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Lin and Lin [LL16] have recently shown how starting with a classical
query algorithm (decision tree) for a function, we may find upper bounds
on its quantum query complexity. More precisely, they have shown that
given a decision tree for a function f : {0, 1}n → [m] whose input can be
accessed via queries to its bits, and a guessing algorithm that predicts
answers to the queries, there is a quantum query algorithm for f which
makes at most O(

√
GT ) quantum queries where T is the depth of the

decision tree and G is the maximum number of mistakes of the guessing
algorithm. In this paper we give a simple proof of and generalize this
result for functions f : [`]n → [m] with non-binary input as well as out-
put alphabets. Our main tool for this generalization is non-binary span
program which has recently been developed for non-binary functions,
and the dual adversary bound. As applications of our main result we
present several quantum query upper bounds, some of which are new.
In particular, we show that topological sorting of vertices of a directed
graph G can be done with O(n3/2) quantum queries in the adjacency
matrix model. Also, we show that the quantum query complexity of the
maximum bipartite matching is upper bounded by O(n3/4√m+ n) in
the adjacency list model.

1 Introduction
Query complexity of a function f : [`]n → [m] is the minimum number of adaptive
queries to its input bits required to compute the output of the function. In a quan-
tum query algorithm we allow to make queries in superposition, which sometimes
improves the query complexity, e.g., in Grover’s search algorithm [Gro].

Lin and Lin [LL16] have recently shown that surprisingly sometimes classical
query algorithms may result in improved quantum query algorithms. They showed
that having a classical query algorithm with query complexity T for some function
f : {0, 1}n → [m], together with a guessing algorithm that at each step predicts the
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value of the queried bit and makes no more than G mistakes, the quantum query
complexity of f is at most Q(f) = O(

√
GT ). For instance, the trivial classical

algorithm for the search problem which queries the input bits one by one have query
complexity T = n, and the guessing algorithm which always predicts the output 0
makes at most G = 1 mistakes (because making a mistake is equivalent to finding an
input bit 1 which solves the search problem). Thus the quantum query complexity
of the search problem is O(

√
GT ) = O(

√
n) recovering Grover’s result.

There are two proofs of the above result in [LL16]. One of the proofs is based
on the notion of bomb query complexity B(f). Lin and Lin show that there exists
a bomb query algorithm that computes f using O(GT ) queries, and that the bomb
query complexity equals the square of the quantum query complexity, i.e., B(f) =
Θ(Q(f)2), which together give Q(f) = O(

√
GT ). In the second proof, they design

a quantum query algorithm with query complexity O(
√
TG) for f using Grover’s

search; in computing the function they use the values of predicted queries instead
of the real values and use a modified version of Grover’s search to find mistakes of
the guessing algorithm.

Our results: In this paper we give a simple proof of the above result based on
the method of non-binary span program that has recently been development by the
authors [BT19]. Then inspired by this proof, we generalize Lin and Lin’s result for
functions f : [`]n → [m] with non-binary input as well as non-binary output alpha-
bets. Our proof of this generalization is based on the dual adversary bound which
is another equivalent characterization of the quantum query complexity [LMR+11].

As an application of our main result we show that given query access to edges of a
directed and acyclic graph G in the adjacency matrix model, the vertices of G can be
sorted with O(n3/2) quantum queries to its edges. We also show that given a directed
graph G and a vertex v ∈ V (G), the quantum query complexity of determining the
length of the smallest directed cycle in G containing v is Θ(n3/2). Moreover, we show
that given an undirected graph G, a vertex v and some constant k > 0, the quantum
query complexity of deciding whether G has a cycle of length k containing the vertex
v is O(n3/2). Furthermore, we show that some existing results on the quantum query
complexity of graph theoretic problems such as directed st-connectivity, detecting
bipartite graphs, finding strongly connected components, and deciding forests can
easily be derived from our results.

Our main result is also useful when dealing with graph problems in the adjacency
list model. In this regard, we show that given query access to the adjacency list of an
unweighted bipartite graph G, the quantum query complexity of finding a maximum
bipartite matching in G is O(n3/4√m+ n), where m is the number of edges of the
graph. To the authors’ knowledge this is the first non-trivial upper bound for this
problem.

2 Preliminaries
In this section we review the notions of the dual adversary bound and the non-binary
span program that will be used for the proof of our main result. In this paper we
use Dirac’s ket-bra notation, so |v〉 is a complex (column) vector whose conjugate

Accepted in Quantum 2020-02-26, click title to verify. Published under CC-BY 4.0. 2



transpose is denotes by 〈v|. Then, 〈v|w〉 is the inner product of vectors |v〉 , |w〉. For
a matrix A, we denote by ‖A‖ the operator norm of A, i.e., the maximum singular
value of A. We use [`] to denote the `-element set {0, . . . , ` − 1}. We also use the
Kronecker delta symbol δa,b which equals 1 if a = b and equals 0 otherwise.

2.1 Query algorithms
In the query model we deal with the problem of computing a function f : Df → [m]
with domain Df ⊆ [`]n by quering coordinates of the input x = (x1, . . . , xn) ∈ Df ⊆
[`]n. In the classical setting a query algorithm asks the value of some coordinate of
the input and based on the answer to that query decides what to do next: either asks
another query or outputs the result. Such an algorithm can be modeled by a decision
tree whose internal vertices are associated with queries, i.e., indices 1 ≤ j ≤ n, and
whose edges correspond to answers to queries, i.e., elements of [`]. At each vertex
the algorithm queries the associated index, and then moves to the next vertex via
the edge whose label equals the answer to that query. The algorithm ends once we
reach the leaves of the tree that are labeled by elements of [m], the output set of the
function. The query complexity of the algorithm is the maximum number of queries
in the algorithm over all x ∈ Df , which is equal to the height of the decision tree.
A randomized classical query algorithm can similarly be modeled by a collection of
decision trees where one of them is chosen at random.

In contrast in quantum query algorithms, a query can be made in superposition.
Such a query to an input x can be modeled by the unitary operator Ox:

Ox|j, p〉 = |j, (xj + p) mod `〉,

where the first register contains the query index 1 ≤ j ≤ n, and the second register
saves the value of xj in a reversible manner. Therefore, a quantum query algorithm
for computing f(x) is an alternation of unitaries Ox and some Ui’s that are inde-
pendent of x (but depend on f itself). Indeed, a quantum query algorithm consists
of sequence of unitaries

UkOx . . . U2OxU1,

followed by a measurement which determines the outcome of the algorithm. We say
that an algorithm computes f , if for every x ∈ Df ⊆ [`]n the algorithm outputs
f(x) with probability at least 2/3. The query complexity of such an algorithm is
the number of queries, i.e., the number of Ox’s in the sequence of unitaries. Q(f)
denotes the quantum query complexity of f , which is the minimum query complexity
among all quantum algorithms that compute f .

2.2 Dual adversary bound
The generalized adversary bound [HLŠ07] gives a lower bound on the quantum query
complexity of any function f : Df → [m] with Df ⊆ [`]n. This bound can be
obtained via a semi-definite program (SDP) whose optimal value, based on the
duality of SDPs, has been shown to be equal to that of the following SDP up to a
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factor of at most 2 [LMRŠ].

min max
x∈Df

max
{

n∑
j=1

∥∥∥|uxj〉∥∥∥2
,
n∑
j=1

∥∥∥|wxj〉∥∥∥2
}

(1a)

subject to
∑

j:xj 6=yj
〈uxj|wyj〉 = 1− δf(x),f(y) ∀x, y ∈ Df . (1b)

Here the optimization is over vectors |uxj〉, |wxj〉. This SDP is called the dual adver-
sary bound and is proved by Lee et al. [LMR+11] to be an upper bound on quantum
query complexity of the function f as well. Thus, the above SDP characterizes the
quantum query complexity of f up to a constant factor. Moreover, in order to de-
sign quantum query algorithms and quantum query complexity upper bounds, it is
enough to find a feasible solution of the SDP (1).

Function evaluation is a special case of a more general problem called state gen-
eration [Shi02, AMRR11]. In the state generation problem, the goal is to generate a
state |ψx〉 (which depends on x) up to a constant error, given query access to x ∈ D.
That is, the quantum query algorithm is required to output some state ρx such that
‖ρx−|ψx〉 〈ψx| ‖tr ≤ 0.1 where ‖ ·‖tr denotes the trace distance. Of course, the func-
tion evaluation problem is a special case of the state generation problem in which
|ψx〉 = |f(x)〉. It has been shown in [LMR+11] that a generalization of the SDP (1)
characterizes the quantum query complexity of the state generation problem up to
a constant factor. This generalized SDP, again called the dual adversary bound, is
as follows:

min max
x∈D

max
{

n∑
j=1

∥∥∥|uxj〉∥∥∥2
,
n∑
j=1

∥∥∥|wxj〉∥∥∥2
}

(2a)

subject to
∑

j:xj 6=yj
〈uxj|wyj〉 = 1− 〈ψx |ψy〉 ∀x, y ∈ D, (2b)

where again the optimization is over vectors |uxj〉, |wxj〉. Observe that this SDP

depends only on the gram matrix
(
〈ψx |ψy〉

)
x,y

of the target vectors. Moreover,

letting |ψx〉 = |f(x)〉, for some function f , we recover (1).

