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Fluctuation theorems impose constraints on
possible work extraction probabilities in ther-
modynamical processes. These constraints are
stronger than the usual second law, which is
concerned only with average values. Here,
we show that such constraints, expressed in
the form of the Jarzysnki equality, can be by-
passed if one allows for the use of catalysts—
additional degrees of freedom that may be-
come correlated with the system from which
work is extracted, but whose reduced state re-
mains unchanged so that they can be re-used.
This violation can be achieved both for small
systems but also for macroscopic many-body
systems, and leads to positive work extrac-
tion per particle with finite probability from
macroscopic states in equilibrium. In addition
to studying such violations for a single system,
we also discuss the scenario in which many par-
ties use the same catalyst to induce local tran-
sitions. We show that there exist catalytic pro-
cesses that lead to highly correlated work dis-
tributions, expected to have implications for
stochastic and quantum thermodynamics.

1 Introduction
Consider a physical system in thermal equilibrium with
its environment. The second law of thermodynamics dic-
tates that it is impossible to extract positive average work
from this system using reversible processes that are cyclic
in the Hamiltonian. More precisely, if the system’s ini-
tial state is represented by a canonical ensemble and we
consider many iterations of a probabilistic process during
which the Hamiltonian of the system is varied but returned
to the initial Hamiltonian at the end, then it holds that

〈W 〉 ≤ 0, (1)

where 〈W 〉 is the average work extracted during the pro-
cess. We will refer to (1) as the Average Second Law (Av-
SL),

However, there exist significantly stronger constraints
on the possible extracted work in the above type of pro-
cesses, namely those imposed by fluctuation theorems
[1, 2, 3]. Indeed, using such theorems, one can show
that the probability of extracting a finite amount of pos-
itive work per particle is exponentially suppressed with

the number of particles in a system [1]. Once these dif-
ferent types of constraints are recognized, an interesting
questions arises: What are physically meaningful settings
in which the probabilistic constraints imposed by fluctua-
tion theorems can be circumvented, while still respecting
the Av-SL? In particular, do fluctuation theorems also hold
when an additional, cyclically evolving auxiliary system is
allowed for?

In this work, we present an answer to this question, by
introducing a class of processes that generalize the above
reversible processes, are physically well motivated, com-
patible with (1), and yet allow for the extraction of positive
work per particle with a probability that is independent of
system size. We do so via the notion of a catalytic process,
in which we allow for the reversible process to not only act
on the system as such, but additionally on an auxiliary sys-
tem that can be initially prepared in an arbitrary state, but
whose marginal state has to be left invariant by the process.
Such catalysts are well-motivated – they allow a general
description of thermodynamic processes in which the sys-
tem may be interacting with some experimental apparatus
(such as a quantum clock [4, 5]), however not extracting
energetic/information resources from such an ancilla. In
terms of our discussion of the Av-SL above, catalysts cor-
respond to the cyclically evolving auxiliary system. De-
spite being studied frequently in resource-theoretic formu-
lations of thermodynamics [6, 7, 8, 9], catalytic processes
have never been studied in the context of fluctuation theo-
rems until now. Furthermore, even in previous works of
catalysis, the exact form of the catalyst is highly state-
dependent and therefore rarely studied explicitly [6, 8].
In this work, we make progress in the significant gaps in
the knowledge of catalysis, by presenting and discussing
constructive examples of such catalytic processes in the
framework where fluctuation theorems are commonly de-
rived. We show that, by sharing the same catalyst, a group
of agents can follow collective strategies to achieve highly
correlated work-distributions. This makes these processes
interesting for the field of quantum and stochastic ther-
modynamics and potentially also for certain negentropic
processes in biology. On the overall, our work provides a
rigorous footing for the further study of thermodynamical
processes that systematically exploit the notion of cataly-
sis in order to achieve certain patterns of work fluctuations
in an environment that is governed by the Av-SL. Given
the broad applicability of our results, we believe that the
study of such processes will produce many further inter-
esting results of both foundational and practical interest.
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2 Setup
2.1 Formulation of the physical situation
We formulate our arguments and results in the language of
quantum mechanics, but all of our results similarly apply
to classical, stochastic systems. We consider the setting
depicted in Fig. 1: A d-dimensional system S with Hamil-
tonian H =

∑d
i=1Ei |Ei 〉〈Ei | is initalized in the Gibbs

state

ωβ(H) := e−βH

Z(β,H) ,

where Z(β,H) := Tr(e−βH). This state describes a sys-
tem initially in thermal equilibrium with its environment
at inverse temperature β := 1/(kBT ). An agent (some
experimenter) first performs an energy measurement on
this system which produces a measurement outcome Ei.
According to quantum mechanics, the post-measurement
state is described by the density matrix |Ei 〉〈Ei |. The
agent then performs a physical operation on the system
which does not depend on the outcome of the measure-
ment. Such an operation can always be represented by a
general quantum channel C (i.e., a trace-preserving, com-
pletely positive map that takes density matrices to den-
sity matrices) applied to the post-measurement state. This
operation is then followed by a second energy measure-
ment with respect to the same Hamiltonian with outcome
Ef

1. This procedure results in a channel-dependent joint
distribution P (Ef , Ei) = P (Ef |Ei)P (Ei). In general, a
given quantum channel may be realized in different ways.
Whether the change of energy Ef −Ei can be interpreted
as work from a thermodynamic point of view will depend
on how exactly the quantum channel C was physically re-
alized. We will assume that this is the case in the follow-
ing, but will comment on this assumption again later on.
In particular, we can then define the work distribution P
for the above process as

P (W ) :=
∑
i,f

P (Ef , Ei)δ(W − (Ei − Ej)),

where δ is the Dirac delta distribution. We are interested in
investigating possible distributions P (W ) that arise from
different channels C. To do so, it is useful to note the rela-
tion

〈eβW 〉 =
∑
j

e−βEj

ZH
〈Ej | C[I] |Ej 〉 , (2)

which is straightforwardly derived using the above defini-
tions, where I denotes the identity matrix.

In the standard setting of Tasaki-type fluctuation the-
orems, C is considered to be a unitary channel C[·] =
U(·)U†, since these are generated by changing the Hamil-
tonian over time [3]. For such channels, (2) becomes

〈eβW 〉 = 1, (3)

1It is possible to extend the setup and our further results
to the more general case of different Hamiltonians for the ini-
tial and final measurement. We present our results within this
restricted settings for conceptual and notational simplicity.

!�(H)

P (Ei)

|EiihEi| C(|EiihEi|)
P (Ef |Ei)C
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Figure 1: The basic setup for all processes in this work: An
agent with access to a system S equipped with Hamiltonian
H that is assumed to be initially in thermal equilibrium with a
heat bath at inverse temperature β samples from S (by mea-
suring in the energy basis), then implements a process that
maps the post-measurement state |Ei 〉〈Ei | to C( |Ei 〉〈Ei |),
where C is a quantum channel. Finally, the agent repeats the
energy measurement on S with respect to the same Hamil-
tonian H.

which is the well-known Jarzynski equality (JE) for cyclic,
reversible processes [1]. Eq. (3) is strictly stronger than
(1), the latter being implied by (3) via Jensen’s inequality.

2.2 No macroscopic work
One of the reasons for the importance of the JE derives
from the fact that it gives strong bounds on the possibil-
ity of extracting work from a large system in a thermal
state [10, 11, 12]. To see this, let S be an N -particle sys-
tem and define the probability of extracting work w per
particle as

p(w) := P (wN).

Plugging this into (3) yields that for any ε > 0,

1 = 〈eβW 〉 =
∑
w

eβwN P (wN) ≥ eβεN
∑
w≥ε

p(w),

which implies that events which extract significant posi-
tive work per particle from a macroscopic system at equi-
librium are exponentially unlikely in N . For later use, we
formalize this property.

Definition 1 (No macroscopic work). Given a se-
quence of N -particle systems initially at thermal equi-
librium with inverse temperature β and channels C
(implicitly depending on N), we say that the pro-
cesses represented by C fulfill the no macroscopic work
(NMW) condition if the probability of an event ex-
tracting work per particle larger or equal than ε is ar-
bitrarily small as N →∞,

lim
N→∞

p(w ≥ ε) := lim
N→∞

∑
w>ε

p(w) = 0.

