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What kinds of symmetry-protected
topologically ordered (SPTO) ground
states can be used for universal
measurement-based quantum compu-
tation in a similar fashion to the 2D
cluster state? 2D SPTO states are classi-
fied not only by global on-site symmetries
but also by subsystem symmetries, which
are fine-grained symmetries dependent on
the lattice geometry. Recently, all states
within so-called SPTO cluster phases on
the square and hexagonal lattices have
been shown to be universal, based on the
presence of subsystem symmetries and
associated structures of quantum cellular
automata. Motivated by this observation,
we analyze the computational capability
of SPTO cluster phases on all vertex-
translative 2D Archimedean lattices.
There are four subsystem symmetries
here called ribbon, cone, fractal, and
1-form symmetries, and the former three
are fundamentally in one-to-one corre-
spondence with three classes of Clifford
quantum cellular automata. We conclude
that nine out of the eleven Archimedean
lattices support universal cluster phases
protected by one of the former three
symmetries, while the remaining lattices
possess 1-form symmetries and have
a different capability related to error
correction.

1 Introduction

Geometry plays an important role in both quan-
tum information and many-body physics. Quan-
tum states can inherit symmetries from the way
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Figure 1: The eleven Archimedean lattices. Each lattice
is vertex translative, meaning that the same pattern of
shapes meet about each vertex. They are then labeled
according to this rule. For example, at each vertex in
the (4, 82) lattice a square and two octagons meet.

their composite parts are arranged geometrically,
which can in turn result in novel physical prop-
erties. In measurement-based quantum com-
putation (MBQC) [1], many-body entanglement
is converted to quantum computation via local
measurements and classical communication, and
the importance of geometry is twofold. First, it
directly dictates the computational utility of en-
tangled resources states known as graph states [2,
3]. Second, the geometry of the entangled state
can give rise to symmetries, which are known
to play key roles, directly or indirectly, in con-
structing and characterizing many-body entan-
gled states that are universal for MBQC [4–19].
Recent progress reveals that some of these states
possess topological orders under a symmetry re-
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striction, known as symmetry-protected topolog-
ical orders (SPTO), which have been of recent in-
terest in condensed matter physics and the mod-
ern classification of quantum phases of matter
[20–24].

It has been observed in Ref. [25] that all ground
states of a certain 1D SPTO phase, known as the
Haldane phase [26, 27], have an equivalent com-
putational capacity provided that the symmetries
remain unbroken. Furthermore, any ground state
residing in a 1D SPTO phase protected by a finite
Abelian symmetry group has been shown to act
as a 1D MBQC resource [28–32]. Recently, these
results have been extended to 2D resource states
lying in a quasi-1D SPTO phase, protected by so-
called subsystem symmetries, giving rise to quan-
tum phases of matter in which every state is uni-
versal resource for MBQC. Remarkably, the com-
putational power of such phases is a direct con-
sequence of the symmetries they possess [31]. In
particular, the first example of a computationally
universal phase, known as the 2D cluster phase,
was constructed from the rigid line-like symme-
tries of the square lattice cluster state in Ref. [33],
followed by the fractal symmetries of the hexag-
onal lattice in Ref. [34]. A recent paper [35] has
constructed tensor network states with underly-
ing Clifford quantum cellular automaton (QCA)
in their virtual space, so that they have sub-
system symmetries and support computationally
universal subsystem SPTO phases.

In this Article, we will take a “lattice-first” ap-
proach, constructing 2D cluster phases from the
subsystem symmetries common to all the ground
states on a given 2D lattice and identifying the
structure of QCA that underlies its tensor net-
work description. It is known that for graph
states, computational power depends strongly on
its lattice or graph [5, 6, 36, 37]. By performing
an in-depth characterization of each of the eleven
Archimedean lattices (shown in Fig. 1), we ana-
lyze the roles the lattice plays in the resource
quality of the corresponding subsystem SPTO
phases. Besides being of independent geomet-
ric interest (c.f. [38])—they are the only vertex-
translative lattices in 2D—they contain lattices
more exotic than those studied previously, thus
offering an important testbed for our method for
constructing cluster phases, which complements
the methods of Ref. [35]. Our lattice-first ap-
proach yields several new insights, such as a coun-

terexample case to the conjecture of Ref. [35] that
cluster phases with glider QCA should be con-
structed using line-like symmetries, as well as
examples of lattices with one-form symmetries,
which represent foliated error correcting codes
and have underlying non-unitary QCA.

