a sub-
theory is described by taking subsets of P, T ,M for the
full quantum theory. For example, in quantum infor-
mation settings we often consider only measurements
in the standard basis.

Note that this standard definition involves a single
measurement and a single measurement outcome de-
spite the fact many important quantum experiments
(e.g. Stern-Gerlach, double slit [52]) and quantum algo-
rithms (e.g. measurement-based error correction [53])
involve multiple measurements. Thus we will refer to
the usual definition of prepare-measure as prepare-and-
measure-once experiments. In this paper, we are con-
cerned with multiple measurements, so we will also have
to describe probabilities like

Pr(k2, k1|M2,M1, P ). (2)

Additionally, we note that positive operator valued
measures (POVMs) do not fully specify how a mea-
surement updates a state. Although one can obtain
a POVM {Ek} from a set of generalized measurement

operators {Mk} by the relation Ek = M†kMk, the de-
composition of {Ek} into {Mk} is not unique. Thus
although M is often described by POVMs, considera-
tion of state update requires that we specify generalized
measurement operators instead. As an example of when
this is important, consider a coarse-graining of the mea-
surement {Mk} = {[0], [1], [2]}, where we denote the
projector onto a state

[ψ] = |ψ〉〈ψ| (3)

as in [24]. We can either coarse-grain coherently, i.e.
measure {M ′k} = {[0] + [1], [2]} or we can coarse-grain
decoherently by measuring {Mk} and then combining
outcomes 0 and 1 into a single measurement result
and ‘forgetting’ which one actually occurred. While
these two processes are represented by the same POVM
{Ek} = {[0] + [1], [2]}, their state update behavior is
different: if the state 1√

2 (|0〉+ |1〉) is measured, it will

stay the same in the coherent case or update to the
mixed state 1

2 ([0] + [1]) in the decoherent case.
An ontological model [21, 44, 45] supplements this op-

erational point of view by asserting that a system has
a state λ, called an ontic state. To specify an onto-
logical model, we first choose an ontic state space Λ.
Then, preparations are described by a preparation dis-
tribution µ(λ|P ), which is the probability of preparing
some state λ ∈ Λ given the preparation P . Transforma-
tions are described by a transition matrix Γ(λ′|λ, T ),
which is the probability of preparing a new state λ′

5Larger sets can be considered (e.g. including mixed states,
CPTP maps, or non-projective measurements), but all of the
models studied in this paper fit the given definition.

given the previous state λ and the choice T of trans-
formation. Finally, measurements are represented by a
response function ξ(k|λ,M) which describes the prob-
ability of an outcome k given the ontic state λ and the
choice of measurement M . We say that an ontological
model successfully reproduces quantum theory if∫

Λ
dλ′

∫
Λ

dλ ξ(k|λ′,M)Γ(λ′|λ, T )µ(λ|P )

= PrQ(k|M,T, P ) (4)
∀P ∈ P, T ∈ T ,M ∈M,

or, in a prepare-and-measure-once experiment,∫
Λ

dλ ξ(k|λ,M)µ(λ|P ) = PrQ(k|M,P ) (5)

∀P ∈ P,M ∈M.

In both of these cases, PrQ indicates the outcome proba-
bility calculated by operational quantum theory for the
particular experiment under consideration.

Again, we must supplement this definition in order to
model sequential measurement. In textbook quantum
theory, the state updates during a measurement in a
way that depends on the previous state, the measure-
ment procedure, and the measurement outcome: For a
measurement outcome corresponding to a projector Πk,
a quantum state |ψ〉 after measurement will be

|ψ′〉 = Πk |ψ〉
〈ψ|Πk|ψ〉

. (6)

We allow for dependence on all of these things by
choosing to represent this via a state update rule
η(λ′|k, λ,M). As with µ, Γ, and ξ, we require that η is
normalized. Although this object looks very similar to
the transition matrix for transformations, it is distin-
guished by two important features which we emphasize
by choosing a new symbol to represent it.

The first distinction is simple, in that η depends on a
measurement outcome k, while Γ does not; this is anal-
ogous to the fact that generally in quantum theory we
can only implement measurement update maps proba-
bilistically (i.e. by post-selecting on a not-necessarily-
deterministic measurement outcome).

The second distinction is the fact that η(λ′|k, λ,M) is
not defined for all λ ∈ Λ. Roughly speaking, it doesn’t
make sense to ask “What is the new state λ′ after mea-
suring state λ and obtaining outcome k?” if the out-
come k could not have occurred given the previous state
λ. To express this formally, we define the support of a
distribution

Supp(ξ(k|·)) = {λ ∈ Λ : ξ(k|λ) > 0} (7)

as the set of ontic states on which it is nonzero. Us-
ing this, we can say that η(λ′|k, λ,M) is well-defined
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only for λ ∈ Supp(ξ(k|·)). This property of η is anal-
ogous to the fact that Eq. 6 is only well-defined for
〈ψ|Πk|ψ〉 6= 0; i.e. only when the measurement Πk

could have responded to the previous quantum state ψ.
This second distinction is central to the main result

of this paper; by showing that η is non-normalizable on
some domain, we are able to conclude that that domain
cannot be part of the support of ξ.

The consistency condition with quantum theory is
given by equations similar to Eqs. 4 and 5; see Ap-
pendix B for more formal treatments of the properties of
η and other extensions of the ontological models formal-
ism discussed so far. The rigorous treatment in the ap-
pendix shows that, given the pre-existing assumptions
of the ontological models formalism, this is the only
way to represent state update under sequential mea-
surement; this is why we refer to our results as using
‘no additional assumptions.’

This paper is not explicitly concerned with contex-
tuality [16, 44], but we are careful to ensure that we
do not assume noncontextuality. Under the definition
of generalized contextuality given in [44], an ontologi-
cal model is noncontextual if two operationally equiva-
lent preparation, transformation, or measurement pro-
cedures are always represented by equivalent prepara-
tion distributions, transition matrices, or response func-
tions, respectively6. It is contextual otherwise. While
this generalized definition may be too broad, account-
ing for contextuality under this definition also accounts
for the traditional definition [16], and is therefore more
inclusive. Although, as stated above, we do not assume
noncontextuality of any kind, most of our results hold
for a projector independent of its full measurement con-
text. We are explicit about this when it is the case, and
write ξ(Π|λ) rather than ξ(k = 0|λ,M = {Π, . . .}) for
notational convenience; η(λ′|λ,Π) is defined similarly.