As is clear from the above, channels that satisfy the JE,
such as unitary channels, also satisfy NMW and Av-SL.
We now turn to investigate violations of JE and NMW for
non-unitary channels.

3 Violations of NMW and JE
The first main result of this work is to introduce a phys-
ically motivated family of channels C that violates both
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NMW and JE, but respects the Av-SL. To aid comparison,
we first briefly discuss other generalizations of the stan-
dard setting to non-unitary channels (see also Refs. [13,
14]).

3.1 Violating JE with non-unitary channels
It is easy to see from (2) that a more general class of chan-
nels that satisfy the JE are unital channels, that is, channels
that satisfy C[I] = I. Consequently, neither JE, nor in turn
NMW or Av-SL can be violated in settings which give rise
to a unital channel. However, once this condition on uni-
tality is relaxed, it becomes easy to violate JE on a formal
level. For example, consider the fully-thermalizing chan-
nel that maps every input state to the thermal state ωβ(H),
in other words C(·) = ωβ(H). This channel always vi-
olates the JE whenever ωβ(H) 6= I/d. It is, however,
not clear how the energy-fluctuations can be interpreted
as work in this example, since thermalizing processes usu-
ally occur due to contact with a heat bath, in which case
one would naturally interpret the changes of energy on the
system being due to heat. Thus, while it is trivial to for-
mally violate JE, it is not obvious whether it is possible
to do so in a physically meaningful and operationally use-
ful manner. Nevertheless, in Appendix A, we show that
the fully-thermalizing channel, in fact any channel with
the thermal state as a fixed point, cannot violate the NMW
condition for typical many-body systems, even if they may
violate (3). This means that, even if one interprets energy
fluctuations as work, one still could not use the thermaliz-
ing channel to extract macroscopic amounts of work from
a many-body system.

3.2 Violations of NMW and JE via β-catalytic
channels
The above findings raise the important question whether
there exist channels for which the above procedure leads
to a violation of NMW (and hence JE), while still respect-
ing the Av-SL and allowing for the interpretation of the
random variable W as work extracted from S. Such chan-
nels, if they exist, promise to be of great interest because
they could allow for a systematic exploitation of relatively
likely events extracting work from heat baths. The first re-
sult of this work is to answer this question affirmatively.
To this end, we define the notion of a β-catalytic channel.

Definition 2 (β-catalytic channel). A completely
positive, trace-preserving map C is a β-catalytic chan-
nel on S, if there exists a quantum state σC on a sys-
tem C with Hamiltonian HC , together with a unitary
U such that [σC , HC ] = 0 and

C(·) = TrC(U( · ⊗ σC)U†),
s.t. TrS(U(ωβ(H)⊗ σC)U†) = σC . (4)

Before stating our first main result, let us make some
comments about this definition. First of all, we already
assumed that the initial and final Hamiltonian coincides.

This means that while during the process, C may couple
system and catalyst for example by introducing interac-
tion terms HSC , nevertheless at the end of the process, the
channel must also turn off such interaction terms. Sec-
ondly, note that β-catalytic channels describe reversible
processes, in the sense that they do not change the entropy
of the joint-system SC and can be undone by acting on
this joint-system by a unitary process. We refer to the sys-
tem C as being the “catalyst”, understanding that it may
be some by-stander system involving additional degrees
of freedom. This terminology is motivated by the fact that,
on average, i.e., if we do not condition on the outcomes of
the energy measurements, then C is returned, at the end of
the procedure, to its original state. It can therefore be re-
used for further rounds of the protocol with new copies of
S. Note, however, that the invariance of the reduced state
on C under the channel is required not for all initial states
of S, but only for ωβ(H). As such, β-catalytic channels
depend on β and H through the second condition.

While Definition 2 does not require the catalyst to be
uncorrelated with S at the end of the protocol, and in
this sense goes beyond the conventional notion of catal-
ysis discussed in the resource-theoretic literature on quan-
tum thermodynamics [6, 7], the more general notion of
catalysis that we employ here is receiving increasing in-
terest in quantum thermodynamics, where it was shown to
single out the quantum relative entropy, free energy and
von Neumann entropy [15, 8, 16], to be useful in the con-
text of algorithmic cooling [16, 17] and to show the en-
ergetic instability of passive states [18]. Finally, let us
briefly comment on the interpretation of the random vari-
able W as work in the setting of β-catalytic channels and
the role of the Hamiltonian of the catalyst. Since the pro-
cess on C and S is unitary, it is meaningful to denote the
total changes of energies of the two systems as work mea-
sured by a two-point measurement scheme on each sys-
tem. This gives rise to a joint-distribution of work on the
two systems P (W (S),W (C)). The probability distribution
of work P (W ) discussed above then simply corresponds
to the marginal distribution P (W (S)) on S. Importantly,
this distribution is independent of the Hamiltonian on C
(see Sec. G in the Appendix). In particular, we can as-
sume that the catalyst has trivial Hamiltonian HC = 0,
which in turn implies [σC , HC ] = 0 for any σC . It is then
clear that no energy flows from the catalyst to the system,
not even probabilistically. For the rest of the article, we
hence assume that HC = 0.

Given these constraints, it may, at first glance, be un-
clear how such a catalyst would offer any advantage to
violating JE. For instance, one apparent way to make use
of the catalyst is to perform a controlled unitary on S, con-
ditioned on C: For some σC =

∑
i pi |i 〉〈i |, one uses a

unitary in Eq. (4) of the form

USC :=
∑
i

Ui ⊗ |i 〉〈i |C .

This special case of β-catalytic channels by construction
produces random unitary channels [19, 16] on S, which
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have the form CRU(·) =
∑
i piUi(·)U

†
i . But random uni-

tary channels are always unital, and therefore automati-
cally satisfy JE.

In the following, we show that there exist non-unital β-
catalytic channels that allow for a meaningful violation of
both NMW and JE, while at the same time they always
respect the Av-SL. To see the latter, we note that these
channels necessarily increase the von Neumann entropy of
the input Gibbs state. This follows from the sub-additivity
of entropy and the fact that C remains locally unchanged.
Now, since ωβ(H) is the state with the least energy given
a fixed entropy [20, 21], then we also have that

Tr(HC(ωβ(H)) ≥ Tr(Hωβ(H))

which is just the Av-SL, concomitant with the findings of
Ref. [9]. We stress that despite this property, β-catalytic
channels are in general not unital. It remains to be shown
that β-catalytic channels that violate JE and NMW do
exist. We first show that JE can be violated already with
small quantum systems, and then turn to the violation
of NMW for macroscopic many-body systems with
physically realistic Hamiltonians.

Microscopic violation of JE. As a toy-like example of
violating the JE with β-catalytic channels, we consider a
system with three states – two degenerate (but distinguish-
able) ground states and an excited state with energy E. As
catalyst, we consider a system with two states and the uni-
tary is a simple permutation between two pairs of energy
eigenvalues of the joint system (for details, see App. B). It
is straightforward to compute the probability distribution
of work for such small systems, which in this case leads to

〈eβW 〉 = Z + 5 + 2(Z − 2)(Z − 1)
Z(Z + 1) ≥ 1,

where Z = 2 + e−βE is the partition function of the sys-
tem and we used 2 ≤ Z ≤ 3. We hence find 〈eβW 〉 > 1
whenever E > 0 (since then Z < 3) and we obtain a
moderate maximum violation in the limit E → ∞ given
by 〈eβW 〉 = 7/6.

Macroscopic violation of NMW condition. We now
show that one can violate the NMW principle using cat-
alysts.

Proposition 1 (Violation of no macroscopic work
with catalysts). Let (S(N))N be a sequence of N -
particle locally interacting lattice systems with Hamil-
tonian H(N) that satisfy mild assumptions. Then, for
sufficiently large N , there exist values of ε > 0, such
that

p(w ≥ ε) (5)

can be brought arbitrarily close to 1
2 with β-catalytic

channels.

We provide a proof and full statement of the assump-
tions in Appendix D. Our assumptions are satisfied by

typical many-body Hamiltonians with energy windows in
which the density of states grows exponentially [22].