2.3 Non-binary span program
Span program introduced by [Rei09] is another algebraic tool that similar to the dual
adversary bound, characterizes the quantum query complexity of binary functions
up to a constant factor. This model has been used for designing quantum query
algorithms of binary decision functions by Špalek and Reichardt [RŠ12]. The notion
of span program was generalized for functions with non-binary inputs in [IJ15].
Later, it was further generalized for arbitrary non-binary functions with non-binary
input/output alphabets [BT19]. In this paper we use a special form of non-binary
span program of [BT19] called non-binary span program with orthogonal inputs,
which characterizes the quantum query complexity of any functions f : [l]n → [m]
up to a factor of

√
`− 1. Here since we will use non-binary span programs only for

functions with binary inputs (` = 2), we may focus on this special form.
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A non-binary span program with orthogonal inputs (NBSPwOI) P evaluating a
function f : Df → [m] with Df ⊆ [`]n consists of1

• a finite-dimensional inner product space V ,

• m target vectors |t0〉, |t2〉, . . . , |tm−1〉 ∈ V ,

• and an input set Ij,q ⊆ V for every 1 ≤ j ≤ n and q ∈ [`].

Then I ⊆ V is defined by

I =
n⋃
j=1

⋃
q∈[`]

Ij,q,

and for every x ∈ Df the set of available vectors I(x) is defined by

I(x) =
n⋃
j=1

Ij,xj .

Indeed, when the j-th coordinate of x is equal to q (i.e., xj = q) then the vectors
in Ij,q become available. We also let A be the d× |I| matrix consisting of all input
vectors as its columns where d = dim V .

We say that P evaluates the function f if for every x ∈ Df , |tα〉 belongs to
the span of the available vectors I(x) if and only if α = f(x). Even more, there
should be two witnesses indicating this. Namely, a positive witness |wx〉 ∈ C|I| and
a negative witness |w̄x〉 ∈ V satisfying the following conditions:

• The coordinates of |wx〉 associated to unavailable vectors are zero.

• A |wx〉 = |tα〉.

• ∀ |v〉 ∈ I(x) we have 〈v|w̄x〉 = 0.

• ∀β 6= α we have 〈tβ|w̄x〉 = 1.

Let positive and negative complexities of P together with the collections w and
w̄ of positive and negative witnesses (P,w, w̄) be

wsize+(P,w, w̄) := max
x∈Df

‖ |wx〉 ‖2,

wsize−(P,w, w̄) := max
x∈Df

‖A† |w̄x〉 ‖2.

Then the complexity of (P,w, w̄) is equal to

wsize(P,w, w̄) =
√

wsize−(P,w, w̄) · wsize+(P,w, w̄). (3)

It is shown in [BT19] that for any NBSPwOI evaluating the function f , its
complexity wsize(P,w, w̄) is an upper bound on Q(f). Furthermore, there always
exists an associated NBSPwOI whose complexity is bounded by O(

√
`− 1Q(f)).

Thus, NBSPwOIs characterize the quantum query complexity of all functions up to
a factor of

√
`− 1.

1Non-binary span programs may also have free input vectors that will not be used here in this
paper.
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3 From decision trees to span programs
In this section we first give a simple proof of the main result of [LL16] based on
span programs. Later, getting intuition from this proof, we generalize this result for
non-binary functions.

Recall that a classical query algorithm for a function f : Df → [m] with Df ⊆
{0, 1}n can be modeled by a binary decision tree T with internal vertices being
indexed by elements of {1, . . . , n}, edges being indexed by {0, 1}, and leaves being
index by elements of [m]. The depth of the decision tree, which we denote by T ,
is the classical query complexity of this decision tree. In [LL16] it is assumed that
there is a further algorithm that predicts the values of the queried bits. That is, at
each internal vertex of T it makes a guess for the answer of the associated query.
This guess, of course, may depend on the answers to the previous queries. Then it
is proven that if for every x ∈ Df the number of mistakes of the guessing algorithm
is at most G, then the quantum query complexity of f is O(

√
TG).

We can visualize the guessing algorithm in the decision tree by coloring its edges.
For each internal vertex of the decision tree, there are two outgoing edges indexed
by 0 and 1, one of which is chosen by the guessing algorithm. We color the chosen
one black, and the other one red. We call such a coloring of the edges of the decision
tree a guessing-coloring (hereafter, G-coloring). Now once we make a query at an
internal vertex, its answer tells us which edge we should take, the black one or the
red one. If it was black it means that the guessing algorithm made a correct guess,
and if it was red it means that it made a mistake. Therefore, the number of mistakes
of the guessing algorithm for every x ∈ Df equals the number of red edges in the
path from the root to the leaf of the tree associated to x.

Here we summarize the notion of G-coloring.

Definition 1 (G-coloring). A G-coloring of a decision tree T is a coloring of its
edges by two colors black and red, in such a way that any vertex of T has at most
one outgoing edge with black color.

We can now state the result of [LL16] based on decision trees and the notion of
G-coloring.

Theorem 2 (Lin and Lin [LL16]). Assume that we have a decision tree T for a
function f : Df → [m] with Df ⊆ {0, 1}n whose depth is T . Furthermore, assume
that for a G-coloring of the edges of T , the number of red edges in each path from the
root to the leaves of T is at most G. Then there exists a quantum query algorithm
computing the function f with query complexity O(

√
GT ).

We remark that the result of [LL16] also works for randomized algorithms. Nev-
ertheless, here to present our main ideas we first consider deterministic decision
trees. Later, randomized query algorithms will be considered as well.

To prove this theorem we design an NBSPwOI for f with complexity O(
√
GT ).

To present this span program first we need to develop some notations. Let V (T )
be the vertex set of T . Then for every internal vertex v ∈ V (T ), its associated
index is denoted by J(v), i.e., J(v) is the index 1 ≤ j ≤ n that is queried by the
classical algorithm at node v. The two outgoing edges of v are indexed by elements
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of {0, 1} and connect v to two other vertices. We denote these vertices by N(v, 0)
and N(v, 1). That is, N(v, q), for q ∈ {0, 1}, is the next vertex that is reached from
v after following the outgoing edge with label q. We also represent the G-coloring
of edges of T by a function C(v, q) ∈ {black, red} where v is an internal vertex,
q ∈ {0, 1} and C(v, q) is the color of the outgoing edge of v with label q.

Proof. For every x ∈ Df there is an associate leaf of the tree T that is reached once
we follow edges of the tree with labels xj starting from the root. In order to find
f(x) it suffices to find this associated leaf because this is what the classical query
algorithm does; once we find the leaf associated to x, we find the path that the
classical query algorithm would take and then find f(x). Thus in order to compute
f , we may compute another function f̃ which given x outputs its associated leaf of
T , and to prove the upper bound of O(

√
GT ) on the quantum query complexity it

suffices to design an NBSPwOI for f̃ with this complexity.
The NBSPwOI is the following:

• the vector space V is determined by the orthonormal basis indexed by vertices
of T :

{|v〉 | v ∈ V (T )},

• the input vectors are

Ij,q =
{√

WC(v,q)
(
|v〉 − |N(v, q)〉

) ∣∣∣∣ ∀v ∈ V (T ) s.t. J(v) = j
}
,

where Wblack and Wred are positive real numbers to be determined,

• the target vectors are indexed by leaves u of the tree:

|tu〉 = |r〉 − |u〉 ,

where r ∈ V (T ) is the root of the tree.

For every vertex v of T we denote by Pv the (unique) path from the root r to
vertex v. Then for every x ∈ Df there exists a path Px = Pf̃(x) from the root of the
decision tree to the leaf f̃(x). Thus the target vector

∣∣∣tf̃(x)

〉
equals

∣∣∣tf̃(x)

〉
= |r〉 −

∣∣∣f̃(x)
〉

=
∑
v∈Px

1√
W
C

(
v,xJ(v)

)
WC

(
v,xJ(v)

) (|v〉 − ∣∣∣N(v, xJ(v))
〉) ,

where the vectors in the braces are all available for x. Then since by assumptions
the number of red edges along the path Px is at most G and the number of all edges
is at most T , the positive complexity is bounded by

wsize+ ≤ 1
Wred

G+ 1
Wblack

T.

We let the negative witness for x to be

|w̄x〉 =
∑
v∈Px
|v〉 .
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It is easy to verify that |w̄x〉 is orthogonal to all available vectors, and that 〈w̄x| tu〉 =
〈w̄x| r〉 = 1 for all u 6= f̃(x). Thus |w̄x〉 is a valid negative witness. Moreover, an
input vector of the form √

WC(v,q)
(
|v〉 − |N(v, q)〉

)
,

contributes in the negative witness size only if its corresponding edge {v,N(v, q)}
leaves the path Px, i.e., they have only the vertex v in common. In this case the
contribution would be equal to WC(v,q), the weight of that edge. The number of such
red (black) edges equals the number of black (red) edges in Px, which is bounded
by T (G). Therefore, the negative witness size is

wsize− ≤ WblackG+WredT

Now letting Wblack = 1
Wred

=
√

T
G

, both the positive and negative witnesses are
bounded by 2

√
GT . Therefore, the quantum query complexity of f̃ , and then f are

bounded by O(
√
GT ).

4 Main result: generalization to the non-binary case
This section contains our main result which is a generalization of Theorem 2 for
functions f : Df → [m] with non-binary input alphabet Df ⊆ [`]n. In this case, a
classical query algorithm corresponds to a decision tree whose internal vertices have
out-degree ` (instead of 2). Moreover, a G-coloring can be defined similarly based
on a guessing algorithm. Yet, we are interested in a further generalization of the
notion of decision tree which we explain by an example.