2.2 ψ-epistemic models
Here we focus on a set of precise criteria for ψ-epistemic
interpretations within the ontological models formal-
ism. Consider first the ψ-epistemic criterion, proposed
in [23] as a test for whether an interpretation admits at
least some quantum states that are not uniquely deter-
mined by the underlying state of reality. Following [49],
we account for potential preparation contextuality by
defining

∆ψ =
⋃

Pψ∈Pψ

Supp(µ(·|Pψ)) (8)

where Pψ ⊆ P is the set consisting of every possible
preparation of |ψ〉. We refer to ∆ψ as the support of a

6This definition is actually complicated slightly by the inclu-
sion of sequential measurements, but we do not discuss this here.

state |ψ〉, to distinguish it from the support of a particu-
lar preparation Pψ. Then a pair of states |ψ〉 , |φ〉 is on-
tologically distinct in a particular model if ∆φ∩∆ψ = ∅,
and ontologically indistinct otherwise7. This leads us
to the standard definition of a ψ-epistemic ontological
model [23, 24]:

Definition 1 (ψ-epistemic). An ontological model is ψ-
epistemic if there exists a pair of states |ψ〉 , |φ〉 that are
ontologically indistinct; i.e.

∃ |ψ〉 , |φ〉 : ∆φ ∩∆ψ 6= ∅. (9)

As noted in [24], this definition is highly permissive in
the sense that, if an ontological model were to contain
only a single pair of quantum states that are ontolog-
ically indistinct, then it would not achieve the full ex-
planatory power expected of the ψ-epistemic viewpoint;
this is exactly the case with the ABCL0 model discussed
in Section 4.2.4.

There are, however, proposals to strengthen the no-
tion of ψ-epistemicity, two of which are relevant to our
discussion [24, 54].

Definition 2 (Pairwise ψ-epistemic). An ontological
model is pairwise ψ-epistemic if, for all pairs |ψ〉 , |φ〉
of nonorthogonal quantum states, |ψ〉 and |φ〉 are onto-
logically indistinct.

Definition 3 (Never ψ-ontic). An ontological model is
never ψ-ontic if every ontic state λ ∈ Λ is in the support
of at least two quantum states:

∀λ ∈ Λ : ∃ψ, φ : λ ∈ ∆ψ ∩∆φ. (10)

Note that both of these definitions imply the weaker
notion of ψ-epistemicity, but are independent from one
another.

2.3 Some easy cases of state update rules
There are two cases in which, given a prepare-and-
measure-once ontological model for quantum theory, we
can always augment it with a state update rule for mea-
surement. First, if we only include rank-1 projective
measurements in the subtheory we’re modeling, we can
simply re-prepare in the measured (unique, pure) state:

η(λ′|k, λ,M{Πi}) = µ(λ′|PΠk) for tr(Πk) = 1. (11)

7For this purposes of this paper we assume there exists a mea-
sure that is absolutely continuous with respect to all other mea-
sures in the ontological model. Therefore, we can work with prob-
ability densities, rather than the full measure-theoretic treatment.
While this assumption is not strictly true in all of our models, it
does not affect our results and significantly simplifies our presen-
tation.
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This is normalized for all λ since µ is normalized, and
faithfully reproduces quantum statistics since µ does.
It is independent of the previous state λ, which, besides
being unsatisfying, is also not possible in general (this
follows from Section 3).

Second, it is quick to prove, again by construction,
that ψ-ontic models can always be given a state up-
date rule. Since there is a unique quantum state |ψλ〉
associated with every ontic state λ, we can define

η(λ′|k, λ,M) = µ

λ′∣∣∣∣P =
Mk[ψλ]M

†
k

tr
(
Mk[ψλ]M

†
k

)
. (12)

Again, normalization and faithfulness follow because µ
has these properties. Note that this construction works
for any kind of measurement, not just projective mea-
surements.

These observations together suggest that in order
to find anything interesting involving state update,
we ought to examine higher-rank measurements in ψ-
epistemic models. This suspicion will be confirmed by
the main result of this paper, which applies to exactly
these types of measurements and models.

3 The consequences of state update
We now prove our central claim that consideration of
a rule for state update under measurement has con-
sequences for the response function of an ontological
model, so that consistent state update puts restrictions
on how one may represent even a prepare-and-measure-
once experiment. We begin with a lemma that articu-
lates a general property of the update rule η, and then
examine its consequences for response functions ξ.

Lemma 1. Suppose we have an ontological model with
ontic space Λ, preparation distributions µ(λ|P ), in-
dicator functions ξ(k|λ,M), and state update maps
η(λ′|k, λ,M). For a particular ontic state λ and mea-
surement projector Π, we define the set Sλ,Π of quantum
states that one could obtain after measurement of any
quantum state consistent with λ:

Sλ,Π =
{

Π |φ〉√
〈φ|Π|φ〉

∣∣∣∣∣ ∀ |φ〉 : λ ∈ ∆φ

}
. (13)

It is then true that, independently of the measurement
context of Π,

Supp(η(·|λ,Π)) ⊆
⋂

|ψ〉∈Sλ,Π

∆ψ. (14)

Proof. Suppose that measuring a state |φ〉 with a mea-
surement M results in the updated state |ψ〉 when we

get outcome k, where Π is the kth projector in M . Then
let PM,k,Pφ ∈ Pψ be the preparation procedure associ-
ated with post-selection of this measurement outcome
after a particular preparation Pφ. It must be normal-
ized on ∆ψ:

1 =
∫

∆ψ

dλ′ µ(λ′|PM,k,Pφ)

=
∫

∆ψ

dλ′
∫

∆φ

dλ η(λ′|k, λ,M)µ(λ|Pφ)

=
∫

∆φ

dλµ(λ|Pφ)
∫

∆ψ

dλ′ η(λ′|k, λ,M)

Since η is always positive, normalization of µ(λ|Pφ) then
implies that∫

∆ψ

dλ′ η(λ′|k, λ,M) = 1 ∀λ ∈ ∆φ.

If η is normalized on a region, its support must be con-
tained in that region. Thus for all λ that are consistent
with some preparation |φ〉 that could result in the post-
measurement state |ψ〉,

Supp(η(·|k, λ,M)) ⊆ ∆ψ.

The fact that this is true for all |ψ〉 that could result
from the measurement leads to Eq. 42.

We note that Lemma 1 is easy to account for in ψ-
ontic theories and for rank-1 measurements, since in
both cases Sλ,Π has a single element. This is why we
were able to write down update rules for these situations
in Section 2.3. Outside of these trivial cases, Eq. (42)
is a very restrictive condition; depending on the struc-
ture of Sλ,Π, the intersection may be a very small set.
In particular, if any two of the post-selected quantum
states are orthogonal, then Sλ,Π is empty.

Theorem 1 (Main theorem). Suppose that a projec-
tor Π maps two states |α〉 , |β〉 to ontologically distinct
states Π |α〉 ,Π |β〉. Then the response function for Π
cannot have support on the overlap of |α〉 , |β〉 for any
measurement context of Π; i.e.

∆Π|α〉 ∩∆Π|β〉 = ∅ =⇒ ξ(Π|λ) = 0 ∀λ ∈ ∆α ∩∆β .
(15)

Proof. Pick some λ ∈ ∆α ∩ ∆β . By Lemma 1,
Supp(η(·|λ,Π)) = ∅ so η(λ′|λ,Π) is not normalizable.
As discussed in Section 2.1, this is only allowable if
ξ(Π|λ) = 0.