While the formal proof of Proposition 1 is given in the
Appendix, the idea behind it is simple and we sketch it
here on a higher level. For a given N , let e(N) denote
the mean energy per particle of an N -particle system that
satisfies our assumptions. In the proof, we show that for
systems that satisfy the above assumptions and any δ > 0,
there exists an N and a β-catalytic channel C such that

C(ωβ) ≈δ
1
2 |E− 〉〈E− |+

1
2τ, (6)

where ≈δ denotes equality of the states on LHS and RHS
up to δ in trace distance, |E− 〉 is some eigenvector of H
with E− < e(N)N and τ is some other “fail”-state the
details of which are irrelevant. We can interpret Eq. (6)
as describing the approximation of a work extraction pro-
tocol that results in the state |E− 〉 with probability 1/2.
Now, as the result of standard concentration bounds, for
large N the mass of the thermal state ωβ will be highly
concentrated around energy e(N)N . This implies that ev-
ery time the above work extraction protocol succeeds to
prepare the ground state, for sufficiently high values of
N the extracted work per particle is arbitrarily close to
ε ≡ e(N) − E−/N , leading to the statement of Prop. 1.

We note that it is remarkable that catalytic channels,
which are guaranteed to satisfy the Av-2nd law, allow for
the preparation of states like the one described in Eq. (6),
in which a pure low-energy state carries much of the
weight, from a thermal state. Indeed, it has recently been
conjectured that with the help of catalysts any state tran-
sition between full-rank states that increases the entropy
is possible [9], a statement known as the catalytic entropy
conjecture. Prop. 1, and in particular the ability to prepare
the state in Eq. (6), further supports this conjecture, which
has not been proven so far (even though strong evidence
has been established).

Similar results as above also apply to the case in which
the initial state of the system is described by a micro-
canonical ensemble rather than the Gibbs state, highlight-
ing a similar contrast to fluctuation theorem results in the
micro-canonical regime [23]. For detailed discussions and
proves of corresponding statements in this regime, see Ap-
pendix C.

One may wonder whether the creation of correlations
between system and catalyst is in fact necessary to violate
the NMW principle. This is indeed true, when one simply
forces the catalyst to remain uncorrelated in the definition
of β-catalytic channels. A proof of this statement along
with further discussion on this problem can be found in
Appendix I. Interestingly, such processes at the same time
allow for a violation of the Jarzynski equality. A particular
example is given by the fully thermalizing channel, which
can be realized using a catalyst that is simply a copy of the
Gibbs state of the system and the unitary simply swapping
the system and catalyst.

Required size of the catalyst. Proposition 1 not only
shows that there exist catalytic procedures that allow an
agent to bypass the work extraction bounds imposed by the
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JE – the violation of JE is in fact exponential in the system
size. In particular, (5) implies that there exist values ε > 0,
such that

〈eβW 〉 ≥ 1
2eβNε � 1

in the limit of large N . It is natural to wonder how far the
JE can be violated and how big the catalyst has to be to re-
alize a certain violation. This is clarified by the following
result.

Proposition 2 (Bound on violation of JE). Let C be
any β-catalytic channel with dC = dim(HC). Then,

〈eβW 〉 ≤ min{dC ‖σ‖∞ , d ‖ωβ(H)‖∞}
≤ min{dC , d},

where ‖ · ‖∞ denotes the ∞-norm, which, for density
matrices, equals the largest absolute value of the in-
put’s eigenvalues.

This proposition, the simple proof of which is given
in Appendix F, shows that in order to extract a growing
amount of work from a single run of a process, an external
agent will have to be able to prepare a state σ on a growing
auxiliary system and, more importantly, also have control
over the increasingly large joint system. Hence, in prac-
tice, the ability to violate JE will still be constrained by
operational limitations. To illustrate the implications of
Prop. 2, let us show how it immediately implies a bound
on P (W ). As noticed when deriving the NMW principle,
for any ε ≥ 0 we have

〈eβW 〉 ≥ P (W ≥ ε)eβε.

Hence, Prop. 2 implies

P (W ≥ ε) ≤ dC ‖σ‖∞ e−βε.

In particular this means that to extract a macroscopic
amount of work, W ≥ wN , with finite probability, dC
has to grow exponentially with N (note that ‖σ‖∞ ≤ 1).

4 Multi-partite work extraction
As emphasized before, even though the state of the cata-
lyst remains unchanged in a catalytic process, in general
it builds up correlations with the system. We now show
that the correlations established between catalyst and sys-
tem allow for processes in which many agents re-use the
same catalyst to obtain highly inter-correlated work distri-
butions.

Consider n agents, each with identical systems Si, i ∈
{1, . . . , n} that are initialized in the Gibbs state ω(β,H).
For a given β-catalytic channel C with state σ on the cat-
alyst, consider the following protocol: Agent 1 runs the
standard process from Fig. 1 using the catalyst and hence
implementing C between the two measurements. After the
procedure, she then passes C on to agent 2 who repeats

this process, and so on, until the last agent has received C
and performed the process. From the catalytic nature of C,
is is clear that, for each agent, the same marginal distribu-
tion of work is obtained. However, the joint work distribu-
tion for all agents will be correlated, due to individual cor-
relations between each Si with C. We now show that the
agents can use these correlations to systematically achieve
certain global work distributions. Using the same notation
as before, let p(w1, . . . , wn) denote the global distribution
over the extracted work per particle, assuming that all Si
are copies of the same N -particle system. We have the
following, proven in Appendix E.

Proposition 3 (Multiple agents). Let each {Si}ni=1
be a sequence of N-particle systems that satisfy the
conditions of Proposition 1. Then, for sufficiently
large N , there exists an ε > 0, such that

p(ε,−ε, ε,−ε, . . . ) = λ,

p(−ε, ε,−ε, ε, . . . ) = 1− λ,
(7)

where λ can be brought arbitrarily close to 1/2 using
a sequence of β-catalytic channels on Si and C.

While (7) is clearly consistent with (1), this proposi-
tion shows that the agents can achieve joint work distri-
butions that are strongly correlated and in which subsets
of agents, in the above proposition one half of them, can
violate JE arbitrarily, at the cost of the other half. Such
distributions of work could, for example, be of interest in
situations where the target is to maximize the probability
that a subset of players extracts a positive amount work, at
the ready cost of the others, for instance in order to surpass
an activation energy. Importantly, the size of the catalyst
needed to realize the distribution (7) is fixed, i.e., it does
not scale with the number of agents n.

Proposition 3 shows the existence of catalytic processes
that produce very interesting global work distributions.
This naturally raises the question what other global dis-
tributions can be obtained in a setting without making the
size of the catalyst depend on the number of rounds. Our
results, however, already imply that not every distribution
compatible with the Second Law can be obtained in such
a way. For instance, Proposition 2 implies that the distri-
bution

p(ε, ε, ε, ε, . . . ) = p(−ε,−ε,−ε,−ε, . . . ) ≈ 1/2

cannot be obtained via β-catalytic channels, since other-
wise there would exist a catalyst of fixed size that would
allow, for any n, the total work W = nε to be extracted
with probability approximately 1/2, in violation of Propo-
sition 2.

5 Summary and future work.
In this work we have studied work extraction protocols
from states at thermal equilibrium. We significantly ex-
pand the common setting of fluctuation theorems under
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cyclic, reversible processes by introducing a catalyst—an
additional system which, on average, remains unchanged
after the protocol and can thus be re-used. This extension
enables for distributions of work extraction that are not
attainable without a catalyst. More precisely, one can by-
pass the stringent conditions imposed by the JE, achieving
positive work per particle with high probability, even for
macroscopic systems. Furthermore, it allows for interest-
ing, correlated work distributions when many agents use
the same catalyst.

Our constructions illustrate in a striking way that the ab-
sence of correlations, sometimes referred to as ‘stochastic
independence’, can also be a powerful thermodynamic re-
source [24]. This complements findings where the initial
presence of correlations between a system and an ancilla
are used to bypass the standard constraints imposed by
fluctuation theorems [25, 26]. We discuss the connection
of our work to these findings in more detail in Appendix
H. We believe that the further study of work distributions
that can be obtained by collaborating agents by means of
β-catalytic channels will yield both foundational and prac-
tical insights.