Following the background materials in Sec. 2,
we provide a general procedure to identify rel-
evant subsystem symmetries and related QCA
structures of the graph state for the construction
of the surrounding cluster phase in Secs. 3.1, 3.2,
3.3. We show that nine of the eleven lattices sup-
port a universal cluster phase, corresponding to
either QCA with cone or fractal symmetries de-
scribed in Sec. 3.4 and Sec. 3.5, respectively. The
other two cases support one-form symmetries,
which prevent them from forming cluster phases
as described in Sec. 4. These results emphasize
an important correspondence between the funda-
mental subsystem symmetries and the types of
QCA, which we summarize in Table 1. It is curi-
ous that none of the eleven Archimedean lattices
support a periodic QCA structure. To address
this, we note in Sec. 3.6 that when any lattice is
partially decorated, it can support cluster phases
with an underlying periodic QCA structure, thus
providing a wealth of new examples. In Sec. 5,
we study how global properties of the lattice—
the location of input and output qubits on the
lattice, and also how the lattice is embedded on
the torus—can affect the computational proper-
ties.

2 Preliminaries

2.1 Graph states

We begin with some definitions and notation.
The Pauli operators are denoted as

X = |0〉〈1|+ |1〉〈0| (1)
Y = −i|0〉〈1|+ i|1〉〈0| (2)
Z = |0〉〈0| − |1〉〈1|. (3)

Let the state |m(σ)〉 denote the (−1)m eigen-
state of the Pauli operator σ for m ∈ {0, 1} and
σ ∈ {X,Y, Z}. If the superscript is omitted, the
state is implied to be a Z eigenstate. The n-qubit
Clifford group is the normalizer of the n-qubit
Pauli group. It is generated by the Hadamard,
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Phase, and CZ gates

H =|0(x)〉〈0|+ |1(x)〉〈1| (4)
S = |0〉〈0|+ i |1〉〈1| (5)

CZ = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗ Z. (6)

Traditionally, MBQC consists of preparing a
graph state first, and then implementing quan-
tum processing via a sequence of adaptive single-
qubit measurements [1]. Each graph state, |ψG〉,
is specified by a graph G(V,E), where V and E
are the vertex and edge sets, respectively. Each
vertex represents a qubit initialized in the state
|0(x)〉. Edges represent the action of a controlled-
Z (CZ) gate between two adjacent qubits. Thus,

|ψG〉 =
∏

(j,k)∈E
CZjk|0(x)〉⊗|V |. (7)

Equivalently, the graph state can be uniquely
defined in terms of its stabilizer group, i.e., as the
unique +1 eigenstate of the setSv = Xv

⊗
l∈N (v)

Zl

∣∣∣∣ ∀v ∈ V
 , (8)

where l ∈ N (v) if and only if (l, v) ∈ E. For an
extended review of graph states see Ref. [3].

The usefulness of a given graph state depends
on the graph G. For example, when G is a simple
one-dimensional path graph with open boundary
conditions, we can encode a single logical qubit at
the edge and perform SU(2) rotations and logical
measurements via an adaptive sequence of single-
site measurements in the

Xθ = cos(θ)X + sin(θ)Y (9)

and Z bases, respectively.
Universal MBQC requires graphs of dimen-

sion higher than 2, and for the remainder of
this article G is assumed to be one of the eleven
Archimedean lattices (see Fig. 1) embedded on a
cylinder with circumference n, or equivalently a
torus with a single cut along the minor circum-
ference. In principle, universal MBQC on such
a graph state can be implemented by using Z
basis measurements to delete specific vertices in
the graph, thereby carving out isolated regions of
1D wires (useful for single-qubit gates) and also
leaving some transverse connectivity (useful for
entangling gates) [1]. However, this method does
not generalize conveniently to arbitrary members

of the surrounding SPTO phase since measure-
ments away from the X basis violate the rele-
vant symmetries. Fortunately MBQC can be per-
formed in manner that minimizes symmetry vio-
lating operations [31, 32]. We review and make
use of this method in Sec. 3.3.