Both the lemma and the theorem hold for non-
projective measurements as well. We emphasize that
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this result does not say anything directly about the over-
lap of the supports of quantum states, just their over-
lap within the support of a particular response func-
tion. In the following section, we deploy this theorem
by showing that, in every known ψ-epistemic model for
d ≥ 3, measurements of this type exist and have sup-
port on the relevant overlaps, leading to contradiction
and demonstrating that these models cannot reproduce
state update under measurement.

4 Examples of state update under mea-
surement (or its impossibility)

We provide a number of examples of ontological models
from the literature, illustrating some of the properties
described in the previous sections. For each model, we
either specify its state update rule or prove that it can-
not reproduce state update. Although many of these
models can be easily defined for arbitrary types of mea-
surements, we only consider projective measurements
for simplicity and notational consistency.

4.1 ψ-epistemic models of a qubit

The only ψ-epistemic models that are able to represent
state update are those that restrict to modeling a qubit.
This corresponds to the fact that the only nontrivial
projective measurements in a qubit are rank-1, which,
as described earlier, do not result in restrictions from
state update.

4.1.1 Kochen-Specker model

The Kochen-Specker model of a qubit [16, 24] is an ex-
emplar of what we look for in a ψ-epistemic theory, with
the unfortunate feature that it only works in d = 2 di-
mensions. It is both pairwise ψ-epistemic and never
ψ-ontic, and provides a very intuitively pleasing inter-
pretation of the statistical nature of quantum theory.
We take the ontic space to be the unit sphere S2, and
denote by ~ψ the Bloch vector corresponding to |ψ〉 un-
der the usual mapping. Preparations and measurement
outcomes are represented by distributions over hemi-
spheres, with response functions uniform and prepara-
tion distributions peaked towards the center (Fig. 1a).
Unitary transformations are represented by rotations of
the sphere. Since the only nontrivial measurements on
a qubit are rank-1 measurements, this is a case where
we can use the state update rule described in Eq. 11
and just re-prepare the measured state for our update

rule:

Λ = S2

µ(~λ|Pψ) = 1
π

Θ(~ψ · ~λ)~ψ · ~λ

Γ(~λ′|~λ, TU ) = δ(~λ′ −RU~λ)

ξ(k|~λ,Mφ) = Θ(k~φ · ~λ)

η(~λ′|k,~λ,Mφ) = 1
π

Θ(k~φ · ~λ′)k~φ · ~λ′ (16)

Here Θ is the Heaviside step function, RU is the rotation
of the Bloch sphere corresponding to a unitary U , and
k ∈ {+1,−1}. This particular state update rule is not
particularly satisfactory in an explanatory sense, since
it is independent of the previous ontic state.

4.1.2 Montina model

In [34], Montina introduces an ontological model based
on the Kochen-Specker model. The model was con-
structed to show that state update in a qubit can be
successfully modeled by only updating a finite amount
of information in the ontic state. To do so, Montina
extends the ontic space of the Kochen-Specker model
by taking two vectors ~x+1, ~x−1 on the Bloch sphere and
adding two bits, labeled r and s, such that the vectors
on the Bloch sphere are dynamic under transformations
but remain static under state update (Fig. 1b). The bit
r ∈ {−1,+1} acts as an index which decides which of
the two Bloch vectors is ‘active;’ s ∈ {−1,+1} stores the
result of a hypothetical standard basis measurement on
the state. We take the standard basis to be defined by
a special vector ~n pointing along the z-axis.

As in the Kochen-Specker model, unitary transfor-
mations act by rotating the Bloch vectors; additionally,
if the vector ~xr (i.e. the ‘active’ Bloch vector) crosses
the horizontal equator of the sphere during this trans-
formation, then the bit s flips to −s. r does not change
during a transformation.

A measurement in the standard basis simply reveals
the value of s, and then updates r so that the active
vector is the one which was more closely aligned with
~n at the time of measurement. For any other basis, we
apply the unitary that maps our desired measurement
basis to the standard basis, measure, and then rotate
back—this whole process has been wrapped into our
definitions of η and ξ below. In either case, the vectors
~x+1, ~x−1 do not change during measurement.

Finally, we prepare a state ~ψ by measuring in the ba-
sis {~ψ,−~ψ} and applying a rotation that maps −~ψ → ~ψ

if we measured −~ψ. Summarizing these constructions,
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(a) Kochen-Specker model (b) Montina model (c) Beltrametti-Bugajski model (d) Bell Model

Figure 1: Visualizations of the state space, preparation distributions, and response functions for (a) the Kochen-Specker model,
(b) Montina’s model, (c) the Beltrametti-Bugajski model for d = 2, and (d) Bell’s model for d = 2. Blue represents the support
of preparations, and green the support of the response functions, where possible. Black objects are generic elements of the state
space.

we can write

Λ = S2 × S2 × {−1,+1} × {−1,+1}
λ = (~x+1, ~x−1, r, s)

µ(λ|Pψ) = 1
(4π)2 Θ

[
s
(
~xr · ~ψ

)
(~xr · ~n)

]
·Θ
[
r

[(
~x+1 · ~ψ

)2
−
(
~x−1 · ~ψ

)2
]]

Γ(λ′|λ, TU ) = δ
(
~x′+1 −RU~x+1

)
δ
(
~x′−1 −RU~x−1

)
·Θ [ss′ (~x′r · ~n) (~xr · ~n)] Θ[rr′]

ξ(k|λ,Mφ) = Θ
[
ks (~xr · ~n)

(
~xr · ~φ

)]
η(λ′|k, λ,Mφ) = δ

(
~x′+1 − ~x+1

)
δ
(
~x′−1 − ~x−1

)
·Θ
[
ss′(~xr · ~n)

(
~xr · ~φ

)
(~xr′ · ~n)

(
~xr′ · ~φ

)]
·Θ
[
r′
[(
~x+1 · ~φ

)2
−
(
~x−1 · ~φ

)2
]]

(17)

The original presentation is not stated in terms of the
ontological models formalism, and only explicitly mod-
els measurements in the standard basis. This lead to
the claim that state update under measurement is ac-
counted for by updating a single bit, but it is clear from
the form of η above that by including all measurements
in our subtheory we have caused both bits to be up-
dated during measurement.

We include this model here for two reasons. First, it
is one of the few ontological models in the literature that
has explicitly considered state update under measure-
ment. Second, it demonstrates that the generic rank-1

update (Eq. 11) that we used for the Kochen-Specker
model is not the only possibility; even though all mea-
surements in this model are rank-1, η has nontrivial
dependence on the previous ontic state λ. Thus just
because we can construct a trivial update rule in some
cases does not mean that there is then nothing interest-
ing to investigate. It also includes these features while
remaining pairwise ψ-epistemic and never ψ-ontic.