We further believe that it is an interesting open prob-
lem to study how the size of the catalyst has to scale if
one wishes to maximize the probability to extract a certain
amount of work. For example, in the context of a many-
body system one might be content with extracting only an
amount of work of the order of

√
N if in exchange for

that one can either increase the probability for it to happen
significantly or can reduce the size of the catalyst consid-
erably (and hence the complexity of the unitary required
to be implemented).

It would be interesting to understand the relation be-
tween our results and a more generalized type of JE in
the presence of information exchange [27], for example
in a Maxwell demon scenario. In particular, in Ref. [28]
it was also demonstrated that by using feedback control,
one may also violate JE while respecting the Av-SL. More
generally, our results also raise the question whether other
phenomena –usually described as forbidden by the second
law, or as occurring with vanishing probability– can be
made to occur with high probability using catalysts. For
example, is it possible to reverse the mixing process of
two gases or induce heat flow from a cold to a hot system
with finite probability in macroscopic systems? The tech-
niques developed in this work provide a promising ansatz
for the study of this and similar questions.
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A NMW for Gibbs preserving maps
Thermalizing quantum maps, in particular those studied
in the resource theoretic framework, are maps that model
the evolution of a non-equilibrium quantum state as it ex-
changes heat with its surrounding thermal bath. Several
variants of these maps exist [29, 6, 7, 30, 31], but a com-
mon feature is that they are Gibbs preserving (GP), namely
that the Gibbs canonical state is a fixed point of such maps.
Thermalizing maps are often viewed as “free operations”
in a resource theoretic context, since they allow only for
heat (instead of work) exchange with an environment in
thermal equilibrium. In this section, we demonstrate two
things: First, that even such thermodynamically “cheap”
channels may violate the JE very strongly, due to non-
unitality. Secondly, that they cannot be used to violate the
NMW condition. A diagrammatic overview over the vari-
ous properties of channels with respect to JE and NMW is
given in Fig. 2.

We now turn to the first point. Given a d-dimensional
system S with Hamiltonian H , the violation of JE can be
calculated for the thermalizing channel as

〈e−βW 〉 = d
∑
j

e−βEj

ZH
〈Ej | C [I/d] |Ej 〉 ,

= d
∑
j

e−βEj

ZH
〈Ej |ωβ(H) |Ej 〉 = d

deff
,

where deff := 1/Tr(ωβ(H)2) is known as the effective di-
mension [32] of the thermal state. One sees from the above
that JE is always violated for β > 0, since deff ≤ d, with
equality only when ωβ(H) = I/d is maximally mixed.
For N non-interacting i.i.d. systems, both d and Tr(ρ2)
scale exponentially with N , leading to an exponential vio-
lation in N for JE.

Turning to the second point, one may wonder how this
notion of thermodynamically free channels can be recon-
ciled with the fact that JE is violated. However, note that
in the standard JE setting, the work variable is traditionally
defined in terms of a fluctuating (measured) energy dif-
ference in the system, and does not inherently distinguish
between work and heat contributions – unlike resource-
theoretic settings where heat flow is allowed for free, but
measurements incur a thermodynamic cost. Here, we con-
sider an operationally more meaningful characterization
(NMW as defined in Def. 1 of the main text), and show
that NMW cannot be violated using channels that preserve
the Gibbs state in generic many-body systems. The only
assumptions that we make are that i) the system has uni-
formly bounded, local interactions on a D-dimensional
regular lattice and ii) a finite correlation length, i.e., the
temperature is non-critical.

Lemma 3 (Non-violation of NMW for Gibbs-pre-
serving maps). No channel E that preserves the Gibbs
state can violate NMW for locally interacting many-
body systems at a non-critical temperature.
Proof. We aim at showing that for any a > 0,
p(w ≥ a) = p(W ≥ aN) → 0 as N → ∞. The
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basic idea behind our proof is to make use of typ-
icality. Let e(N) denote the energy density of the
N -particle system and denote by Π(N)

δ the projector
onto energy eigenstates with energies in the interval
TN,δ := [(e(N) − δ)N, (e(N) + δ)N ]. Finally, denote
by p(·) the initial probability distribution of energy of
the thermal state τ (N)

S , e.g., the probability that the
initial energy measurement yields Ei ∈ TN,δ is given
by

p(TN,δ) := Tr
(
τ

(N)
S Π(N)

δ

)
.

A theorem by Anshu [33] shows that under the
given conditions most weight of the thermal state τ (N)

S

of the N -particle system is contained in a typical sub-
space. More precisely, for a many-body system de-
scribed by a D-dimensional lattice, there exist con-
stants C,K > 0 such that for any δ > 0 we have

p(TN,δ) ≥ 1− Ce−
(δ2N)

1
1+D

K . (8)

This is equivalent to saying that

p(T cN,δ) ≤ Ce−
(δ2N)

1
1+D

K ,

where T cN,δ = R \ TN,δ. In particular, in the case of
D = 0, i.e., N non-interacting systems, we find the
usual scaling obtained from Hoeffding’s inequality. In
the following, for simplicity of notation, we write σ1 =
τ

(N)
S and consider the normalized state σ2 obtained by

restricting τ (N)
S to the subspace Π(N)

δ as

σ2 :=
Π(N)
δ τ

(N)
S

p(TN,δ)
.

Let us further write E(σ1(2)) = σ′1(2), where σ′1 = σ1
by assumption. Since the trace distance d(ρ1, ρ2) :=
1
2Tr(|ρ1 − ρ2|) fulfills the data processing inequality,

d(σ1, σ
′
2) = d(σ′1, σ′2) ≤ d(σ1, σ2) = p(T cN,δ).

Using the operational meaning of trace distance
d(ρ1, ρ2) = max

0≤M≤I
|Tr(M(ρ1 − ρ2))| [34], this means

that

|Tr(Π(N)
δ σ1)− Tr(Π(N)

δ σ′2)| ≤ p(T cN,δ) (9)

and, in turn,

Tr(Π(N)
δ σ′2) ≥ p(TN,δ)− p(T cN,δ) = 1− 2p(T cN,δ).(10)

To see this, note that (10) follows from (9) directly if
Tr(Π(N)

δ σ′2) ≤ Tr(Π(N)
δ σ1), and as

Tr(Π(N)
δ σ′2) > Tr(Π(N)

δ σ1) ≥ Tr(Π(N)
δ σ1)− p(T cN,δ)

otherwise. This means that, conditioned on the fact
that the initial state was within the typical energy

Jarzynski 

Unital channels

Average Second Law

- catalytic channels

No Macroscopic

- Gibbs preserving
maps

Equality

Work

Figure 2: A summary of different criteria (Av-SL, NMW and
JE) mentioned in the main text, with examples of maps ac-
cording to this characterization.

window (Ei ∈ TN,δ), the final energy Ef is also within
this energy window except with probability 2p(T cN,δ),
which is (sub-)exponentially small in N . We will use
this later.

We are now ready to evaluate the probability of
obtaining macroscopic work.

p(w ≥ a) = p(TN,δ) · p(w ≥ a|Ei ∈ TN,δ)
+ p(T cN,δ) · p(w ≥ a|Ei ∈ T cN,δ)

≤ p(w ≥ a|Ei ∈ TN,δ) + p(T cN,δ).

We can estimate the first term as

p(w ≥ a|Ei ∈ TN,δ) ≤ p(Ef ≤ (e(N) + δ − a)N |Ei ∈ TN,δ).

We now choose δ = a/2 and get

p(w ≥ a|Ei ∈ TN,δ) ≤ p(Ef ≤ (e(N) − a/2)N |Ei ∈ TN,δ)

≤ Tr
[
σ′2

(
I−Π(N)

a/2

)]
≤ 2p(T cN,a/2),

where we have used (10) in the last step. Altogether,
we thus find

p(w ≥ a) ≤ 3p(T cN,a/2),

which decays to zero (sub-)exponentially by (8). This
concludes the proof.