Consider the following trivial algorithm for finding the minimum of a list of
numbers in [`]: we keep a candidate minimum, and as we query the numbers in the
list one by one, we update it once we reach a smaller number. In this algorithm, the
possible numbers as answers to a query are of two types: numbers that are greater
than or equal to the current candidate minimum, and those that are smaller. Now
assuming that the answer to that query is of the first type, what we do next is
independent of its exact value (since we simply ignore it and query the next index).
Considering the associated decision tree T , for each vertex v we have a candidate
minimum, and the outgoing edges of v are labeled by different numbers in [`]. Then
by the above discussion, the subtrees of T hanging below the outgoing edges whose
labels are greater than or equal to the current candidate minimum are identical.
Thus we can identify those edges and their associated subtrees. In this case the
outgoing edges of v are not labeled by elements of [`], but by its certain subsets
that form a partition. Indeed, there is an outgoing edge whose label is the subset of
numbers greater than or equal to the current candidate minimum, and an outgoing
edge for any smaller number.

Motivated by the above example of minimum finding, we generalize the notion
of decision tree T for a function f : Df → [m] with non-binary input alphabet
(Df ⊆ [`]n). As before each internal vertex v of T corresponds to a query index
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1 ≤ J(v) ≤ n. Each outgoing edge of this vertex is labeled by a subset of [`], and
we assume that these subsets form a partition of [`]. We denote this partition by

`−1⋃
q=0

Qv(q) = [`], (4)

where hereQv(q) is the subset in the partition that contains q ∈ [`]. ThusQv(q) ⊆ [`]
contains q, and for q, q′ ∈ [`] either Qv(q), Qv(q′) are disjoint or are equal. Moreover,
the out-degree of v equals |{Qv(q) : q ∈ [`]}|, the number of different Qv(q)’s. We
also denote the neighbor vertex of v connected to the edge with label Qv(q) by
N(v,Qv(q)). See Figure 1 for an example of a decision tree.

v1
J(v1) = 1

v3
J(v3) = 2

v2
J(v2) = 2

{2}

v6
J(v6) = 3

v4
J(v4) = 3

Qv1(2) = {2}

{0, 1}
v5

J(v5) = 3

{2}

f(x) = 1 {2} {2} v8
J(v8) = 4

{2}

{2}

v7
J(v7) = 4

{2}

Qv1(0) = Qv1(1) = {0, 1}

v9
J(v9) = 5

{2}

N(v1, {0, 1}) = v3

N(v3, {0, 1}) = v6

{0, 1}

N(v1, {2}) = v2

N(v2, {2}) = v5

{0, 1}

{0, 1}

{0, 1}

{0, 1}{0, 1}

{0, 1}

f(x) = 1 f(x) = 1

f(x) = 1 f(x) = 1

f(x) = 1

f(x) = 0

Figure 1: Decision tree for deciding whether a given string x ∈ {0, 1, 2}n contains at least two
2’s. At any vertex v the queried index is J(v) and the result of the query belongs to one of
the two sets appeared in the labels of outgoing edges of v. This tree has a natural G-coloring:
edges with label {2} are red (dashed edges) and edges with label {0, 1} are black (solid edges).
The depth of the decision tree is T = n, and f(x) would be determined once we see two red
edges. Thus G = 2 and the quantum query complexity of this problem is O(

√
n).

Now given a decision tree T as above, the corresponding classical algorithm works
as follows. We start with the root r of the tree and query J(r). Then xJ(r) ∈ [`]
corresponds to the outgoing edge of v with label Qv(xJ(r)). We take that edge and
move to the next vertex N(v,Qv(xJ(r))). We continue until we reach a leaf of the
tree which determines the value of f(x).

The notation of G-coloring can also be generalized similarly. Recall that a G-
coloring comes from a guessing algorithm that in each step predicts the answer to the
queried index. In our generalized decision tree whose edges are labeled by subsets of
[`], we assume that the guessing algorithm chooses one of these subsets as its guess.
Rephrasing this in terms of colors, we assume that for each internal vertex v of T ,
one of its outgoing edges is colored in black (meaning that its label is the predicted
answer) and its other outgoing edges are colored in red. We denote the color of the
outgoing edge of vertex v with label Qv(q) by C(v,Qv(q)) ∈ {black, red}.
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Here is a summary of the notions of generalized decision tree and G-coloring
explained above.

Definition 3 (Generalized decision tree and G-coloring). A generalized decision
tree T is a rooted directed tree such that each internal vertex v (including the root)
of T corresponds to a query index 1 ≤ J(v) ≤ n. Outgoing edges of v are labeled by
subsets of [`] that form a partition of [`]. We denote the subset that contains q ∈ [`]
by Qv(q) so that (4) holds. Leaves of T are labeled with elements of [m].

We say that T decides a function f : Df → [m] with Df ⊆ [`]n if for every
x ∈ Df , by starting from the root of T and following edges labeled by Qv(xJ(v)) we
reach a leaf with label m = f(x).

As in Definition 1, a G-coloring of a generalized decision tree T is a coloring of
its edges by two colors black and red, in such a way that any vertex of T has at most
one outgoing edge with black color.

We also consider randomized classical query algorithms. In this case, for each
value ζ of the outcomes of some coin tosses, we have a (deterministic) generalized
decision tree Tζ as above. We also assume that each of these decision trees Tζ is
equipped with a guessing algorithm which itself may be randomized. Nevertheless,
we may assume with no loss of generality that ζ includes the randomness of the
guessing algorithm as well. Therefore, for any ζ we have a generalized decision
tree with a G-coloring as before. We assume that the classical randomized query
algorithm outputs the correct answer f(x) with high probability:

Pr
ζ

[
output of Tζ on x equals f(x)

]
≥ 0.9. (5)

The complexity of such a randomized query algorithm is given by the expectation of
the number of queries over the random choice of ζ.

We can now state our generalization of Theorem 2.

Theorem 4. In the following let f : Df → [m] be a function with Df ⊆ [`]n.

(i) Let T be a generalized decision tree for f equipped with a G-coloring. Let T
be the depth of T and let G be the maximum number of red edges in any path
from the root to leaves of T . Then the quantum query complexity of f is upper
bounded by O(

√
TG).

(ii) Let {Tζ : ζ} be a set of generalized decision trees corresponding to a ran-
domized classical query algorithm evaluating f with bounded error as in (5).
Moreover, suppose that each Tζ is equipped with a G-coloring. Let P ζ

x be the
path from the root to the leaf of Tζ associated to x ∈ Df . Let T ζx be the length
of the path P ζ

x , and let Gζ
x be the number of red edges in this path. Define

T = max
x

Eζ [T ζx ],

G = max
x

Eζ [Gζ
x],

where the expectation is over the random choice of ζ. Then the quantum query
complexity of f is O(

√
TG).
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The span program in the proof of Theorem 2 can easily be adapted for a proof
of the above theorem, yet in the complexity of the resulting span program we see

an extra factor of
√
`− 1, i.e., we get the upper bound of O(

√
(`− 1)GT ) on the

quantum query complexity. To remove this undesirable factor, getting ideas from
the span program in the proof of Theorem 2, we directly construct a feasible solution
of the dual adversary SDP (1). Indeed, our starting point for proving Theorem 4
is the proof of Theorem 2 based on span programs. Then getting intuition from
this proof, we design a feasible solution of the dual adversary SDP with the desired
objective value.

Proof. (i) Let Vj(T ) be the set of vertices of T associated with query index j, i.e.,
Vj(T ) = J−1(j). Also let Px be the path from the root r to the leaf of T associated
to x ∈ Df . We can assume with no loss of generality that Vj(T ) ∩ Px contains at
most one vertex since otherwise in computing f(x) we are querying index j more
than once.

To construct the feasible solution of the dual adversary SDP we will need the set
of vectors {|µQ〉 : Q ⊆ [`]} and {|νQ〉 : Q ⊆ [`]} in C2[`] first appeared in [LMRŠ]:

|µQ〉 =
√

2(2` − 1)
2`

−θ |Q〉+
√

1− θ2
√

2` − 1
∑
P 6=Q
|P 〉

 , (6)

|νQ〉 =
√

2(2` − 1)
2`

√1− θ2 |Q〉+ θ√
2` − 1

∑
P 6=Q
|P 〉

 , (7)

where θ =
√

1
2 −
√

2`−1
2` . These vectors have the property that ‖ |µQ〉 ‖2 = ‖ |νQ〉 ‖2 =

2(2`−1)
2` ≤ 2 for all Q and

〈µQ| νP 〉 = 1− δQ,P .

Also we use the set of vectors {|µ̃α〉 : α ∈ [m]} and {|ν̃α〉 : α ∈ [m]} in Cm defined
similarly as above with the property that ‖ |µ̃α〉 ‖2 = ‖ |ν̃α〉 ‖2 = 2(m−1)

m
≤ 2 for all

α, and that 〈µ̃α| ν̃β〉 = 1− δα,β.
Now define vectors |uxj〉 and |wxj〉 in the vector space CV (T )⊗C{black,red}⊗C2[`]⊗

Cm as follows:

|uxj〉 =


1√

WC(v,Qv(xj))

∣∣∣v, C(v,Qv(xj))
〉
⊗
∣∣∣µQv(xj)

〉
⊗
∣∣∣µ̃f(x)

〉
if ∃v ∈ Px ∩ Vj(T )

0 otherwise,

and

|wxj〉 =
{ ∑

c∈Cv,xj
√
Wc |v, c〉 ⊗

∣∣∣νQv(xj)
〉
⊗
∣∣∣ν̃f(x)

〉
if ∃v ∈ Px ∩ Vj(T )

0 otherwise,

where assuming that v ∈ Px ∩ Vj(T ), Cv,xj ⊆ {black, red} is defined by

Cv,xj =
{
C(v,Qv(q)) : Qv(q) 6= Qv(xj)

}
. (8)
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Observe that assuming there is a (unique) vertex v ∈ Px ∩ Vj(T ), |uxj〉 is defined in
terms of the label and color of the outgoing edge of v with label Qv(xj). Moreover,
|wxj〉 is equal to either √

Wred |v, red〉 ⊗
∣∣∣νQv(xj)

〉
⊗
∣∣∣ν̃f(x)

〉
,

or (√
Wred |v, red〉+

√
Wblack |v, black〉

)
⊗
∣∣∣νQv(xj)

〉
⊗
∣∣∣ν̃f(x)

〉
,

depending on whether C(v,Qv(xj)) = black or C(v,Qv(xj)) = red respectively.
We claim that these vectors form a solution of the SDP (1). For every x, y ∈ Df

with f(x) 6= f(y) there exists a unique vertex v ∈ V (T ) such that v ∈ Px ∩ Py with
Q
xJ(v)
v 6= Q

yJ(v)
v and in particular xJ(v) 6= yJ(v). In this case,〈

uxJ(v)

∣∣∣wyJ(v)〉 = 1.