4.2 Models of full quantum theory for arbitrary
dimension
4.2.1 Beltrametti-Bugajski model

The Beltrametti-Bugajski model [9, 24] is perhaps the
simplest ontological model that describes a system of ar-
bitrary dimension. Although it is ψ-ontic, it is the start-
ing point for the construction of the next three models
in this section. For a d-dimensional quantum system,
we take the ontic space to be the quantum state space,
which we denote PHd−1 (the projective Hilbert space of
dimension d − 1). Preparations, transformations, mea-
surements, and state update rules then follow directly
from the usual quantum rules:

Λ = PHd−1

µ(λ|Pψ) = δ(|λ〉 − |ψ〉)
Γ(λ′|λ, TU ) = δ(|λ′〉 − U |λ〉)

ξ(k|λ,M{Πi}) = 〈λ|Πk |λ〉

η(λ′|k, λ,M{Πi}) = δ

(
|λ′〉 − Πk |λ〉√

〈λ|Πk |λ〉

)
(18)
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This provides an example of the generic update-rule for
ψ-ontic models (Eq. 12), and is depicted in Fig. 1c.

4.2.2 Bell’s model

Lewis et al. [35] extended a model of a qubit orignally
proposed by Bell [39] to arbitrary dimension, which can
be seen as a modification of the Beltrametti-Bugajski
model [24]. The ontic space is the Cartesian product of
the projective Hilbert space with the unit interval [0, 1].
Now we write λ as an ordered pair λ = (|λ〉 , pλ) where
|λ〉 ∈ PHd−1, as in the Beltrametti-Bugajski model,
and pλ ∈ [0, 1]. Preparations remain essentially the
same, becoming a product distribution of a delta func-
tion on the quantum state space with a uniform dis-
tribution over the unit interval. The response functions
divide up the unit interval into lengths corresponding to
probabilities of measuring each outcome, and respond
with outcome k when pλ is in the corresponding inter-
val (Fig. 1d). This has the effect of making the model
outcome deterministic.

Λ = PHd−1 × [0, 1]
µ(λ|Pψ) = δ(|λ〉 − |ψ〉)

Γ(λ′|λ, TU ) = δ(|λ′〉 − U |λ〉)

ξ(k|λ,M{Πi}) = Θ

pλ − k−1∑
j=0

tr(Πj[λ])


·Θ

−pλ +
k∑
j=0

tr(Πj[λ])


η(λ′|k, λ,M{Πi}) = δ

(
|λ′〉 − Πk |λ〉√

〈λ|Πk |λ〉

)
(19)

Since this model is still ψ-ontic, we once again use the
generic state update rule for ψ-ontic models. In this
case, we can also see that this works because of the
structure of the preparations as product distributions.
Since every state has a uniform distribution over pλ,
and this is uncorrelated with |λ〉, we can just update
|λ〉 according to the Beltrametti-Bugajski update rule
and then re-randomize uniformly over pλ.

4.2.3 LJBR model

In [35], Lewis et al. define a ψ-epistemic model based
on their generalization of Bell’s model. Referred to here
as the LJBR model, it is motivated by the observation
that the order of segments in the response function of
Bell’s model does not matter: a re-ordering of these
segments allows arbitrary modification of preparation
distributions within a subset of the ontic space, so they
can be made to overlap. We present here a brief descrip-
tion of the ‘most epistemic’ version of this model, and

refer the reader to [35] for a more thorough construction
and motivation.

The LJBR model has the same ontic space as the Bell
model, so we again write ontic states as λ = (|λ〉 , pλ).
It is constructed in a preferred basis {|j〉}, which we use
in defining two helper functions. First,

zj(|λ〉) = inf
|φ〉:tr([j][φ])≥1/d

tr([λ][φ]). (20)

Note that zj(|λ〉) > 0 if and only if tr([j][λ]) > d−1
d ,

so zj(|λ〉) is nonzero for at most a single element of the
preferred basis; we denote this unique vector as |jλ〉.
Second, we define a permutation πM,λ for each mea-
surement M and ontic state λ:

tr
(
MπM,λ(0)[jλ]

)
≥ tr

(
MπM,λ(1)[jλ]

)
≥ · · ·

· · · ≥ tr
(
MπM,λ(|M |−1)[jλ]

)
. (21)

If there is no |jλ〉, i.e. zj(|λ〉) = 0 for all j, then we take
πM,λ to be the identity permutation. The final element
we need before defining the model itself is a set

Ej = {λ : zj(|λ〉) > 0} (22)

defined for each basis vector. Without further ado, the
full specification of the model:

Λ = PHd−1 × [0, 1]
λ = (|λ〉 , pλ)

µ(λ|Pψ) = δ(|λ〉 − |ψ〉)
∏
j

Θ[pλ − zj(|ψ〉)]

+
∑
j

zj(|ψ〉)µEj (λ)

ξ(k|λ,M{Πi}) = Θ
[
pλ −

k−1∑
l=0

tr
(
ΠπM,λ(l)[λ]

)]

·Θ
[
−pλ +

k∑
l=0

tr
(
ΠπM,λ(l)[λ]

)]
(23)

where µEj (λ) is the uniform distribution over Ej .
Roughly, all quantum states |ψ〉 with tr([j][ψ]) > d−1

d
will have support on Ej , and so will all overlap with each
other. The permutation included in the definition of the
measurements is constructed so that this shared support
does not affect the prepare-and-measure-once statistics:
the measurement ordered first by the permutation has
a support which entirely contains Ej . This model is not
pairwise ψ-epistemic, nor is it never ψ-ontic. Note ad-
ditionally that it was originally only defined for rank-1
projective measurements, but it works just as well for
higher-rank projective measurements without modifica-
tion.

This model is the first to fall to Theorem 1:
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Theorem 2. The LJBR model cannot represent state
update under measurement in dimension d ≥ 3.

Proof. The general idea of the proof is to find a
measurement which maps any two nonidentical states
|α〉 , |β〉 to two again nonidentical states Π |α〉 ,Π |β〉
which both have no support on any of the Ej , and so
are ontologically distinct.

Consider the preferred basis |j〉 of the LJBR model
and the generalized x-basis defined by

|Xk〉 = 1√
d

d−1∑
j=0

ωjk |j〉 , ω = e2πi/d. (24)

These x-basis states have the property tr([Xj][k]) = 1
d

for all j, k. There must exist two elements |Xk1〉 , |Xk2〉
of the x-basis such that |α〉 , |β〉 differ on that two-
dimensional subspace or else |α〉 , |β〉 would be identi-
cal. Pick two such elements, and consider the projector
Π = [Xk1 ] + [Xk2 ]. The quantum overlap of the post-
measurement state Π |α〉 with any basis vector |j〉 is,
using the submultiplicativity of the trace,

tr([j]Π[α]Π)
tr(Π[α]) ≤ tr([j]Π) = 2

d
≤ d− 1

d
(25)

and the same is true for Π |β〉. As described above,
only states with tr([j][ψ]) > d−1

d have overlap with
any other states in the LJBR model, so the post-
measurement states are ontologically distinct; by The-
orem 1, ξ(Π|λ) = 0 for all λ ∈ Ej for all j since |α〉 and
|β〉 were arbitrary.

However, when measured in the context of the rest of
the rank-1 x-basis projectors, Π will be ordered first by
πM,λ for all λ since

tr(Π[j]) = 2
d
>

1
d

(26)

for all j. Thus, by the construction of the LJBR model,
ξ(Π|λ) = 1 for all λ ∈ Ej , resulting in a contradiction.