2.2 Subsystem symmetries

Now we discuss the symmetries of the 2D graph
states described above. Recall that a graph state
is uniquely specified by its stabilizer group. We
wish to identify a whole family of states that have
similar computational properties, so the full sta-
bilizer group is too restrictive. It is fruitful to in-
stead consider subgroups of the stabilizer group,
henceforth referred to as symmetries of the graph
state. In particular, the symmetries considered
here will consist only of tensor products of X
and 1 operators.

Graph states can have many different symme-
tries, as illustrated in Fig. 2. The simplest being
a global Z2 symmetry, where the nontrivial ele-
ment of the Z2 subgroup of the stabilizer group
arises from taking the product of all stabilizers
on all sites. Later, we consider four kinds of
subsystem symmetries, because they only have
non-trivial support over a subset of qubits on
the graph. The first is the 1

k -fractional symme-
try [18], which is defined over any graph G(V,E)
with chromatic number k. The 1

k -fractional sym-
metry acts on the state as a product of X oper-
ators on vertices of a common color. This sym-
metry then forms a Zk2 subgroup of the full sta-
bilizer group. The next examples are the ribbon,
cone, and fractal symmetries. Elements of these
distinct symmetry groups are formed by taking
minimal products of stabilizers so as to cancel all
Z operators. They all form Z2n

2 subgroups of the
stabilizer group. The final symmetry is the 1-
form symmetry, which has support on a compact
manifold of co-dimension 1. For 2D graph states
this corresponds to symmetries whose generators
are locally acting loops of X operators. Again,
such loops are formed by taking products of sta-
bilizers centered at each site on the loop.

2.3 Finding symmetries

Determining the existence and structure of rib-
bon, cone, and fractal subsystem symmetries for
a given graph state by multiplying stabilizers can

Accepted in Quantum 2019-01-28, click title to verify. Published under CC-BY 4.0. 3



X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X X

X

X

X X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X X X X X X

X

Figure 2: Examples of the common types of symmetry. The tensor network notation uses the conventions described
in Appendix. A. (a) The simplest symmetry is a global Z2 symmetry, which involves applying X to every physical
degree of freedom. (b) The triangular lattice or (36) lattice is 3-colorable and thus has 1

3 -fractional symmetry. The
action of this symmetry corresponds to group Z3

2. The three generators are depicted in red, blue, and green. (c)
The kagome or (3, 6, 3, 6) lattice has 1-form symmetry. Each symmetry generator acts on the spins surrounding a
hexagonal plaquette. The resulting symmetry group is thus extensively large. (d) Examples of the three subsystem
symmetries studied in this paper. In each lattice, periodic boundary conditions are imposed along the top and
bottom, giving each subsystem symmetry a periodic structure. The ribbon symmetry is depicted for two periods
and the cone and fractal symmetry are depicted for a single period (above). The three become physically distinct
for larger system sizes (below). Ribbon symmetries act in a localized narrow band of constant width whereas cone
and fractal symmetries have support that spreads over the lattice in each direction. Furthermore, cone symmetries
fill out the inside of their causal cone with a regular structure whereas fractal symmetries are supported within the
causal cone on a fractal subset of sites. Each subsystem symmetry corresponds to a distinct Clifford QCA residing
in the virtual level of the tensor network representation as described in Sec. 2.3. We leverage this property and the
Gottesman-Knill theorem to generate these plots numerically.
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be challenging. Here we follow a more conve-
nient method introduced in Ref. [35] that lever-
ages the tensor network representation of the
graph states. Indeed, the connection between
tensor network representations and MBQC re-
sources has long been studied [4, 7, 8]. For a brief
introduction to tensor network notation see Ap-
pendix A. In this tensor network representation
the structure of the virtual space is described by
a Clifford quantum cellular automaton (CQCA).
Translationally invariant CQCA have been clas-
sified [39, 40], allowing a connection to be drawn
between each class and these three subsystem
symmetries. Consequently, the computational
power of the 2D graph state can be attributed
to an underlying CQCA structure. In this sec-
tion we review CQCA, their classification, and
how they can be used in conjunction with tensor
networks to determine subsystem symmetries.