Moreover, for any j 6= J(v), we have 〈uxj|wyj〉 = 0 since for such j’s either one of
|uxj〉 , |wyj〉 is zero, or these vectors correspond to different vertices, or they corre-
spond to the same vertex v′ ∈ Px ∩ Py with Qv′(xJ(v′)) = Qv′(yJ(v′)) in which case∣∣∣µQv′ (xJ(v′))

〉
and

∣∣∣νQv′ (yJ(v′))
〉

are orthogonal. Note that here we use the fact that if
f(x) 6= f(y) then

〈
µ̃f(x)

∣∣∣ ν̃f(y)〉 = 1. As a result,∑
j:xj 6=yj

〈uxj|wyj〉 = 1.

Also if f(x) = f(y) then since
∣∣∣µ̃f(x)

〉
and

∣∣∣ν̃f(y)
〉

are orthogonal we have∑
j:xj 6=yj

〈uxj|wyj〉 = 0.

Therefore, the vectors |uxj〉 and |wxj〉 form a feasible solution of the dual adversary
SDP.

Now we compute the objective value. By assumption there are at most T edges
in Px with black color, and at most G red edges in Px. Also the norm-squared of
|µQ〉’s and |µ̃α〉’s are bounded by 2. Therefore,

n∑
j=1
‖ |uxj〉 ‖2 ≤ 4

( 1
Wblack

T + 1
Wred

G
)
.

Also, in computing ∑n
j=1 ‖ |wxj〉 ‖2, for every vertex v ∈ Px, if C(v,Qv(xJ(v))) =

black we get a term of 4Wred, and if C(v,Qv(xJ(v))) = red we get a contribution of
4(Wblack +Wred). Now having a bound on the number of black and red edges in Px
we find that

n∑
j=1
‖ |wxj〉 ‖2 = 4

(
WredT + (Wblack +Wred)G

)
≤ 4

(
2WredT +WblackG

)
.

Therefore, if we let Wblack = 1
Wred

=
√

T
G

, then the objective value of the SDP (1)
will be O(

√
GT ).
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(ii) Let fζ : Df → [m] be the function that is computed by the decision tree Tζ .
Then by assumption we have

Eζ
[
δfζ(x),f(x)

]
≥ 0.9. (9)

On the other hand, by part (i) for every ζ there is a feasible solution
∣∣∣uζxj〉 and

∣∣∣wζxj〉
of the dual adversary SDP for fζ with∑

j:xj 6=yj

〈
uζxj

∣∣∣wζyj〉 = 1− δfζ(x),fζ(y),

such that
n∑
j=1

∥∥∥∣∣∣uζxj〉∥∥∥2
≤ 4

( 1
Wblack

T ζx + 1
Wred

Gζ
x

)
,

and
n∑
j=1

∥∥∥∣∣∣wζxj〉∥∥∥2
≤ 4

(
2WredT

ζ
x +WblackG

ζ
x

)
.

Let us define
|uxj〉 = 1√

K

∑
ζ

∣∣∣uζxj〉⊗ |ζ〉 , (10)

and
|wxj〉 = 1√

K

∑
ζ

∣∣∣wζxj〉⊗ |ζ〉 , (11)

where K is the number of possible values that ζ takes. Then we have∑
j:xj 6=yj

〈uxj |wyj〉 = 1− 1
K

∑
ζ

δfζ(x),fζ(y). (12)

Now define
|ψx〉 := 1√

K

∑
ζ

|fζ(x)〉 |ζ〉 , (13)

and consider the state generation problem for these vectors. Observe that

〈ψx |ψy〉 = 1
K

∑
ζ

δfζ(x),fζ(y).

Therefore, by (12) the vectors |uxj〉 and |wxj〉 form a feasible solution of the dual
adversary SDP (2) for this state generation problem. Letting M be the objective
value of this SDP for these vectors, we conclude that with O(M) quantum queries
to x we can generate a state ρx such that ‖ρx− |ψx〉 〈ψx| ‖tr ≤ 0.1. Then measuring
the first register of ρx in the computational basis

{
|α〉 : α ∈ [m],

}
we have

Pr[measurement outcome equals f(x)] = tr
[
ρx · |f(x)〉 〈f(x)| ⊗ I

]
≥ tr

[
|ψx〉 〈ψx| · |f(x)〉 〈f(x)| ⊗ I

]
− 0.1

= Eζ
[
δfζ(x),f(x)

]
− 0.1

≥ 0.9− 0.1,
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where in the last inequality we use (9). We conclude that there is a quantum query
algorithm which makes O(M) quantum queries and outputs f(x) with probability at
least 0.8. Thus we only need to bound M , the objective value of the dual adversary
bound.

We compute
n∑
j=1
‖ |uxj〉 ‖2 = 1

K

∑
ζ

n∑
j=1

∥∥∥∣∣∣uζxj〉∥∥∥2

≤ 4 1
K

∑
ζ

( 1
Wblack

T ζx + 1
Wred

Gζ
x

)

= 4
( 1
Wblack

Eζ
[
T ζx
]

+ 1
Wred

Eζ
[
Gζ
x

])
≤ 4

( 1
Wblack

T + 1
Wred

G
)

and similarly
n∑
j=1
‖ |uxj〉 ‖2 ≤ 4

(
2WredT +WblackG

)
.

Then as before letting Wblack = 1
Wred

=
√

T
G

, we find that the objective value of this
feasible solution is bounded by M = O(

√
GT ). We are done.

In the proof of Theorem 4 we assigned two different weights to edges of a decision
tree based on their colors; the weight of any red edge is Wred and the weight of any
black edge is Wblack. One may suggest that by assigning different wights to edges
of T we may get better bounds. That is, for any internal vertex v of T , we may
choose two weights Wv,black,Wv,red and assign them to the outgoing edges of v with
the corresponding colors. Then the proof of Theorem 4 can be adopted to get a
bound of the form O(maxx,y

√
M+

x M
−
y ) on the quantum query complexity where

M+
x =

∑
v∈Px:

C(v,Qv(xJ(v)))=black

1
Wv,black

+
∑
v∈Px:

C(v,Qv(xJ(v)))=red

1
Wv,red

,

M−
x =

∑
v∈Px:

C(v,Qv(xJ(v)))=black

Wv,red +
∑
v∈Px:

C(v,Qv(xJ(v)))=red

Wv,black.

Then a simple application of the Cauchy-Schwartz inequality and maxx,y
√
M+

x M
−
y ≥

maxx
√
M+

x M
−
x would show that updating the weights by

W ′
v,black = 1

W ′
v,red

=
√
Wv,black

Wv,red
,

would improve the upper bound O(maxx,y
√
M+

x M
−
y ). As a result, with no loss of

generality we may assume that

Wv,black = 1
Wv,red

.
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Nevertheless, we still have the freedom to choose different weights for vertices of
the decision tree T . These weights could depend on some parameter of the state of
algorithm (decision tree) that is updated as we proceed. Moreover, it could depend
on the guessing algorithm, e.g., on the number of red edges we have seen so far. In
the following theorem, we analyze the latter option, and leave further investigation
of this idea for future works.