4.2.4 ABCL models

In [36], Aaronson et. al. construct two ψ-epistemic
models. The first, which we will call ABCL0 , is very
closely related to the LJBR model but is not identical;
rather than continuous regions of quantum states which
overlap, this model has exactly one pair of quantum
states which are ontologically indistinct. However, it
gains the feature that any two nonorthogonal quantum
states can be chosen as the single pair that overlaps.
With malice aforethought, we will call this defining pair
|α〉 , |β〉.

The second, ABCL1 , is a convex mixture (to be de-
fined) of the ABCL0 model constructed for all |α〉 , |β〉

and is intended to demonstrate the possibility of a pair-
wise ψ-epistemic model. This is the only known exam-
ple of a pairwise ψ-epistemic model in d ≥ 3, but it still
is not never ψ-ontic [24, 54]. These models have come
under criticism for their “unnaturalness,” but we show
here that their problems go deeper due to an inability
to represent state-update.

We begin with ABCL0 , defining a couple of helper
functions like in the LJBR model. Rather than ordering
measurements with respect to traces with a preferred
basis, we use the defining states |α〉 , |β〉 and a function

gαβ(Π) = min{tr(Π[α]), tr(Π[β])}. (27)

We now define a new permutation σM
8 for each mea-

surement M [24]:

gαβ(MσM (0)) ≥ gαβ(MσM (1)) ≥ · · · ≥ gαβ(MσM (|M |−1)).
(28)

With this, we can specify the ABCL0 model.

Λ = PHd−1 × [0, 1]
λ = (|λ〉 , pλ)

µ(λ|Pψ) =



[
Θ(pλ − ε)δ(|λ〉 − |ψ〉)

+ 1
2Θ(ε− pλ)[δ(|λ〉 − |α〉) + δ(|λ〉 − |β〉)]

]
if |ψ〉 = |α〉 , |β〉

δ(|λ〉 − |ψ〉) otherwise

ξ(k|λ,M{Πi}) = Θ

pλ − k−1∑
j=0

tr
(
ΠσM (j)[λ]

)
·Θ

−pλ +
k∑
j=0

tr
(
ΠσM (j)[λ]

) (29)

for ε ≤ |〈α|β〉|
d . Now the preparation distributions for

|α〉 and |β〉 overlap on {|α〉 , |β〉}× [0, ε]; as in the LJBR
model, the permutation in ξ ensures that the prepa-
ration change doesn’t affect the prepare-and-measure-
once statistics by making sure measurements whose sup-
port must contain this overlap region are ordered first.
Once again, this model fails to meet the conditions re-
quired in order to faithfully represent state update:

Theorem 3. The ABCL0 model cannot represent state
update under measurement in dimension d ≥ 3.
Proof. Call the two states defining the model |α〉 , |β〉.
Let Π = [α] + [γ], where |γ〉 is some state such that

〈α|γ〉 = 0 and 0 < |〈γ|β〉|2 < 1− |〈α|β〉|2. (30)
8To be precise, we should label this with α, β as well to em-

phasize that it belongs to the model defined by that particular
pair of states.
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Under this measurement, |α〉 maps to |α〉 and |β〉 does
not get mapped to either |α〉 or |β〉. Thus the post-
measurement states are ontologically distinct, so by
Theorem 1, ξ(Π|λ) = 0 for all λ ∈ ∆α ∩∆β .

For the other half of the contradiction, note that
tr(Π[α]) = 1 means gαβ(Π) = tr(Π[β]) > 0 (since
|α〉 , |β〉 are nonorthogonal) and gαβ(I − Π) = 1 −
tr(Π[α]) = 0, so Π is ordered first by σM when mea-
sured in the context M = {Π, I−Π}. Thus ξ(Π|λ) = 1
for all λ ∈ ∆α ∩∆β , resulting in a contradiction.

We outline the ABCL1 model schematically and refer
the reader to [24, 36] for details. Given two ontological
models specified by Λ1, µ1, ξ1 and Λ2, µ2, ξ2 respectively,
the authors define a convex combination of these models
as Λ3, µ3, ξ3 such that

Λ3 = Λ1 ⊕ Λ2

bµ3 = pµ1 + (1− p)µ2

ξ3 = ξ1 + ξ2 (31)

Here p ∈ (0, 1) is some mixing parameter. If there’s
overlap between two states in either of models 1 or 2,
then model 3 has overlap on these states. The ABCL1

model is then defined essentially as a convex mixture
of the ABCL0 models for all pairs |α〉 , |β〉, taking care
with respect to the uncountable size of this set.

In order to include state update in a convex com-
bination of ontological models, the most obvious (and
perhaps only) option is to specify

η3 = η1 + η2. (32)

The failure of the ABCL1 model to reproduce state
update follows directly from the failure of the ABCL0

model.

Theorem 4. The ABCL1 model cannot represent state
update under measurement in dimension d ≥ 3

Proof. When we take a convex combination of models,
we see that

Supp(ξ3(k|·,M)) =Supp(ξ1(k|·,M)) ∪ Supp(ξ2(k|·,M))
Supp(η3(·|k, λ,M)) = Supp(η1(·|k, λ,M))

∪ Supp(η2(·|k, λ,M))

Thus if either of models 1 or 2 violates Theorem 1,
model 3 must violate it as well. Since all of the ABCL0
models being mixed violate Theorem 1, so must ABCL1
.

4.2.5 A note on transformations

As Leifer notes, transformations also play a role in re-
stricting the structure of ψ-epistemic ontological mod-
els [24, Section 8.1]. If an ontological model suc-
cessfully represents all unitary transformations, then

|〈ψ|φ〉| = |〈ψ′|φ′〉| implies that |ψ〉 , |φ〉 are ontologi-
cally distinct if and only if |ψ′〉 , |φ′〉 are ontologically
distinct. If the model also includes all CPTP maps,
then |〈ψ|φ〉| ≥ |〈ψ′|φ′〉| implies that |ψ′〉 , |φ′〉 are onto-
logically distinct if |ψ〉 , |φ〉 are.

It immediately follows that the LJBR and ABCL0

models cannot faithfully represent unitary transforma-
tions. In each model there exist quantum states which
are ontologically distinct from every other state; pick
one of these states, and it is easy to find examples
of pairs of ontologically distinct states with any inner
product.

However, transformations cannot necessarily rule out
the ABCL1 model: since it is pairwise ψ-epistemic,
the unitary condition could in principle be satisfied.
That said, the transformation rule would be compli-
cated because it would have to map between models
that are mixed together, so it is certainly an open ques-
tion whether this is actually possible.

4.3 Models of subtheories
Although we have dealt so far with models that in-
clude the full quantum set of preparations, transforma-
tions, and measurements, there is the possibility that
we can retain ψ-epistemic models of subtheories. It
turns out that although the stabilizer subtheory can be
represented by a ψ-epistemic model, the more general
Kitchen Sink model which models any finite subtheory
cannot in general represent state update under mea-
surement.