As a side-remark, we note that if the Gibbs-preserving
channels that appear here are interpreted as modelling the
interaction with a heat bath, then the above result can be
interpreted as a ”no macroscopic heat” statement: If a
macroscopic system is brought in thermal contact with a
heat bath at the same temperature, then the probability of
an exchange of a macroscopic amount of heat is arbitrarily
small in the system size.
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B Microscopic toy example
In this section, we show that already for small systems and
using catalysts, the JE can be violated. We do so by con-
structing non-unital catalytic channels. Indeed, such maps
can be realized “quasi-classically”, in the sense that in the
construction it is sufficient to consider the energy spectra
of the involved states and that all unitaries are simple per-
mutations of those values. We consider a 3-level system
with energy levels E1 = 0, E2 = 0, E3 = ∆ in the ther-
mal state

w =
(

1
Z
,

1
Z
,
Z − 2
Z

)
,

where Z = 2 + exp(−β∆) is the partition function and
we express the state as a probability vector, such that wi
denotes the ith eigenvalue of the thermal state. For later,
we observe that 2 ≤ Z ≤ 3.

We are going to construct a simple non-unital catalytic
channel that involves a 2-dimensional catalyst. Let ei and
fj denote the basis states for the vector spaces VS and VC
describing the system and catalyst respectively. We define
the permutation π acting on the joint vector space VS⊗VC
as that permutation which exchanges the respective levels
e1 ⊗ f1 ⇔ e2 ⊗ f2 and e2 ⊗ f1 ⇔ e3 ⊗ f2 and leaves
all other entries unchanged (see Fig. 3). For the catalyst to
remain unchanged for this permutation and initial system
state, it is easy to check that the catalyst has to be given by
the vector

q =
(
Z − 1
Z + 1 ,

2
Z + 1

)
.

Now, the catalytic channel C induced by this catalyst and
permutation on the system has the general effect

C(p1, p2, p3) = (q1p2 + q1p3, q1p1 + q2p3, q2p1 + q2p2),

so that, in particular, the maximally mixed input state is
mapped to

C(I/3) = 2
3

(
Z − 1
Z + 1 ,

1
2 ,

2
Z + 1

)
,

which is different from the maximally mixed vector for
any ∆ > 0.

What is more, we can also directly calculate the work-
distribution p(w), yielding

p(0) = 1
Z(Z + 1) [Z + 3 + 2(Z − 2)(Z − 1)] ,

p(∆) = 2(Z − 2)
Z(Z + 1) ,

p(−∆) = Z − 1
Z(Z + 1) .

We now want to compute 〈eβW 〉. To do so, it is useful to
note that e−β∆ = Z − 2 and hence eβ∆ = 1/(Z − 2). We
find

〈eβW 〉 = Z + 5 + 2(Z − 2)(Z − 1)
Z(Z + 1) ≥ 1.

q2p3 q1p3 p3
q2p2 q1p2 p2
q2p1 q1p1 p1

q2 q1

→

q1p2 q1p3 q1p2 + q1p3

q1p1 q2p3 q1p1 + q2p3

q2p1 q2p2 q2p1 + q2p2

q2 q1

Figure 3: We represent the joint state of system and catalyst
by means of a table. Left: At the beginning the joint system
starts out in a product state, so that the entry (i, j) is given
by the product of the ith eigenvalue of the system and jth
eigenvalue of the catalyst. Right: After applying the permu-
tation highlighted in red, the marginal state of the system,
given by the rows sums, has changed, while the marginal
state of the catalyst (given by the column sums), has to re-
main invariant. For a two-dimensional catalyst, specifying
the permutation and initial system state fixes the catalyst
state.

In fact, this quantity is larger than 1 whenever Z < 3, cor-
responding to ∆ > 0. Its maximum is given as 7/6 for
Z = 3, which corresponds to ∆ → ∞. Thus, the Jarzyn-
ski inequality is violated. At the same time the second law
is fulfilled as expected, since p(−∆) ≥ p(∆).

C Work extraction for initial micro-
canonical ensembles
In this appendix, we show that a statement similar to
Proposition 1 of the main text holds in the slightly different
setting of a micro-canonical initial state. This serves two
purposes: i) in statistical mechanics, one often assumes
that closed, macroscopic systems are described by micro-
canonical ensembles due to the postulate of equal a priori
probabilities of microstates corresponding to a macrostate.
ii) The proof for the microcanonical initial state is con-
ceptually simpler, but also provides the blueprint for the
slightly more involved proof in the case of a canonical
state, which is provided in Sec. D.

In the following, we denote by I ⊂ R an energy win-
dow, by g(I) the number of energy eigenstates in this win-
dow,

g(I) =
∑
Ei∈I

1,

and the corresponding micro-canonical state by

ΩS(I) = 1
g(I)

∑
Ei∈I

|Ei 〉〈Ei | .

A micro-canonical energy window around energy density
e is any energy window I(e) of the form [e−O(

√
N), e],

where N is the number of particles.
The only difference to the standard setting described in

the main text (as depicted in Fig. 1) is that the initial state
differs from the thermal state ωβ(H). Instead, it is given
by the micro-canonical ensemble. In other words, given a
micro-canonical energy window I , we consider channels
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C of the form

C(·) = TrC(U(· ⊗ σC)U†)
s.t. TrS(U(ΩS(I)⊗ σC)U†) = σC.

We carry over notation from the main text, so that p(w ≥
ε) denotes the probability of measuring the system’s en-
ergy per particle decrease by at least an amount ε, and so
on. Furthermore, we take the catalyst Hamiltonian in our
construction to be HC = I.

We will now first show that the NMW principle also
holds for micro-canonical states of generic many-body
systems. After that we will show that it can be circum-
vented using catalysts. To show the validity of the NMW
principle we will use the same reasoning as presented in
Ref. [35], where the NMW principle has been studied be-
fore. Thus, the following proof is essentially a reproduc-
tion for the convenience of the reader. We consider a se-
quence of many-body Hamiltonians H(N)

S on N particles
with the generic property of having an exponential density
of states:

g((−∞, E]) :=
∑
Ei≤E

1 = eNµ(E/N)−o(N), (11)

where µ is a strictly monotonic and differentiable function
independent ofN and o(N) denotes terms small compared
to N , limN→∞ o(N)/N = 0.

Proposition 4 (NMW for micro-canonical states).
Consider a sequence of N -particle Hamiltonians ful-
filling (11) and a sequence of micro-canonical energy-
windows I(N) = [eN, eN + δ

√
N ] around energy den-

sity e (with δ > 0 fixed). Then for any unital channel
acting on the N -particle system, the probability of ex-
tracting work w per particle is bounded as

p(w > ε) ≤ Ce−µ
′(e)εN+o(N),

where C > 0 is a constant and µ′ denotes the deriva-
tive of µ.

Proof. Let I≤ := (−∞, (e − ε)N + δ
√
N ], denote by

PS(I≤) the projector onto energy-eigenstates with en-
ergies below (e−ε)N+δ

√
N and let U denote a unital

channel. In the following, we write I instead of I(N)

to simplify notation. Then

p(w > ε) ≤ Tr (PS(I≤)U [ΩS(I)])

=
∑
Ei∈I

1
g(I)Tr (PS(I≤)U [ |Ei 〉〈Ei |])

≤ 1
g(I)Tr (PS(I≤)U [I]) = g(I≤)

g(I) .

Writing ẽ := e+ δN−1/2, we have

g(I) = eNµ(ẽ)−o(N) − eNµ(e)−o(N)

= eNµ(ẽ)−o(N)
(

1− e−N(µ(ẽ)−µ(e))+o(N)
)

≈ eNµ(ẽ)−o(N),

where in the last estimation we use that µ is strictly
monotonic. In particular, we can estimate the expo-
nential in the parenthesis as

e−N(µ(ẽ)−µ(e))−o(N) = O
(

e−δµ
′(e)N1/2

)
,

where µ′ denotes the derivative of µ. Using g(I≤) =
eN(µ(ẽ−ε)−o(N) we then find

p(w > ε) ≤ e−N(µ(ẽ)−µ(ẽ−ε))+o(N)

1−O(e−δµ′(e)
√
N )

≤ Ce−µ
′(e)εN .