Theorem 5. Let {Tζ : ζ} be a set of generalized decision trees corresponding to
a randomized classical query algorithm evaluating f with bounded error as in (5).
Moreover, suppose that each Tζ is equipped with a G-coloring. Let P ζ

x be the path
from the root to the leaf of Tζ associated to x ∈ Df . Let Gζ

x be the number of red
edges in P ζ

x , and for 1 ≤ g ≤ Gζ
x, let T ζg,x be the number of black edges in P ζ

x after
the g-th red edge and before the next red one. Also let T ζ0,x be the number of black
edges before the first red edge in P ζ

x , and let T ζg,x = 0 for g > Gζ
x. Let G = maxx,ζ Gζ

x

and define

Tg = max
x

Eζ [T ζg,x], 0 ≤ g ≤ G.

where the expectation is over the random choice of ζ. Then the quantum query
complexity of f is

O

 G∑
g=1

√
Tg

 .
Proof. The proof is similar to the proof of Theorem 4 except that we pick different
weights for edges of the decision trees. Using the notations we used before, for any
choice of ζ and its associated decision tree Tζ define

∣∣∣uζxj〉 =


1√

Wg(v),C(v,Qv(xj))

∣∣∣v, C(v,Qv(xj))
〉
⊗
∣∣∣µQv(xj)

〉
⊗
∣∣∣µ̃fζ(x)

〉
if ∃v ∈ P ζ

x ∩ Vj(Tζ)
0 otherwise,

(14)
and
∣∣∣wζxj〉 =

{ ∑
c∈Cv,xj

√
Wg(v),c |v, c〉 ⊗

∣∣∣νQv(xj)
〉
⊗
∣∣∣ν̃fζ(x)

〉
if ∃v ∈ P ζ

x ∩ Vj(Tζ)
0 otherwise,

(15)

where as before Cv,xj is given by (8), and g(v) is the number of red edges in the
path from the root of Tζ to v. Moreover, Wg,black,Wg,red, for any g ≥ 0, are positive
weights to be determined. As before, these vectors form a feasible solution of the
SDP(1) for the function fζ . Then we define vectors |uxj〉, |wxj〉 and |ψx〉 as in (10),
(11) and (13). As before, we obtain a feasible solution to the SDP (2) whose objective
value is an upper bound on the quantum query complexity of f . We estimate the
objective value as follows.
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Let Wg = Wg,black = 1
Wg,red

, then

n∑
j=1
‖ |uxj〉 ‖2 = 1

K

∑
ζ

n∑
j=1

∥∥∥∣∣∣uζxj〉∥∥∥2

≤ 4 1
K

∑
ζ

 1
W0

T ζ0,x +
G∑
g=1

(
1
Wg

T ζg,x +Wg

)
= 4

 1
W0

T0,x +
G∑
g=1

(
1
Wg

Tg,x +Wg

)
≤ 4

 1
W0

T0 +
G∑
g=1

(
1
Wg

Tg +Wg

) .
Then letting W0 = T0 and Wg =

√
Tg for g ≥ 1 we obtain2

n∑
j=1
‖ |uxj〉 ‖2 = O

 G∑
g=1

√
Tg

 .
We similarly obtain the same upper bound on ∑n

j=1 ‖ |wxj〉 ‖2. Then the quantum
query complexity of f is bounded by O

(∑G
g=1

√
Tg
)
.

5 Applications
We can use our main result, Theorem 4, to simplify the proof of some known quan-
tum query complexity bounds as well as to derive new bounds. We start with some
simple examples.

Proposition 6. Suppose that we have query access to a list x = (x1, x2, . . . , xn) ∈
[`]n. Also let q ∈ [`] and 1 ≤ k < n be fixed.

(i) [counting] The quantum query complexity of finding all input indices with
values equal to q is O(

√
rn), where

∣∣∣{j : xj = q
}∣∣∣ ≤ r.

(ii) [k-threshold] The quantum query complexity of deciding whether
∣∣∣{j : xj = q

}∣∣∣ ≤
k or not is O(

√
kn).

It is shown that the quantum query complexity of counting equals Θ(
√
rn) [BHT].

Also it is well-known that the k-threshold problem has quantum query complexity
O(
√
kn).

Proof. (i) In order to use Theorem 4 we first need a classical query algorithm.
Suppose that we start from the first index and query all the indices one by one. We
then output the set of indices j with xj = q. Next we need a G-coloring. To this
end, observe that the algorithm is ignorant of the exact value of some index xj once

2Note that Tg 6= 0 since every internal vertex of a decision tree has an outgoing black edge.
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it makes sure that xj 6= q. Thus is the associated decision tree T we can unify all
outgoing edges of a vertex with label q′ 6= q. That is, in T there are two outgoing
edges for any vertex that are labeled by {q} and [`] \ {q}. Now we color all edges
with label {q} red and color the edges with label [`] \ {q} black. In this coloring
there are at most r red edges in any path from the root to leaves: G = r. The depth
of the decision tree is T = n. As a result the quantum query complexity of quantum
counting is O(

√
rn).

(ii) The proof is similar to that of part (i). In the classical algorithm we query
indices one by one until we find k indices j with xj = q. Then in T we unify edges
with label q′ 6= q and color them black, and color edges with label {q} red. As
the algorithm stops once it faces k indices with value q, the number of red edges
in any path in T from the root to leaves is at most G = k. Also the depth of the
tree is T = n. Therefore the quantum query complexity of the threshold problem is
O(
√
kn).

Proposition 7. Let x = (x1, . . . , xn) be a list of n numbers.

(i) [min] The quantum query complexity of finding minj xj is bounded by O(
√
n log n).

(ii) [k-min] The problem of finding a subset S ⊆ {1, . . . , n} of size |S| = k such
that for all j /∈ S we have xj ≥ maxi∈S xi has quantum query complexity
O(
√
kn log n).

Two remarks are in line regarding the examples of minimum finding. First, our
bounds in these examples are tight only up to a factor of

√
log n [DH, DHHM06].

Yet, we would like to present these results since they show how randomization
(part (ii) of Theorem 4) may help to improve upper bounds on the quantum query
complexity.

Second, observe that a list of numbers may have several minimums, so the prob-
lems in this proposition are not really function problems. To turn them into func-
tions we may assume that our goal is to find the minimum number in the list whose
index is also minimum. In other words, we consider a new order “ ≺ ” such that
xi ≺ xj if xi < xj, or if xi = xj and i < j. Now the minimum in this order is unique
and we may ask for finding it.

Proof. (i) Consider the randomized classical algorithm that queries all indices one
by one in a random order. The algorithm keeps a candidate for minimum at each
step, and updates it once it reaches a smaller number. Observe that this algorithm
is ignorant of the exact answer to a query once it makes sure that it is not smaller
than the current candidate for minimum. Thus in the associated decision tree (for
any choice of random order ζ), at any internal vertex v we can unify outgoing edges
with label in {q : q ≥ mv} where mv is the candidate for minimum at node v. Thus
in Tζ any internal vertex v has an outgoing edge with label {q : q ≥ mv} and an
outgoing edge for any other q < mv. The former edge is colored black and the latter
edges are colored red. The depth of Tζ equals T = n for any ζ. However, for a given
x, Gζ

x depends on ζ, so we should compute

G = max
x

Eζ [Gζ
x].
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We claim that G = O(log n). Intuitively speaking, the expected number of xj’s
that are smaller than the first queried element is n/2, and the guessing algorithm
does not make mistakes once we query such xj’s. Thus, after the first query, in
expectation, half of the xj’s would become irrelevant in computing G. Repeating
this argument, we obtain G = O(log n). Below we present a more precise argument
for this claim.

We can assume with no loss of generality that x1 < · · · < xn, since in the
beginning of the algorithm we apply a random permutation. If in the random
permutation ζ = (ζ(1), . . . , ζ(n)) the first element is n, i.e., ζ(1) = n, then Gζ

n =
Gζ′

n−1 + 1 where ζ ′ = (ζ(2), . . . , ζ(n)). Otherwise, if ζ(1) 6= n then Gζ
n = Gζ′′

n−1 where
ζ ′′ is the same order as ζ from which n is removed. We conclude that

E[Gζ
n] = 1

n

(
E
[
Gζ′

n−1

]
+ 1

)
+ n− 1

n
E
[
Gζ′′

n−1

]
.

Therefore, letting Gn = E[Gζ
n] we have

Gn = Gn−1 + 1
n
.

Using G1 = 1 we obtain
Gn =

n∑
t=1

1
t

= O(log n).

As a result, G = O(log n) and by Theorem 4 the quantum query complexity of
finding the minimum is bounded by O(

√
n log n).

(ii) The proof is similar to that of part (i). Again we read the numbers in a random
order and update a k-list as our candidate for S as we reach a number that is smaller
than all the number in the list. The associated decision tree and its G-coloring is
as before. Again we would have T = n. Also by similar ideas as in the proof
of part (i) it can be shown that Gn = Gn−1 + k/n because with probability k/n
the largest xj appears in the first k numbers in a random permutation. Therefore,
G = maxx Eζ [Gζ

x] = O(k log n). We conclude that the quantum query complexity of
finding the k smallest numbers is bounded by O(

√
kn log n).

Motivated by Proposition 6 we can state the following general upper bound on
the quantum query complexity of functions.

Corollary 8. For any partial function f : Df → [m] where Df ⊆ [`]n and ∀q ∈ [`],
let

rq(x) :=
∣∣∣{j : xj 6= q}

∣∣∣ and g = min
q∈[`]

max
x∈Df

rq(x).

Then if the classical query complexity of f is T , the quantum query complexity of f
is O(

√
gT ). In particular, the quantum query complexity of f is O(√gn).

Proof. We prove this corollary using Theorem 4. Given the classical algorithm for
f , for a G-coloring of the edges of the associated decision tree, color every edge
of the decision tree with label q0 black and the rest of the edges red, where q0 is
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such that g = maxx∈Df rq0(x). Then since each x ∈ Df contains at most g indices
with values q0, in every path from the root to leaves of the decision tree we see
at most G = g red edges. Then the quantum quantum query complexity of f is
O(
√
GT ) = O(

√
gT ).

5.1 Graph properties in the adjacency matrix model
In this subsection and the following one we use Theorem 4 to prove quantum query
complexity upper bounds on some graph theoretic problems. In this subsection, we
assume that the graph is given in the adjacency matrix model, by which we mean
that the queries are from the entries of the adjacency matrix of the graph. That is,
given vertices u, v of the graph, we may ask whether there is an edge between u and
v or not. Sometimes we assume that the underlying graph is directed in which case
we ask whether there is a directed edge from u to v.

Inspired by the ideas in [LL16], we make use of the well-known Breadth First
Search algorithm (BFS, see Algorithm 1) as our starting point for designing classical
algorithms for some graph theoretic problems. The point of the BFS algorithm is
that it returns a spanning tree (forest), with at most n− 1 edges, of the underlying
graph. Thus if we always guess that there is no edge between two queried vertices,
we make at most n− 1 mistakes.