4.3.1 Kitchen Sink model

The Kitchen Sink model is a ψ-epistemic ontologi-
cal model for any finite subtheory of quantum the-
ory [37, Section IIIC]. Given a finite set of projec-
tive measurements M = {M (i)}, we choose our on-
tic states to be a list of measurement outcomes λ =
(λ1, λ2, . . . , λ|M|). That is, λi = k means that if

M (i) = {Π(i)
j } is measured on the ontic state λ, the

outcome Πk will occur with certainty. For a system of
dimension d, the maximum number of projectors in any
given measurement is d, so we pad all of our measure-
ments with 0s until they have d elements. The Kitchen
Sink model is then defined by

Λ = Z|M|d

µ(λ|ψ) =
|M|∏
i=1

tr
(

Π(i)
λi
[ψ]
)

ξ(k|λ,M (i)) = δ(k, λi) (33)

The Kitchen Sink is pairwise ψ-epistemic for any sub-
theory, and also never ψ-ontic if we include all pure
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states in our subtheory. Transformations can addition-
ally be modeled under the assumption of a closed sub-
theory.

We can only rule out the Kitchen Sink model for cer-
tain subtheories, as it is easy to construct subtheories
with trivial update rules (e.g. by only including rank-
1 measurements). That said, our requirements are few
and are satisfied by the multi-qupit stabilizer subthe-
ory, arguably the most important subtheory of quantum
theory. Specifically, we only need to include two states
|α〉 , |β〉 and two measurements M (1) = {Π, I−Π},M (2)

satisfying

〈α|β〉 6= 0 (34)
〈α|Π|α〉 6= 0 (35)
〈β|Π|β〉 6= 0 (36)

M (2) distinguishes Π |α〉 and Π |β〉 (37)

The first is required because we don’t expect orthog-
onal states to be ontologically indistinguishable. The
next two stipulate that there is a nonzero chance of ob-
taining an outcome Π when measuring |α〉 and |β〉, so
that its support overlaps with their support. The last
condition implies that the post-measurement states are
ontologically distinct [24].

Theorem 5. For any finite subtheory containing states
and measurements satisfying the conditions given in
Eqs. 34–37, the Kitchen sink model cannot model state
update under measurement.
Proof. Theorem 1 implies that, if Π maps |α〉 , |β〉 to
ontologically distinct states, then∫

Λ
dλ ξ(Π|λ)µ(λ|α)µ(λ|β) = 0. (38)

We evaluate this quantity for the Kitchen Sink’s re-
sponse functions and preparation distributions, using
the states and measurement M (1) satisfying Eqs. 34–
37:∫

Λ
dλ ξ(k = 0|λ,M (1))µ(λ|α)µ(λ|β)

=
∑

λ∈Z|M|
r

δ(0, λ1)
|M|∏
j=1

tr
(
M

(j)
λj

[α]
)

tr
(
M

(j)
λj

[β]
)

=
∑
λ1∈Zr

δ(0, λ1) tr
(
M

(1)
λ1

[α]
)

tr
(
M

(1)
λ1

[β]
)

·
|M|∏
j=2

∑
l∈Zr

tr
(
M

(j)
l [α]

)
tr
(
M

(j)
l [β]

)
= tr

(
M

(1)
0 [α]

)
tr
(
M

(1)
0 [β]

)
·
|M|∏
j=2

∑
l∈Zr

tr
(
M

(j)
l [α]

)
tr
(
M

(j)
l [β]

)
(39)

This final expression will be zero if and only if at least
one of its factors is 0. The first two factors are nonzero
by Eqs. 35 and 36. The rest of the factors are nonzero
due to Eq. 34 and the completeness condition on the
measurements. Thus Eq. 39 is nonzero and we have
a contradiction, so state update cannot be represented
faithfully.

This demonstrates that Theorem 1 can create trou-
ble even in subtheories. In particular, the stabilizer
subtheory satisfies the requirements in Eqs. 34–37, so it
cannot be modeled by the Kitchen Sink. That said, we
can show that the stabilizer subtheory still supports a
ψ-epistemic interpretation using other models.

4.3.2 Qupit stabilizer subtheory

We begin with the straightforward case of n p-
dimensional systems, for p an odd prime. In this
case, the stabilizer subtheory has an ontological model
given by the discrete Wigner function [33, 55] (see Ap-
pendix C for definitions of the stabilizer subtheory and
the phase-point operaters Aλ):

Λ = Znp × Znp

µ(λ|Pψ) = 1
pn

tr(Aλ[ψ])

ξ(k|λ,M{Πi}) = tr(ΠkAλ) (40)

As the Wigner function is a quasi-probability distribu-
tion [56], it necessarily takes on negative values if we
try to model the full quantum theory. If, however, we
restrict to modeling preparations, transformations, and
measurements in the qupit stabilizer subtheory, then the
representation is positive and it forms a well-defined on-
tological model [33, 57]. It is both pairwise ψ-epistemic
and never ψ-ontic.

The stabilizer subtheory presents a challenge in that
measuring a single qupit is described by a rank-pn−1

measurement, which may run into trouble due to The-
orem 1. In particular, there are many examples in the
stabilizer subtheory of the type of measurements that
broke the Kitchen Sink model. Nonetheless, we can
specify the update rule

η(λ′|k, λ,M{Πi}) = 1
pn

tr(AλΠkAλ′Πk)
tr(ΠkAλ) . (41)

Note the normalization factor in η which makes clear
that η is only defined in the support of ξ. The fact
that this successfully reproduces quantum statistics fol-
lows from the fact that post-selected measurement is
a completely positive map, and this is how completely
positive maps are represented in quasi-probability rep-
resentations [56]. η is always positive for the stabilizer
subtheory, though we do not include the proof here.
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For the case p = 2, Lillystone and Emerson construct
a ψ-epistemic model of the n-qubit stabilizer formalism
that successfully represents state update under mea-
surement [48]. This model starts from the Kitchen Sink
model and augments Λ so that the problematic over-
laps of the Kitchen sink are removed. This model is not
pairwise ψ-epistemic, but a modified version (see ap-
pendix of [48]) is never-ψ-ontic. We don’t present the
construction here because it is significantly more convo-
luted than the model above for p ≥ 3. This reflects the
often-observed ill-behaved nature of the qubit stabilizer
subtheory.

Tangentially, if we extend the Wigner function to the
full quantum theory, we get negatively represented state
update, as expected. One consequence of this is that
some state updates can’t be normalized, so the Wigner
function state update must include a renormalization
step not allowed in ontological models or quasiproba-
bility representations. Although further discussion of
state update under measurement in quasi-probability
representations is beyond the scope of this paper, we
note that Theorem 1 does not hold for quasi-probability
representations so this could be one potential direction
for related future work.

5 Discussion
We have demonstrated that state update under mea-
surement poses a serious challenge to ψ-epistemic inter-
pretations of quantum theory in the ontological models
framework: all currently known ψ-epistemic models for
full quantum theory in d ≥ 3 cannot faithfully represent
state update. This runs in direct contrast to the prevail-
ing view that ψ-epistemic models provide a compelling
explanation of state update.