We have here used that µ is differentiable to prove this
result. Similar results would follow for weaker notions
of regularity of µ, such as Lipschitz-continuity. Having
proven the NMW principle for generic many-body sys-
tems, let us now show how to circumvent it using catalysts.

Proposition 5 (Overcoming NMW using catalysts).
Consider a Hamiltonian HS and a microcanonical
state ΩS(I), with I a micro-canonical energy window
around energy density e. Suppose there exists an en-
ergy window I+ with g(I+) = g(I)2. Then, for any
0 ≤ e− < e, there exists a catalytic channel such that

p(w ≥ e− e−) = 1
2 .

Before giving the proof of the proposition, let us em-
phasize again that the required conditions on the Hamilto-
nian are very weak. In particular, the conditions are (ap-
proximately) fulfilled if the density of states is well ap-
proximated by an exponential in the range of energies that
we are working in, a condition that is typically fulfilled in
many-body systems and, as we have seen above, leads to
an NMW principle if we do not allow for catalysts.

Proof. A sketch of the proof is given in Fig. 4. The
proof is constructive in the sense that we provide an
explicit catalyst and unitary. We first introduce some
useful notation. Define g := g(I), g+ := g(I+) = g2

and let PS(I) and PS(I+) be the projectors onto the
corresponding energy subspaces. Let |E− 〉 be any
eigenstate of the Hamiltonian such that 0 ≤ E−/N =
e− ≤ e. Following this notation, the initial state of
the system is

ΩS(I) = 1
g
PS(I).

The aim is to bring the system to a state that
is an equal mixture of |E− 〉〈E− | and Ω(I+). To
do this, we employ a catalyst of dimension dC =
g + 1. Let { |i 〉C}

dC
i=1 be an arbitrary orthonormal

basis on the Hilbert-space of the catalyst and let
PC =

∑g
i=1 |i 〉〈i |. The initial state on the catalyst

is given by

σ = 1
2gPC + 1

2 |dC 〉〈dC |C .
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Figure 4: Proof sketch for Proposition 5: Top: We represent the initial product state of system and catalyst by means of
a table, using the fact that both are initially diagonal in the energy eigenbasis: Ordering the spectra of both states non-
increasingly, the entry (i, j) of the table corresponds to the product of the i-th eigenvalue of the system (corresponding to the
a particular energy eigenstate) and the j-th energy eigenvalue of the catalyst. We focus on three regions in the table—denoted
top (T), middle (M), bottom (B)—corresponding to two degeneracy bands I and I+ and (the projector onto) a single energy
eigenvector |E− 〉: Since the system is initially in the micro-canonical ensemble with energy window I, the support of the
joint state is initially contained in the coloured middle band. The catalyst is constructed as carrying half of its mass uniformly
distributed over dC − 1 of its entries and the other half in a single entry. This means that the middle band is divided into two
subregions, middle left (ML) and middle right (MR), where the total probability mass coloured in blue equals the mass coloured
in red. Furthermore, each of these subregions has its mass uniformly distributed over its entries. Bottom: By construction,
both the subregions BL and MR as well as ML and TR have the same number of entries. Hence, we can swap BL and MR by
means of a permutation, and similarly for ML and TR. This permutation results in a reduced state on S of the form Eq. (13)
and hence produces the claimed work extraction probability. Moreover, it leaves the marginal state of the catalyst unchanged,
so that the permutation induces a valid catalytic channel.
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We define the unitary U by the conditions

U [PS(I)⊗ |dC 〉〈dC |C]U† = |E− 〉〈E− | ⊗ PC

U [PS(I)⊗ PC]U† = PS(I+)⊗ |dC 〉〈dC |C .

This is possible since i) the corresponding subspaces
have the same dimension, ii) the subspaces in the

two equations are orthogonal and iii) subspaces of the
same dimension can always be mapped into each other
by a unitary. In fact there will be many different uni-
taries achieving this, and any of them is fine for our
purposes.

Applying U to the state ΩS(I)⊗ σC one obtains

U (ΩS(I)⊗ σC)U† = 1
2g2U (PS(I)⊗ PC)U† + 1

2gU
(
PS(I)⊗ 1

2 |dC 〉〈dC |C

)
U†

= 1
2ΩS(I+)⊗ |dC 〉〈dC |C + 1

2g |E− 〉〈E− | ⊗ PC. (12)

It is clear from (12) that

TrS(U(ΩS(I)⊗ σC)U†) = σC,

as required for a catalytic channel. Moreover, the
quantity of interest P (w ≥ e−e−) given by this chan-
nel C (defined by U and σC) can be derived by noting
that

C(ΩS(I)) = 1
2Ω(I+) + 1

2 |E− 〉〈E− | , (13)

so that p(W ≥ e− E′/n) = 1
2 .

D Proof of Proposition 1 in the main
text
In this section, we provide the proof and full statement of
Proposition 1 in the main text. This proof is very similar
to that of the micro-canonical case presented in the previ-
ous section, we will hence only describe the adjustments
that have to be made. Also, unlike in Appendix C, we now
again consider the standard setting and definition of cat-
alytic channels as introduced in the main text. In the fol-
lowing, we denote by PS(I) the projector onto a specific
energy-window I . Then g(I) is equal to the rank of PS(I).
We consider Hamiltonians H(N)

S on a regular lattice Λ(N)

of N sites and assume that the H(N)
S (for different values

of N ) constitute a sequence of local, uniformly bounded
Hamiltonians:

H
(N)
S =

∑
x∈Λ(N)

hx,

where each term hx acts on sites at most a distance l away
from x and the norm of each term is bounded as ‖hx‖ ≤ h
independent of the system size for some constant h.

Proposition 6 (Lower bound to the probability of
work extraction). Fix an inverse temperature β > 0
and consider a sequence of local, uniformly bounded
N -particle Hamiltonians H

(N)
S on a regular, D-

dimensional lattice. Assume that the states ωβ(H(N)
S )

have a finite correlation length bounded by a con-
stant and denote by e(N) the energy density corre-
sponding to β. Let δ > 0 be fixed and consider
I(N) := [e(N)N − δ

√
N, e(N)N ]. Further assume that

there exist micro-canonical energy windows I(N)
+ with

g(I(N)
+ ) = g(I(N))2. Then, for sufficiently large N ,

there exists, for any 0 < e− < e(N), a corresponding
sequence of catalytic channels such that

p(w ≥ e(N) − e−) ≥ 1/2− Ce−
(δ2N)

1
1+D

K ,

where C,K > 0 are constants.

Before giving the proof, we again emphasize the weak-
ness of the assumptions in the statement, which, in the
limit of large N , can be satisfied to arbitrary precision if
the density of states grows exponentially within I(N), as is
typically the case. Furthermore, let us emphasize that the
energy densities e(N) fluctuate arbitrarily little (for suffi-
ciently large N ) from a constant e due to the locality of
temperature [36].

Proof. The proof follows the proof for the micro-
canonical case in Appendix C. In particular, the uni-
tary that we use is exactly the same as that con-
structed in the proof for the micro-canonical case.
However, here we do not construct the state of the
catalyst explicitly, but allude to Lemma 4, which en-
sures there is always some catalyst given the unitary
that we consider. What remains to be done is to show
that for every such catalyst the probability distribu-
tion of work is as claimed. To do this, we denote by
r the initial probability of an energy-window I in the
initial thermal state given by

r(I) = Tr(PS(I)ωβ(HS))

and by r− = 〈E− |ωβ(HS) |E− 〉 the initial weight
on the low-energy eigenstate |E− 〉. Here and in the
following, we drop the explicit dependence on the
system-size for simplicity of notation. The following
arguments work as long as N is large enough such that
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the energy-windows I and I+are disjoint. Denote by
{qi}dCi=1 the spectrum of the catalyst. By considering
the action of the used unitary, it is easy to see that a
necessary condition for the transition being catalytic
under the given unitary is that

qdC (r(I) + r(I+)) = (1− qdC )(r(I) + r−). (14)

This can be seen, for example, from Fig. 4, where the
above represents the condition of catalyticity for the
right-most column. Solving in (14) for qdC , we find
that

qdC = r(I) + r−
2r(I) + r− + r(I+) .