Algorithm 1 BFS(G): breadth first search algorithm on graph G
1: Let L be a list of unprocessed vertices and Q be a first in first out queue.
2: L← V (G), Q = ∅, ES = ∅ . ES stores the edge set of the BFS tree.
3: while there exists a v′ ∈ L do
4: add v′ to Q
5: L← L− v′
6: while Q 6= ∅ do
7: u← dequeue(Q)
8: while there exists a v ∈ L do
9: Query (u, v)

10: if (u, v) ∈ E(G) then
11: add (u, v) to ES
12: add v to Q
13: L← L− v
14: end if
15: end while
16: end while
17: end while
18: return the BFS forest S =

(
V (G), ES

)

Proposition 9. Suppose that we have query access to the adjacency matrix of a
simple3 (possibly directed) graph G on n vertices. Then the followings hold.

3We can derive the same results for non-simple graphs by making minor modifications in the
proofs.

Accepted in Quantum 2020-02-26, click title to verify. Published under CC-BY 4.0. 19



(i) [bipartiteness] The quantum query complexity of deciding whether G is bi-
partite or not is O(n3/2).

(ii) [cycle detection] The quantum query complexity of deciding whether G is
a forest or has a cycle is O(n3/2).

(iii) [directed st-connectivity] The quantum query complexity of finding a
shortest path (the path that consists of the least number of edges) between two
vertices s and t in G is O(n3/2). This holds for either directed or undirected
graphs.

(iv) [smallest cycles containing a vertex] The quantum query complexity
of finding the length of the smallest directed cycle containing a given vertex v
in a directed graph G is Θ(n3/2).

(v) [k-cycle containing a vertex] The quantum query complexity of deciding
whether G has a cycle of length k, for a fixed k, containing a given vertex v is
O((2k)(k−1)n3/2).

The problem of bipartiteness has been first shown in [Āri15] to have quantum
query complexity O(n3/2), which is shown to be tight in [Zha05]. An algorithm for
the problem of cycle detection with O(n3/2) queries is proposed in [CMB] that works
by reducing the problem to the st-connectivity problem. This upper bound is known
to be tight [CK]. For the directed st-connectivity problem, it has been first shown
to have query complexity Θ(n3/2) in [DHHM06]. There exists a quantum query
algorithm for deciding whether G contains a cycle of length less than k containing a
given vertex v with query complexity O(n

√
k) [CMB]. For a list of related algorithms

on cycle detection consult [Cir06].
We would like to remark that the space complexity of all BFS/DFS-based quan-

tum query algorithms in this subsection and the next one are linear in the size of
the input graph. This is because our algorithms are based on feasible solutions of
the dual adversary SDP that are obtained from a generalized decision tree. Now
the point is that the space complexity of such an algorithm equals the logarithm of
the dimension of the vectors in the feasible solution of the dual adversary SDP, that
itself equals the size of the decision tree which is exponential.

Proof. (i) A graph G is bipartite iff its vertices can be properly colored with two
colors blue and green (such that no two adjacent vertices have the same color).
Here is a classical algorithm to solve bipartiteness. We run the BFS algorithm
(Algorithm 1) that outputs a spanning forest S of G. Then we color every vertex
of G with odd depth in S blue, and every vertex of G with even depth in S green.
After this coloring, we search for an edge between two vertices with the same color
in G. If no such edge exists, then G is bipartite.

In order to use Theorem 4, in the associated decision tree T of the above algo-
rithm, color every outgoing edge of T with label 1 red, and the rest of edges black.
The depth of the decision tree is T ≤ n2 as the total number of possible queries
(possible edges) for G is n(n − 1)/2. Also, by the above coloring of edges of T ,
we see at most n red edges in every path from the root to leaves of T . Indeed,
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we see at most n − 1 red edges once we build the spanning forest S, and at most
1 red edge once we search for an edge in G between vertices with the same parity
depths. Thus G ≤ n and the quantum query complexity of bipartiteness is at most
O(
√
GT ) = O(n3/2).

(ii) In a classical algorithm for this problem we first build a BFS forest and then
search for an edge in the whole graph that does not belong to the BFS forest. If
such an edge exists it should belong to a cycle in G. In order to use Theorem 4,
in the associated decision tree T , as before, we color every edge of T with label 0
black, and edges with label 1 by red. The depth of the decision tree is T ≤ n2, and
using this coloring in every path from the root to leaves of the decision tree there
are at most G = n red edges. Therefore, the quantum query complexity of the cycle
detection problem is O(n3/2).

(iii) Again we run the BFS algorithm on G starting from vertex s to build a subtree
S of G with root s. Then a shortest path from s to t, if exists, belongs to S, and
can be found once we have S. The depth of the associated decision tree is T = n2.
For the G-coloring, as before, we color every edge with label 0 black and other edges
red to get G = n. Then the quantum query complexity of directed st-connectivity
is O(

√
GT ) = O(n3/2).

(iv) In a classical algorithm for this problem we may run the BFS algorithm starting
from vertex v. In parallel, whenever we reach a new vertex u we query if there is
an edge from u to v. Finding such an edge corresponds to a smallest cycle con-
taining v. As previous examples for a G-coloring of the associated decision tree, we
color every edge with label 0 black and other edges red, then we have G = n and
T = n2. Therefore, the quantum query complexity of deciding whether G has a cycle
containing v is O(n3/2).

To prove the optimality of this bound we reduce the problem of directed st-
connectivity which has query complexity Ω(n3/2) to this problem. Assume that we
are given a graph G and two distinguished vertices s, t ∈ V (G), and we want to
decide whether s is connected to t by a directed path or not. To solve this problem
we build an auxiliary graph H form G as follows.

V (H) = V (G) ∪ {w}, E(H) = E(G) ∪ {(w, s), (t, w)}

Now s is connected to t in G if and only if there is a directed cycle in H containing
the vertex w. Moreover, if such a cycle exists, its length equals the distance of s, t
in G plus two.

(v) In a classical algorithm for this problem, we first define an auxiliary directed
graph H out of G with V (G) = V (H). To define the edge set of H we use two
random functions C : V (G)→ [k] and D : E(G)→ {−1,+1}, and let

E(H) =
{

(u,w) ∈ E(G) : C(u) = C(w) + 1( mod k), D(u,w) = +1
}
.

Observe that if G has a cycle of length k containing v, then with probability at
least 1

(2k)k−1 , which is a constant, H has a directed cycle of length k containing v.
Otherwise, H does not have any cycle of length k containing v. Moreover, the length
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of all cycles of H are multiples of k. Thus, the aforementioned cycle of H, if exists,
is the smallest possible cycle. Then we can decide the existence of such a cycle using
the algorithm of part (iv). We can decide the existence of such a cycle with high
probability by repeating the above algorithm O

(
(2k)(k−1)

)
times.

For the next set of examples we use the well-known classical algorithm Depth
First Search (DFS). This algorithm builds a spanning forest of a given graph G. It
is similar to the BFS algorithm but instead of using a queue which is a first in first
out list, it uses a stack which is a first in last out list. This algorithm can also be
implemented recursively (see Algorithm 2).

Algorithm 2 DFS(G): depth first search algorithm on graph G
1: let L be a list of undiscovered vertices
2: let ft be an array of size |V (G)| . ft stores the finishing time of vertices.
3: function DFS(G)
4: L← V (G)
5: time = 1
6: while there exists a v ∈ L do
7: DFS(G, v)
8: end while
9: Return the DFS tree

10: end function
11: procedure DFS(G, s)
12: L← L− s
13: while there exists a v ∈ L do
14: Query (s, v)
15: if (s, v) ∈ E(G) then
16: DFS(G, v)
17: end if
18: end while
19: ft[s]← time
20: time← time+ 1
21: end procedure

Proposition 10. Suppose that we have query access to the adjacency matrix of a
directed graph G = (V,E) on n vertices. Then the followings hold.

(i) [topological sort] Suppose that G is acyclic. Then the quantum query
complexity of finding a vertex ordering of G such that for all (u, v) ∈ E, u
appears before v is O(n3/2).

(ii) [connected components] The quantum query complexity of determining
connected components of G is O(n3/2).
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(iii) [strongly connected components] The quantum query complexity of
finding strongly connected components of G is O(n3/2). Note that two ver-
tices u, v ∈ V belong to the same strongly connected component iff there exists
a directed path from u to v and a directed path from v to u in G.

The problem of topological sort is an important problem in large networks and
job scheduling. There are several classical algorithms for this problem. The first
algorithm is by Kahn [Kah62]. In this algorithm at each step we add all vertices that
do not have any incoming edges to the sorted list, and then eliminate them from
the original graph. We continue this process until we add all vertices to the sorted
list. Another algorithm for this problem, which we use in this proposition, is based
on the DFS algorithm, first stated by Tarjan [Tar76]. Note that in these classical
algorithms ones needs to read the entire input to discover the structure of the graph,
so their query complexity is O(n2). To the author’s knowledge this proposition gives
the first non-trivial quantum query complexity upper bound for the topological sort
problem. The problem of finding (strongly) connected components of a (directed)
graph has been first shown to have query complexity Θ(n3/2) in [DHHM06].

Proof. (i) For a classical algorithm for this problem, run DFS and return vertices in
their reverse of finishing time. For a G-coloring of the associated decision tree T ,
color every edge with label 0 black and every other edge red. Then as before there
are at most G = n red edges in every path from root to leaves of T . Also the depth
of the decision tree is T = n2. Thus we obtain the bound of O(

√
GT ) = O(n3/2) on

quantum query complexity of topological sort.