There are a number of remaining open questions.
Most pressingly, we have re-opened the possibility of
proving a general ψ-onticity result without additional
assumptions—will the methods of this paper be useful
in doing so?

On the one hand, the proofs above do not rule out
the possibility of extending the ontology of the broken
models in order to represent state update under mea-
surement while still retaining the epistemicity of the
model. This is exactly the route taken in [48] for the n-
qubit stabilizer subtheory. Granted, the n-qubit stabi-
lizer subtheory was brought within an inch of ψ-onticity
by this process, so it seems unlikely that a similar tech-
nique will work for the full quantum theory.

In the other direction, we’ve shown that consideration
of state update puts powerful constraints on the struc-
ture of ψ-epistemic models. These restrictions would
ideally lead to a categorical statement like “ψ-epistemic
models cannot represent state-update,” but there are

challenges to achieving this conclusion. In particular,
we note that all of the ψ-epistemic models that we
considered share the property of outcome determinism,
which means that Theorem 1 may be less trouble in
non-outcome-deterministic models. At the very least,
any no-go theorem will have to include measurements,
states, and/or transformations from outside the stabi-
lizer subtheory since we have shown that ψ-epistemic
models for this subtheory exist.

What import does our result have for the general in-
terpretational project of quantum theory? First of all,
we have demonstrated that ψ-epistemicists have yet an-
other challenge to overcome: a successful explanation of
state-update. This is in contrast with the usual claim
that this arena is one where epistemic interpretations
have an advantage over ontic interpretations. As we
emphasized in the introduction, our results only strictly
apply to interpretations that can be described by the on-
tological models formalism, but there may be a qualita-
tive message for epistemic and doxastic interpretations
that are outside this formalism as well.
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A Is state update an additional assump-
tion?
Throughout this paper, we have used the phrase ‘no
additional assumptions’ in order to contrast our results
with those of existing no-go theorems. By this we don’t
mean to raise an argument over the semantics of exactly
what one means by ‘assumption,’ but rather we mean
to say that the consideration of state update, which
we propose may be able to categorically rule out ψ-
epistemic models, is very different from the ‘additional
assumptions’ used in existing no-go theorems.

To make this precise, we can break up our consider-
ation of state update into two parts. The first part is
simply the fact that we are considering a broader set of
empirical situations than considered previously: exper-
iments involving sequential measurements. The onto-
logical models formalism, as originally defined, does not
have the tools to model this empirical situation, so we
are forced to extend the formalism to do so. This leads
to the second part, which is an assumption about how
we ought to model this empirical situation. While, in
principle, there are many ways one can do this, we show
in Appendix B that there is only one way to do this that
is consistent with the broader conceptual underpinnings
(i.e. pre-existing assumptions) of the ontological mod-
els formalism. By examining the core assumptions of
the ontological models formalism rather than its strict
mathematical formulation, we show that all of the struc-
ture associated with state update follows directly from
the pre-existing assumptions of the ontological models
formalism.

This is in contrast to the assumptions used in previ-
ously published no-go theorems. First of all, they start
from empirical situations that can be described by the
vanilla ontological models formalism. Then, they im-
pose a particular restriction on the form of the ontologi-
cal models that happens directly at the level of the ontic
state; for example, the PBR theorem [40] assumes the
preparation independence postulate (PIP) which says
that says that, for two subsystems A and B, if the
quantum state is a product state, then the preparation
distribution µ is a product distribution:

ΛAB = ΛA × ΛB (42)
and

ΨAB = ΨA ⊗ΨB

=⇒ µ(λA, λB |ΨAB) = µ(λA|ΨA) · µ(λB |ΨB). (43)

We can see from this symbolic expression that this is
indeed a direct assumption about the structure of the
ontological model, rather than an empirical considera-
tion. More to the point, it imposes structure on the

ontological model that is not required by the bare for-
malism.

As another example, the Colbeck-Renner argu-
ment [41] claims to not make any assumptions of the
kind described in the PIP; they do, however, assume
a spacetime structure which is, again, additional to
the ontological models formalism. Spacetime and lo-
cality arguments are also what motivate the PIP. These
relativistically-motivated considerations are interesting
in their own right, but since Bell’s theorem already rules
out ψ-epistemic models based on reasonable spacetime
structure (i.e. the locality assumption), the goal of our
paper is to arrive at a similar conclusion without impos-
ing spacetime structure. In particular, a ψ-epistemicity
no-go theorem would directly imply the results of Bell’s
theorem and is thus a stronger result [24].

Whether operational state update, i.e. the Lüders
rule, is considered an assumption of some kind or a
consequence of other operational axioms is irrelevant
to our analysis. The key point for our analysis is that
the state-update rule is an experimentally validated op-
erational feature/prediction of QM theory, much like
entanglement or unitary dynamics, and therefore is an
empirical feature of the QM framework that the frame-
work of ontological models ought to explain. So just
like the discovery from Bell that entangled states lead
to new constraints/insights into the necessary features
of (ψ-epistemic) ontological models, similarly our in-
sight is that the dynamics associated with state-update
also leads to new constraints/insights into the necessary
features of (ψ-epistemic) ontological models.

B Justifying the form of the state up-
date rule: ontological models as hidden
Markov models of stochastic channels
In the context of state update under measurement, it is
illuminating to motivate the definition of an ontologi-
cal model from the point of view of the hidden Markov
models (HMM) literature. We do this in order to (a)
provide a rigorous treatment of multiple-measurement
scenarios presented informally in Section 2.1 and (b)
clarify the assumptions that define the ontological mod-
els framework. In the process, we use these assumptions
to show that the form of our state update rule is the only
one consistent with the already-defined components of
the ontological models formalism.

We picture a quantum circuit as a memoryful stochas-
tic channel (Fig. 2). The channel that we often dis-
cuss with regards to a quantum circuit is the (quantum)
channel that takes the input quantum state and maps
it to the output quantum state. For present purposes,
we will instead think of it as a channel from the ex-
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Figure 2: A quantum circuit can be pictured as a stochastic
channel, as described in the text. The inputs to the channel
at are the choice of operation, and the outputs kt report the
results of measurements.

perimenter to individual measurement outcomes used
repeatedly at each time step. Pictorially, one might
think of this as ‘rotating the channel ninety degrees’ in
a circuit diagram.