We now invoke the result from Ref. [33] (as previously
in the proof of Lemma 3) which implies that

r(I) ≥ 1− εN ,

where there exist constants C,K such that

εN ≤ Ce−
(
δ2N

) 1
1+D

K
.

For large enough N , the energy windows I and I+
are disjoint. Hence 0 ≤ r− + r(I+) ≤ 1− r(I) and we
find

qdC ≥
r(I)

2r(I) + 1− r(I) = r(I)
1 + r(I)

≥ r(I)
2 ≥ 1

2 (1− εN ) .

Finally, we find

p(w ≥ e− e−) ≥ P (Ef = E−|Ei ∈ I)w(I) = qdc · r(I)

≥ 1
2(1− εN )2 ≥ 1

2 − εN .

Lemma 4 (Existence of catalysts). Let ρS be a quan-
tum state on a finite-dimensional Hilbert-space HS
and U be a unitary on the Hilbert-space HS ⊗ HC,
where HC is an arbitrary finite-dimensional Hilbert-
space. Then there exists a density matrix σC such
that

TrS
(
U(ρS ⊗ σC)U†

)
= σC.

Proof. The map σC 7→ TrS
(
U(ρS ⊗ σC)U†

)
specifies

a quantum-channel. Since every quantum channel is
a continuous map on the compact and convex set of
states, it has a fixed point by Brouwer’s fixed point
theorem ([37], Section 4.2.2).

E Proof of Proposition 3 in the main
text
Proposition 3 in the main text follows straightforwardly
once we realize that we can tune the process used in the
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Figure 5: The idea behind the proof of Proposition 3 in the
main text: For any choice of unitary, we can understand
the second condition in the Def. 2 of the main text as the
definition of a quantum channel C̃ acting on C. We find
a C̃ and two states σ−, σ+ with the following properties:
(a) If the initial state of the catalyst is σ+, the result of
running the standard protocol is to extract positive work ε
from the system, while the state of the catalyst is changed to
C̃(σ+) = σ−. (b) The same unitary, however, for initial state
σ−, extracts negative work −ε and changes the catalyst state
to C̃(σ−) = σ+. (c) Hence, if we initialize the catalyst in the
state σ = 1

2 (σ++σ−), then there are two “branches” of work
extraction distributions, each occurring with probability 1/2,
while the resulting channel on Si is catalytic for every i. Note
that, if the agent knew whether her input state was σ+ or σ−,
then she could condition her unitary U on this knowledge and
achieve the claimed work distribution easily. Hence, the key
achievement of the proof is to show that agents can achieve
correlated work distributions without knowing the initial state
of the catalyst.

construction of the proof for Proposition 1 in the main
text in such a way that its repeated application implies
the claimed work distribution. This follows because we
have great freedom in choosing the state E−. In par-
ticular, in terms of notation of the previous section, let
e

(N)
+ denote the energy density around which the window
I

(N)
+ is centered. Then we choose E− in such a way that
e − E−/N = e+ − e to ensure that the extracted and in-
vested amount of work in every iteration are exactly the
same. The above choice of E− is always possible for the
Hamiltonians with exponentially growing density of states
that we consider (for which e+ will not be much greater
than e.)

Fig. 5 provides a sketch of the proof. For the many-
player process described in the main text, let

p(w2, w3, w4, . . . |w1)

denote the work probability distribution for agents 2 to n
conditional on the player 1 extracting work w1. The key
recognition then is that, for any n, by construction of the
catalytic channel,

p(w2, w3, . . . |w1) = 1 (15)

whenever wi = −wi−1 for all i ∈ {2, . . . , n}, while

p(w2, w3, . . . |w1) = 0
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in all other cases. This is because, if the extracted work in
the first round was negative, corresponding to an increase
in the system’s energy, then by construction of the unitary,
the final state of the catalyst is σ′ = |d 〉〈d | with proba-
bility one, since all transitions that lead to an increase in
energy on the system result in this final state. This, in turn,
is sufficient to determine that, for the second player, the
application of the unitary to this catalyst state σ′ and her
copy of ωβ(H) will result in a decrease of the system’s en-
ergy (and hence positive work extraction) and a final cata-
lyst state σ′′ with support on the subspace

∑g
i |i 〉〈i |, etc.

This reasoning can be applied to an arbitrary number of
agents and also to the case in which the extracted work in
the first round was positive, and hence implies (15). The
claimed work distributions then follow from

p(w1, w2, . . . , wn) = p(w2, w3, w4, . . . |w1)p(w1),

together with Proposition 1 in the main text. We also note
that a similar conclusion holds in the case of the micro-
scopic toy-example presented in Section B, where this be-
haviour can be checked easily by explicit calculation.

F Proof of Proposition 2 in the main
text
Given a catalytic channel C, let U denote the unitary chan-
nel applied to the joint system SC when dilating the chan-
nel. The key observation is that, if U is unitary, then U∗ is
trace-preserving and hence maps quantum states to quan-
tum states (in fact, this property holds for all unital chan-
nels). Here, ∗ denotes the Hilbert-Schmidt adjoint. We
then write

〈eβW 〉 = Tr (ωC(1))
= Tr (ω ⊗ IU(1⊗ σ))

= dCTr
(
U∗
(
ω ⊗ I

dC

)
1⊗ σ

)
≤ dC ‖1⊗ σ‖∞

∥∥∥∥ 1
dC
⊗ σ

∥∥∥∥
1

= dC ‖σ‖∞ .

Here, the first equality is simply Eqn. 2 in the main text
and we write ω instead of ωβ(H). Similarly, we get

〈eβW 〉 = dTr
(

(ω ⊗ I)U
(

1
d
⊗ σ

))
≤ d ‖ω ⊗ I‖∞ = d ‖ω‖∞ .

G Non-trivial Hamiltonian on the cat-
alyst

In this section we show that the probability distribution of
work done on the system is independent of the Hamilto-
nian on the catalyst. To do this, let us first assume we
had a catalytic process that uses a catalyst with a non-
trivial HamiltonianHC and a quasi-classical state σC , i.e.,
[HC , σC ] = 0. We assume that σC is quasi-classical, since
it is well known that it is impossible to associate a mean-
ingful random variable of work in the case coherent initial
states [38]. Using the two-time measurement process on
the system and catalyst together, we can then associate a
bi-partite work-distribution P (W (S),W (C)), where

W (S) = E
(S)
f − E(S)

i

denotes the work done on the system and

W (C) = E
(C)
f − E(C)

i

the work done on the catalyst. The work distribution on
the system is simply given by the marginal

P
(
W (S)

)
=
∫
P
(
W (S),W (C)

)
dW (C).

Let us write σC =
∑
j σj |E

(C)
j 〉〈E

(C)
j | and ωβ(H) =∑

k wk|E
(S)
k 〉〈E

(S)
k |. We then get

P
(
W (S)

)
=

∑
E

(S)
f
−E(S)

i
=W (S)

∑
E

(C)
f′

∑
E

(C)
i′

P
(
E

(S)
f , E

(C)
f ′ |E(S)

i , E
(C)
i′

)
P (E(S)

i )P (E(C)
i′ )

=
∑

E
(S)
f
−E(S)

i
=W (S)

∑
E

(C)
f′

∑
E

(C)
i′

〈E(S)
f | ⊗ 〈E

(C)
f ′ |

(
U
(
wiσi′ |E(S)

i 〉〈E
(S)
i | ⊗ |E

(C)
i′ 〉〈E

(C)
i′ |

)
U†
)
|E(S)
f 〉 ⊗ |E

(C)
f ′ 〉

=
∑

E
(S)
f
−E(S)

i
=W (S)

〈E(S)
f |TrC

(
U
(
wi|E(S)

i 〉〈E
(S)
i | ⊗ σ

)
U†
)
|E(S)
f 〉

=
∑

E
(S)
f
−E(S)

i
=W (S)

〈E(S)
f |C

(
wi|E(S)

i 〉〈E
(S)
i |
)
|E(S)
f 〉.
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It is hence identical with the one obtained on the system
alone when we think of the catalyst as a system with a
trivial Hamiltonian, that is, with the distribution as defined
above Eqn. 2 in the main text. This shows that we can al-
ways assume that the catalyst has a trivial Hamiltonian, in
which case it is clear that no energy flows from the catalyst
to the system, even probabilistically. Therefore, such an
energy flow is not necessary to implement catalytic transi-
tions.