(ii) We again use the DFS algorithm on G and whenever the stack becomes empty a
new connected component has been found. The G-coloring of the associated decision
tree is as in part (i), and the bound of O(n3/2) is derived similarly.

(iii) As a classical algorithm for this problem we use two DFS calls. In the first
one we run the DFS algorithm on a reverse graph GR whose adjacency matrix is
the transpose of the adjacency matrix of G, i.e., (u, v) ∈ E(GR) iff (v, u) ∈ E(G).
Observe that every query to GR is equivalent to a query to G. In the second one, the
DFS will be run on the graph G in the reverse finishing time ordering 4 of vertices
from the first DFS run. Here we use the fact that if we start the DFS somewhere
in a sink component5 then we exactly traverse that component. In the resulted
DFS forest, vertices in every tree are in the same strongly connected component.
For a G-coloring of the decision tree, we color every edge with label 0 black and
every other edges red, so that G ≤ 2n. The depth of the decision tree is T = n2.
Therefore, the quantum query complexity of this problem is O(n3/2).

The following corollary is a simple consequence of Corollary 8.

4This is a reverse topological order of vertices of G. Therefore, a vertex at the end of this list
is in a sink component.

5A sink component is a set of vertices I ⊆ V (G) such that ∀u ∈ I, v ∈ V (G) \ I we have
(u, v) /∈ E(G).
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Corollary 11. The quantum query complexity of every graph property of a general
graph6 in the adjacency matrix model, is O(n

√
|E(G)|) which is faster than the trivial

algorithm when |E(G)| = o(n2). In particular, every sparse graph property in the
adjacency matrix model has quantum query complexity O(n3/2).

The fact that any sparse graph property (particularly minor-closed graph prop-
erties) have quantum query complexity O(n3/2) has been proven in [CK].

5.2 Graph properties in the adjacency list model
In this subsection we present some bounds on the quantum query complexity of some
graph properties when the underlying graph is given in the adjacency list model. Let
us first describe what we mean by this model.

In the adjacency list model we assume that the graph is given by an array of size
n(n− 1) which for simplicity we think of it as a matrix of size n× (n− 1). The j-th
row of this matrix is a list of neighbors of the j-th vertex vj of the graph. Assume
that vj has degree dvj . Then the first dvj coordinates of the j-row contain the indices
of the neighbors of vj (in some order), and the last n− 1− dvj coordinates are filled
with a nil symbol. See Figure 2 for an example. Any query in the adjacency list
model corresponds to a pair (vj, i) with i ≤ n− 1. If i ≤ dvj , then the output of this
query is the i-th adjacent vertex of vj in G. If i > dvj , the output of this query is nil.
This model can also be defined for directed graphs similarly. The only difference is
that the j-th row of the matrix contains vertices that can be reached from vj by a
directed edge.

In the following we will use the BFS algorithm in the adjacency list model (see
Algorithm 3) as a primitive to use Theorem 4. In the decision tree T associated
to this BFS algorithm, each node (query) corresponds to a pair (v, i). The set of
possible answers to such a query is the vertex set of G which we partition as follows.
We let W (v, i) be the set of vertices that has been added to the BFS tree before
querying (v, i). The point is that the BFS algorithm is ignorant of the exact answer
of the query (v, i) once it makes sure that it belongs to W (v, i) (see Figure 2 for
an example). Thus in the decision tree T we identify the outgoing edges of (v, i)
with labels in W (v, i). All the other outgoing edges remain untouched. Now the
G-coloring of T is as follows: we color the outgoing edge of (v, i) with label W (v, i)
black, and the rest of outgoing edges red. We note that there are n vertices to be
added to the BFS tree one-by-one, and we face a red edge once we add a new vertex
or a nil. Then in total we see at most G = O(n) red edges in every path from the
root to leaves of T . Also the total number of queries in the BFS algorithm equals
the number of edges of G denoted by m = |E(G)| plus n. This is because as we do
not know the degrees of vertices, we would stop querying neighbors of a vertex after
seeing a nil symbol. This adds an extra query for every vertex. Thus T = m + n,
and the quantum query complexity of finding the BFS tree in the adjacency list

model is O(
√
GT ) = O(

√
(m+ n)n).

6This applies to weighted, unweighted, directed or undirected graphs.
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Figure 2: a) The decision tree for finding a BFS tree in a graph with 4 vertices. Each vertex
of this decision tree is labeled by a pair which points to an entry of the matrix of adjacency
list model. The nil symbol is represented by ∗. The dashed path, is the path we take if the
input to the BFS algorithm is the graph depicted on the right hand side. b) A graph and its
adjacency list representation.

Proposition 12. Suppose that the graph G with n vertices and m edges is given via
the adjacency list model. Then the following hold.

(i) [directed st-connectivity] Finding a shortest (directed or undirected)
path between two vertices s, t in G has quantum query complexity O

(√
(m+ n)n

)
.

(ii) [bipartitness] The quantum query complexity of deciding whether G is bi-
partite or not is O

(√
(m+ n)n

)
.

(iii) [maximum bipartite matching] Assuming that G is unweighted and bipar-
tite, the quantum query complexity of finding a maximum bipartite matching
in G is O

(
n3/4√m+ n

)
.

(iv) [topological sort] Suppose that G is acyclic. Then the quantum query
complexity of finding a vertex ordering of G such that for all (u, v) ∈ E, u
appears before v is O

(√
(m+ n)n

)
.

(v) [connected components] The quantum query complexity of determining
connected components of G is O

(√
(m+ n)n

)
.
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Algorithm 3 BFS(G): breadth first search algorithm on graph G in adjacency list
model

1: Let W be a list of discovered vertices and Q be a first in first out queue.
2: W ← ∅, Q← ∅, ES ← ∅
3: while there exists a v′ ∈ V (G) \ L do
4: add v′ to Q
5: W ← W ∪ {v′}
6: while Q 6= ∅ do
7: u← dequeue(Q)
8: v ←Query (u, 1)
9: i← 2

10: while v 6= nil do
11: v ← Query (u, i) . returns the i-th neighbor of vertex u
12: i← i+ 1
13: if v ∈ V (G) \W then
14: add (u, v) to ES
15: add v to Q
16: P ← W ∪ {v}
17: end if
18: end while
19: end while
20: end while
21: return the BFS forest S

(
V (G), ES

)

Having query access to the adjacency list of a directed graph G, it has been
proved in [DHHM06] that finding a minimum spanning tree of G has quantum query
complexity O(

√
mn). Using minimum spanning tree one can prove that checking

directed st-connectivity and graph bipartiteness have quantum query complexity
O(
√
mn) in the adjacency list model. Lin and Lin [LL16] proved the upper bound

of O(n7/4) for the problem of maximum bipartite matching in the adjacency matrix
model. Here using their ideas we prove the first non-trivial upper bound for this
problem in the adjacency list model.

Proof. (i) To find a shortest path we run the BFS algorithm in the adjacency list
model starting from the vertex s. Then s and t will be connected in the resulting
spanning forest with their shortest path. As discussed before, the quantum query
complexity of finding this BFS spanning forest is O

(√
(m+ n)n

)
. Thus a shortest

path between s, t can be found with O
(√

(m+ n)n
)

quantum queries.

(ii) In the classical algorithm for this problem we start by finding a spanning tree on
G by running the BFS Algorithm 3. We then color vertices of G using the resulting
spanning forest S with two colors blue and green. We color every vertex of G with
even depth in S blue, and every vertex with odd depth in S green. Then we search
for two adjacent vertices in G with the same color. If we find such an edge, the
graph is not bipartite, and is bipartite otherwise. The G-coloring of the associated
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decision tree T is as follows. In the first part that we run the BFS algorithm the
G-coloring is as before. In the second part that we search for an edge between two
vertices of the same color, we partition the set of possible answers (vertices of G)
to in two parts: the set of blue vertices and the set of green vertices. As we query
(v, i), i.e., the i-th neighbor of v in G, the color of the two outgoing edges associated
to this query labeled by sets of blue and green vertices would be colored as follows:
if v is blue, the outgoing edge of blue vertices is colored red and the other one is
colored black; if v is green the outgoing edge of green vertices is colored red and the
other one is colored black. Observe that in the second part of the algorithm, once
we see a red edge of T the algorithm halts (and G would not be bipartite). Thus in
total we see at most G = n red edges in any path from the root to leaves of T . On
the other hand, the depth of the decision tree is T = m+n. Therefore, the quantum
query complexity of this problem is O

(√
(m+ n)n

)
.