The input string ←→a0 = . . . a−2a−1a0a1a2 . . . of the
channel is the experimenter’s choice of action, which
we take to be a sequence of operational preparation,
transformation, or measurement procedures. The out-

put string
←→
k0 of the channel reports either the results of

measurements or a trivial output for preparations and
transformations. The subscript 0 indicates in both cases
the time that we take as an origin/reference point. The
channel is then described by the conditional probability

distribution Pr(
←→
k0 |←→a0 ). Following [58], we denote sub-

strings with at:t+L = atat+1 . . . at+L−1, and also define
the past←−at = a−∞:t and future −→at = at:∞. We can now
define two properties of stochastic channels:

Definition 4 (Stationary). A stationary channel is one
that has time-translation symmetry, so statistics are not
affected by our choice of time-origin:

Pr(kt:t+L|←→at ) = Pr(k0:L|←→ao ) and

Pr(
←→
kt |←→at ) = Pr(

←→
k0 |←→a0 ) ∀t, L,←→a . (44)

Definition 5 (Causal). A causal channel is one for
which a finite output substring depends only on input
symbols in its past:

Pr(kt:t+L|←→a ) = Pr(kt:t+L|←−a t+L). ∀t, L,←−a (45)

It is shown in [58] that a channel satisfying these two
properties can be specified entirely by the single-symbol
recurrence relation

Pr(k0|a0,
←−a0,
←−
k0). (46)

Note that this does not imply a Markov process, since it

depends in general on the entire histories←−a0 and
←−
k0. All

we mean by single-symbol is that we are not specifying
the probabilities over the whole future, just a single
output symbol. We now construct an HMM as follows:

Definition 6 (Hidden Markov Model). A hidden
Markov model (HMM) of a stationary, causal channel
is specified by an additional random variable λ taking
values in a state space Λ. It is given a joint probabil-
ity distribution over

←→
λ0 ,
←→a0 ,
←→
k0 so that the recurrence

relation above (Eq. 46) becomes

Pr(k0, λ1|a0, λ0,
←−a 0,
←−
k 0,
←−
λ 0) = Pr(k0, λ1|a0, λ0).

(47)

In other words, the state λ renders the future condi-
tionally independent of the past and induces a Markov
process over the state space Λ that mediates the chan-
nel statistics. This is the property of the ontological
models formalism called “λ-mediation” in [59]. An in-
fluence diagram [60] of a stationary, causal channel is
shown in Figure 3 before and after the specification of
an HMM.

To see that specification of an HMM as in Eq. 47
is equivalent to the definition of an ontological model
given in Section 2.1, we first note that generally we
don’t think of preparations and transformations having
output; to account for this, we stipulate that they give a
trivial, deterministic output k0 = 0. We then factor the
probability distribution from Eq. 47 and look separately
at the cases where a0 is a preparation, transformation,
or measurement:

Pr(k0, λ1|λ0, a0)
= Pr(λ1|k0, λ0, a0)Pr(k0|λ0, a0)

=


µ(λ1|P )δk0,0 a0 = P ∈ P
Γ(λ1|λ0, T )δk0,0 a0 = T ∈ T
η(λ1|k0, λ0,M)ξ(k0|λ0,M) a0 = M ∈M

(48)

where δ is the Kronecker delta. This can be seen as
the rigorous definition of η which emerges naturally
from this recognition that ontological models are equiv-
alent to hidden Markov models. In particular, this
gives a mathematical reason why η is only defined in
the support of ξ. If we take the joint distribution
Pr(k0, λ1|λ0, a0) to be the more fundamental object,
then it is clear we can obtain ξ directly by marginal-
ization

ξ(k0|λ0,M) =
∫

Λ
dλ1 Pr(k0, λ1|λ0,M) (49)
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Figure 3: Influence diagrams [60] for stochastic channels. The
boxes represent choices made by the experimenter, circles rep-
resent random variables, and arrows represent a possible causal
influence. Note that no arrows point backwards in time, and
that in the hidden Markov model the state λt mediates all
causal influences through time.

which is always well defined, and then find η by rear-
ranging Eq. 48:

η(λ1|k0, λ0,M) = Pr(k0, λ1|λ0,M)
ξ(k0|λ0,M) (50)

Thus clearly η(λ1|k0, λ0,M) is only well-defined when
ξ(k0|λ0,M) 6= 0, which is how we defined its support.

Definitions 4–6 constitute an equivalent formulation
of the ontological models formalism. The assumptions
of this construction can be broken down as follows: (a)
quantum theory is described by a stochastic channel,
(b) this channel is stationary, (c) it is causal, and (d) we
assign the system a state which acts as an HMM of the
channel. The authors of [59] identify (c) and (d), calling
them non-retrocausality and λ-mediation, respectively.
Assumptions (a) and (b) were implicitly present but not
explicitly identified. Since our formulation of the state
update rule follows directly from these assumptions, we
see that it is not ‘additional’ to the ontological models
formalism, but a unique extension to describe a more
general empirical scenario.

C A brief introduction to the stabilizer
subtheory
We focus here on the stabilizer subtheory for n qupits,
where p is a prime. For a more detailed exposition, we

refer the reader to [33, 55].

Mathematical objects The generalizations of the X
and Z operators to a single qupit are defined by their
action on the standard basis {|j〉} for j = 0, 1, . . . , p−1:

X |j〉 = |j + 1〉 (51)
Z |j〉 = ωj |j〉 (52)

ω = e2πi/p (53)

All integer arithmetic is done modp. Then the full set
of generalized Pauli operators on n qupits is given by

T(x,z) =
{⊗n−1

j=0 X
xjZzj p = 2⊗n−1

j=0 ω
xjzj/2XxjZzj p > 2

(54)

for x = (x0, x1, . . . , xn−1) ∈ Znp
and z = (z0, z1, . . . , zn−1) ∈ Znp

We also define the symplectic inner product as

[(x, z), (x′, z′)] = z · x′ − x · z′. (55)

Finally, the phase-point operators Aλ, for λ = (x, z) ∈
Znp×Znp , are a symplectic Fourier transform of the Pauli
operators:

Aλ = 1
pn

∑
λ′∈Znp×Znp

ω[λ,λ′]Tλ′ (56)

The stabilizer subtheory A stabilizer group S is a
set of pn mutually commuting Pauli operators, which
can be specified by a set of n generators. There is a
unique state (up to global phase) which is an eigenvector
of all of these operators with eigenvalue +1; we say that
S stabilizes this state. For example, for two qubits, the
Bell state

|Ψ〉 = |00〉+ |11〉 (57)

is stabilized by

SΨ = 〈Z1Z2, X1X2〉 (58)
= {I, Z1Z2, X1X2,−Y1Y2}. (59)

Here a subscript indicates on which qubit the operator
is acting, e.g. Z1 = Z ⊗ I describes Z acting on the
first qubit. A stabilizer state, then, is a state which is
stabilized by a group of pn Pauli operators.

Stabilizer measurements are simply measurements of
the Pauli operators. Note that since each Pauli opera-
tor has p eigenvalues, these amount to a measurement
of p projectors, each with rank pn−1. Lower-rank pro-
jectors can be constructed by performing commuting
Pauli measurements sequentially.
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Finally, the transformations of the stabilizer subthe-
ory are called Clifford transformations. These are the
transformations that map the set of Pauli operators to
itself, up to a global phase. In other words, it is the
normalizer of the Pauli group.

The stabilizer subtheory thus consists of prepara-
tions corresponding the set of stabilizer states, mea-
surements of Pauli observables, and Clifford transfor-
mations, along with convex combinations thereof.
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