H Comparison with literature on gen-
eralized Jarzynski equalities in the pres-
ence of correlations
In recent years, the role of correlations, specifically quan-
tified by the mutual information, has been well studied,
in particular with respect to its influence on the Jarzynski
equality [25, 26], even leading up to experimental demon-
strations to test these theoretical results [28, 39]. One
may ask, how the results of this manuscript fit in the con-
text of that line of research. This section provides a brief
overview of the main differences.

In Ref. [25] the core observation is that the presence
of initial correlations between a system S and an ancillary
(catalyst) C can be used to create a thermodynamic advan-
tage, in the sense that such processes obey a generalized
JE and Second law and hence can be used to by-pass the
constraints imposed by the original JE and Second law.
Specifically, [25] derives (according to their generalized
version of Jarzynski equality) a bound on the work per-
formed on the system that is given by

〈W 〉 ≥ 〈∆F 〉+ 〈∆Eint〉+ β−1〈∆I〉,

where 〈∆F 〉 is the difference between final and initial
equilibrium free energy on the system, 〈∆Eint〉 for the
energy difference coming from the interaction Hamilto-
nian between system and catalyst, and finally 〈∆I〉 is the
change in mutual information between system and cata-
lyst. For our setup, both 〈∆F 〉 and 〈∆Eint〉 are zero.
Given that the extracted work Wext = −W , the above
bound reduces to

〈Wext〉 ≤ −β−1〈∆I〉,

which says that if one allows the consumption of mutual
information (leading to ∆I < 0), then it is possible to
violate the average second law, namely extract some pos-
itive amount of Wext from a Gibbs state, for instance by
reducing the entropy of the system in the process. This
particular viewpoint of correlations (information) being a
thermodynamic resource is a mature and well-studied one.

In our setting, however, the initial state of system and
catalyst are always uncorrelated, which means that we al-
ways have 〈∆I〉 ≥ 0. Hence it is clear that the type of
catalytic operation studied in Ref. [25] cannot correspond
to our setting, since the generalized JE and Second law al-
low for violations of the original JE and Second law only if

〈∆I〉 < 0. The difference to our setting, however, is easily
understood. It lies in the fact that here we allow for more
general joint evolutions of the system and the catalyst. In-
deed, it is easy to see that under the requirement that the
initial state between catalyst and system be uncorrelated,
the channels that can be implemented on the system via
the operations allowed in Ref. [25] are unital channels, for
which we show above that they cannot be used to by-pass
the JE (see Fig. 2). This is because in the above works, the
catalyst is required to not evolve over time. In contrast,
the notion of a β-catalytic channel allows for the evolu-
tion of the catalyst to be non-trivial, as long as the final
density matrix describing the catalyst is unchanged. Since
this constraint only requires the statistical invariance of
the catalyst, this allows for a much broader class of evo-
lutions to be implemented on the system and hence ex-
plains how we can by-pass the JE and NMW in a setting
where the marginal entropy of the system has to increase.
In summary, the key differences to the line of work rooted
in Refs. [25, 26] are that we study processes that by-pass
the JE by means of the creation of correlations paired with
catalysts that evolve non-trivially over time, while in the
above work processes are studied that by-pass the JE by
means of the absorption of initial correlations paired with
catalysts that do not evolve over time.

I Is it necessary to establish correla-
tions with the catalyst?
In our definition of β-catalytic channels, we allow the cat-
alyst to become correlated with the system. These cor-
relations are certainly necessary for the correlated multi-
player strategies discussed in the main text, but one might
wonder whether they are also necessary to violate NMW
on a single system. To make this question concrete, con-
sider the set of β-trumping channels, where a quantum
channel T is in this set iff it has the form

T (ρ) = Tr2(N (ρ⊗ σ)),

where N (I) = I is unital and N (ωβ(H) ⊗ σ) = ρ′ ⊗ σ.
Note that in the case of β-catalytic channels, we restricted
the corresponding channel N to be unitary. Here, we al-
low instead for the more general class of unital channels.
We will prove that in the unitary case, NMW cannot be
violated by β-trumping channels even though Jarzynski’s
equality may be violated. We will also present arguments
that suggest that the same is true in the unital case.

It is worth noting, for starters, that the fully thermaliz-
ing channel is exactly a β-trumping channel where σ =
ωβ(H), and N is a unitary swap between the system and
catalyst. Thus, even in the case of a unitary channel N ,
such β-trumping channels can violate Jarzynski’s equality.
On the other hand, in the main text we have demonstrated
that the thermalizing channel cannot violate NMW since
it is Gibbs preserving. Hence, the above leaves open the
question whether the NMW condition can be violated by
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means of β-trumping channels. However, we do not be-
lieve that this is the case, for the following reasons:

i) Our constructions of violating NMW can not work in
the trumping case. This is because in the trumping setting
the so-called min-entropy S∞ (minus log of the largest
eigenvalue) of the final state has to be at least as large as
that of the initial state (see for example Ref. [6]). How-
ever, in our constructions, the final min-entropy is essen-
tially given by − log(p(w ≥ ε) ≈ log(2), whereas the
initial min-entropy is extensive in N . It thus decreases by
a macroscopic amount.

ii) The previous point also suggests a route for arguing
that β-trumping channels cannot be used to violate NMW
in general: We now present an argument that rules out vi-
olations of NMW in the case of a microcanonical initial
state Ω with energy density e, but we expect that similar
statements hold true for the canonical case due to equiv-
alence of ensembles-type of arguments. Because of the
highly peaked probability distribution of the energy den-
sity for a macroscopic, non-critical many-body system, it
is easy to see that the probability p(w ≥ ε) to extract work
per particle at least ε is (up to arbitrarily small corrections
for large N ) given by the total probability of measuring
an energy below (e − ε)N in the final state T (Ω). Let us
denote the projector onto these energies by P . We then
have

p(w ≥ ε) ≈ Tr[PT (Ω)],

where the approximation is arbitrarily good as N → ∞.
This insight also was an essential ingredient to the proof
that Gibbs-preserving maps cannot violate NMW. Now, to
leading order, the total number of states with energy below
(e − ε)N is given by exp(s(e − ε)N), where s(e − ε) is
the microcanonical entropy density at energy density e−ε.
Since the total weight in this subspace is p(w ≥ ε), the
final min-entropy is upper bounded by

S
(final)
min ≤ − log(p(w ≥ ε)) + s(e− ε)N.

However, since trumping requires S(final)
min ≥ S

(initial)
min =

s(e)N , we then find

p(w ≥ ε) ≤ exp(−(s(e)− s(e− ε))N)→ 0,

as N → ∞ for any ε > 0. This shows that NMW holds
for β-trumping channels in the micro-canonical case. Note
that when we allow the catalyst to become correlated,
NMW can be violated for microcanonical initial states, as
shown above. This already makes clear that correlated cat-
alysts provide a strict advantage in this set-up.

iii) Finally, let us also show that if we assume that N
is unitary, as we do in the case of β-catalytic channels,
then NMW cannot be violated if the catalyst remains un-
correlated. The reason is the following: Since the global
transformation on system and catalyst is unitary, it leaves
the spectrum invariant. Since the catalyst remains invari-
ant and uncorrelated, this implies that already the spectrum
of the initial density matrix on the system has to remain
invariant. Therefore there exists a unitary V , such that

T [ωβ(H)] = V ωβ(H)V †. As argued in case ii), we then
have

p(w ≥ ε) ≈ Tr[PT [ωβ(H)]] = Tr[PV ωβ(H)V †]
≤ Tr[Pωβ(H)],

where the last inequality follows because Gibbs states are
passive states and the first approximation holds to arbitrary
accuracy asN →∞. However, by the same concentration
inequalities we used to prove of our main results, we have

Tr[Pωβ(H)] ≤ K exp(−k(ε2N)1/(1+D)),

for a non-critical many-body system in D spatial dimen-
sions (with constants k,K > 0). Thus, NMW holds true
in this case as well.
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