Algorithm 4 Hopcroft-Karp algorithm for maximum bipartite matching on graph
G = (X ∪ Y,E)

1: M = ∅ .M is an empty matching and will be updated until becoming a
maximum matching

2: whileM is not a maximum matching do
3: define an auxiliary directed graph G ′ = (V ′, E ′) as follows

E ′ ={(s, x)|x ∈ X, ∀y ∈ Y : (x, y) /∈M} ∪ {(y, t)|y ∈ Y, ∀x ∈ X : (x, y) /∈M}
∪ {(x, y)|x ∈ X, y ∈ Y, (x, y) /∈M} ∪ {(y, x)|x ∈ X, y ∈ Y, (x, y) ∈M}

V ′ =X ∪ Y ∪ {s, t}

. any query to the adjacency list of G ′ can be simulated using a query to the
adjacency list of G

4: S= a maximal set of vertex disjoint shortest paths from s to t in G ′ . this
can be found using one call to the algorithm 3 in G ′

5: if S = ∅ then return M
6: else
7: for every path (s, x1, y1, x2, y2, . . . , xp, yp, t) ∈ S do
8: for i = 1 to p− 1 do
9: M =M− (xi+1, yi)

10: end for
11: for i = 1 to p do
12: M =M+ (xi, yi) . the size of M has been increased by 1
13: end for
14: end for
15: end if
16: end while

(iii) We use Algorithm 4 by Hopcroft and Karp for maximum bipartite match-
ing [HK70]. In this algorithm we repeatedly increase the size of a partial matching
M by finding augmenting paths in the graph. An augmenting path is a path with
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two end edges not in M and alternates between edges of the graph that belong to
M and edges that do not. Swapping these edges from being in M to not being
in M would increase the size of matching by one. However, instead of finding just
an augmenting path in each iteration of the algorithm, it finds a maximal set of
shortest vertex disjoint augmenting paths. After only O(

√
n) iterations, the max-

imum matching would be found. Since all queries to the input are made inside
calls to the BFS Algorithm, the G-coloring of the associated decision tree, is as for
BFS algorithm. There are O(

√
n) calls to BFS algorithm (Line 2 in Algorithm 4

repeats O(
√
n) times), so we have G = n

√
n and the depth of the decision tree is

T = m + n, where those n extra queries are for the nils. Therefore, the quantum
query complexity of this problem is O

(
n3/4

√
(m+ n)

)
.

(iv), (v) The algorithms are similar to those of Proposition 10 and the G-coloring is
as above, so we skip the details.

6 Concluding remarks
In this paper we generalized a result of [LL16] that is a method for designing quan-
tum query algorithms based on classical ones. Our generalization of [LL16] is two-
fold: first, we assume that the input alphabet of the function may be non-binary;
second, we assume that in a decision tree the outgoing edges connected to a vertex
may be indexed by subsets in a partition of the input alphabet set. These two en-
abled the possibility of using this method, in particular, for graph properties in the
adjacency list model. Our proof of this generalization is based on span programs in
the non-binary case as well as the dual adversary bound.

Let us at this stage review different approaches we have in proving Lin and Lin’s
results in [LL16] as well as Theorems 4 and 5:

• The first idea in [LL16] is to use the notion of bomb query complexity, which
we did not mention here. It is an interesting question that whether this idea
can be extended to prove our generalized results (Theorems 4 and 5).

• The second idea in [LL16] is to use a modified version of Grover’s search to find
mistakes of the guessing algorithm. However, a naive application of Grover’s
search here results in an extra logarithmic factor for error reduction. It is
shown in [LL16] that for functions with binary inputs this undesired factor
can be eliminated using properties of the so called γ2 norm. It seems plausible
that the first part of Theorem 4 is provable by the same technique. However,
it is not clear to us whether the second part of Theorem 4 or Theorem 5 are
achievable taking the same path.

• The third idea is to use the notion of non-binary span program as we did
for a proof of Theorem 2. The idea is to use a “st-connectivity type span
program” (taken from [BR]) in order to reach from the root of a decision tree
to some leaf. However, to not end up with the trivial upper bound of T (the
depth of the decision tree) on the quantum query complexity, we equipped
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edges of the decision tree with some weights that are chosen based on a G-
coloring. Incorporating these weights in the span program the desired result
was obtained.

• The last idea is to use the dual adversary bound. This approach is essentially
the same as the approach of span programs, but with the advantage that
it does not give an undesirable extra factor of

√
`− 1 as explained before.

Comparing to the first two methods, we believe that the ideas of using span
programs and dual adversary bound are more advantageous since the choice of
weights in these approaches is arbitrary. For proving Theorem 4 the weights
that we chose were among two possible choices. We then in Theorem 5 showed
how using a larger set of weights we may further improve the upper on the
quantum query complexity. Thus, a possible direction to extend our results is
to further investigate other possible choices for the weights.

One may suggest that our generalized non-binary version of the result of [LL16]
can be obtained simply by representing non-binary inputs of f : [`]n → [m] by
binary strings, simulating a single non-binary query by log(`) binary ones, and then
using the result of [LL16] in the binary case. Even ignoring the extra log(`) factor
we obtain in this method, we argue that this approach does not work. First, in our
notion of generalized decision tree we allow to identify some edges in the decision
tree and label its edges with subsets of [`]. This is missing in the notion of decision
tree in [LL16]. Identification of edges is a necessary part of our results especially
in the examples of graph properties in the adjacency list model. To elaborate the
second limitation of this approach, let us think of the example of minimum finding
explained in Proposition 7. Suppose that ` = 8 and at some stage of the algorithm
our candidate for minimum is 6 that is equal to (1, 1, 0) in the binary representation.
Then we read the first bit of the next number in the list and find it to be equal to 1.
This means that the next number in the list is one of the numbers 4, 5, 6 or 7. In the
algorithm and its associated G-coloring, there is a difference between 4, 5 and 6, 7
since the first two are smaller than 6. Indeed, in our proposed G-coloring edges 6, 7
are merged to a single edge with black color, while the edges 4 and 5 are colored in
red. Therefore, to convert this coloring to a G-coloring in the binary decision tree
whose edges are labeled by binary inputs, we have no choice but coloring the edge
with label 1 by red. Then the parameter G of the new G-coloring not only scales by
a factor of log `, but also is increased by something like T −G because of such extra
red edges. In summary, in order to use the result of [LL16] in the binary case to
prove our generalized result in the non-binary case, we need to convert a G-coloring
of a generalized non-binary decision tree to a G-coloring of a binary decision tree.
It is now clear how this can be done in general without drastically weakening our
bound on the parameter G.

Our results give bounds on the space complexity of our algorithms as well. The
point is that the space complexity of a quantum algorithm based dual adversary
bound, is bounded by the logarithm of the dimension of the vectors in the feasible
solution of the dual adversary SDP. In our proofs the dimension of such feasible
solutions is of the order of the size of the decision tree. Thus the space complexity
of our algorithms equals the logarithm of the size of the corresponding decision tree.

Accepted in Quantum 2020-02-26, click title to verify. Published under CC-BY 4.0. 29



In particular, since in our examples (especially those for graph properties) the sizes
of decision trees is exponential, the space complexity of our quantum algorithms is
linear.7

Prior to our work designing a span program based quantum query algorithm
for directed graphs was not an easy task. We eased the process of designing such
algorithms by relating them to classical decision trees. Comparing to span programs
for undirected graphs, however, the size of these span programs for directed graphs
is exponential. It would be interesting to see if we can decrease the space complexity
of such quantum algorithms to logarithmic size.
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[Āri15] Agnis Āriņš. Span-program-based quantum algorithms for graph bi-
partiteness and connectivity. In International Doctoral Workshop
on Mathematical and Engineering Methods in Computer Science,
pages 35–41. Springer, 2015. arXiv:1510.07825v1, doi:10.1007/
978-3-319-29817-7_4.

[BHT] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum count-
ing. In Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors,
Automata, Languages and Programming, pages 820–831, Berlin, Hei-
delberg. Springer Berlin Heidelberg. arXiv:9805082, doi:10.1007/
BFb0055105.

[BR] Aleksandrs Belovs and Ben W Reichardt. Span programs and quantum
algorithms for st-connectivity and claw detection. In Proceedings of
the 20th Annual European conference on Algorithms (ESA 12), pages
193–204. Springer Berlin Heidelberg. arXiv:1203.2603, doi:10.1007/
978-3-642-33090-2_18.

[BT19] Salman Beigi and Leila Taghavi. Span program for non-binary func-
tions. Quantum Information and Computation, 19(9-10):760–792, 2019.
arXiv:1805.02714, doi:10.26421/QIC19.9-10.

[Cir06] Jill Cirasella. Classical and Quantum Algorithms for Find-
ing Cycles. Master’s thesis, University of Amsterdam, 2006.
URL: http://www.illc.uva.nl/Research/Publications/Reports/
MoL-2006-06.text.pdf.

7Note that although the size of the decision tree can be exponential, as in the examples in this
paper, we do not need to explicitly build it. We usually have a classical algorithm which directly
gives a decision tree. To use our results, we then only need to give a G-coloring.

Accepted in Quantum 2020-02-26, click title to verify. Published under CC-BY 4.0. 30

http://arxiv.org/abs/1012.2112
https://doi.org/10.1109/CCC.2011.24
http://arxiv.org/abs/1510.07825v1
https://doi.org/10.1007/978-3-319-29817-7_4
https://doi.org/10.1007/978-3-319-29817-7_4
http://arxiv.org/abs/9805082
https://doi.org/10.1007/BFb0055105
https://doi.org/10.1007/BFb0055105
http://arxiv.org/abs/1203.2603
https://doi.org/10.1007/978-3-642-33090-2_18
https://doi.org/10.1007/978-3-642-33090-2_18
http://arxiv.org/abs/1805.02714
https://doi.org/10.26421/QIC19.9-10
http://www.illc.uva.nl/Research/Publications/Reports/MoL-2006-06.text.pdf
http://www.illc.uva.nl/Research/Publications/Reports/MoL-2006-06.text.pdf


[CK] Andrew M. Childs and Robin Kothari. Quantum query complexity of
minor-closed graph properties. SIAM Journal On Computing. arXiv:
1011.1443, doi:10.4230/LIPIcs.STACS.2011.661.

[CMB] Chris Cade, Ashley Montanaro, and Aleksandrs Belovs. Time and Space
Efficient Quantum Algorithms for Detecting Cycles and Testing Bipar-
titeness. oct. arXiv:1610.00581.
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