Generally, cellular automata define a local up-
date rule on state vectors. In the context of
the Heisenberg picture evolution of Pauli oper-
ators via a local translationally-invariant Clif-
ford circuit T , CQCA specify a transfer matrix
T that acts on the binary vector representation
ξ = ξ(x) ⊕ ξ(z) ∈ F2n

2 of Pauli operators, i.e.,

P (ξ) 7→ TP (ξ)T † = P (T ξ) (10)

where ⊕ is the direct sum and

P (ξ) = ⊗n−1
k=0X

ξ
(x)
k
k Z

ξ
(z)
k
k . (11)

The dimension of ξ is 2n, and so this evo-
lution can be simulated efficiently (a.k.a., the
Gottesman-Knill Theorem [41]). Note that T p =
1 for some integer p, which we refer to as the
period of the CQCA.

Due to translational invariance, T admits a
compact representation in terms of Laurent poly-
nomials [35, 39]. A Pauli operator P (ξ) can be
written as a two dimensional vector ξ̃ whose en-
tries are polynomials in a variable η with degree
n− 1 and coefficients ξ in F2, i.e.,

ξ̃ =
(∑n−1

k=0 ξ
(x)
k ηk∑n−1

k=0 ξ
(z)
k ηk

)
, (12)

where the first (second) entry describes X (Z)
support of the Pauli. T can similarly be repre-
sented by a matrix of polynomials of the same
form

T̃ =
(∑n−1

k=0 t
(xx)
k ηk

∑n−1
k=0 t

(xz)
k ηk∑n−1

k=0 t
(zx)
k ηk

∑n−1
k=0 t

(zz)
k ηk

)
. (13)

CQCA have been classified in Ref. [40] accord-
ing to the trace of T̃ into three distinct classes
based on how p scales with the system size n.
These are periodic, glider, or fractal.

Tr
(
T̃
)

=


0, 1; Periodic,→ p = Ω(1)
ηc + η−c; Glider,→ p = Ω(n)
otherwise; Fractal,→ p irregular

(14)
While the above classification of CQCAs was
made with perfect translational invariance in
space and time, we will give a more general
method for determining the underlying CQCA
structure of a given graph state in Sec. 3.1. This
will often give more general CQCAs that are in-
variant under translation by ∆ (τ) steps in the
space (time) direction. We can appeal to the
same classification described above by blocking
the CQCA appropriately in the space and time
directions.

Finally, we will clarify that there is a one to
one correspondence between the ribbon, cone, or
fractal subsystem symmetry of a graph state and
the class of the CQCA structure underlying the
virtual space of its tensor network representation.
While this will be discussed in a more general
context in Sec. 3.2. for now we discuss this cor-
respondence for a particular example, the (44) or
square lattice graph state. The tensor network
representation of the (44) graph state, denoted
as |(44)〉, can be written as [33]

. . . . . .

, (15)

where each wavy line represents a physical degree
of freedom and

T =
n−1⊗
j=0

Hj

n−1∏
j=0

CZj,j+1. (16)

The operator T generates a CQCA residing in
the glider class. Now consider evolving a single
site Pauli operator through the virtual level of the
tensor network. For each column of copy tensors,
X operators commute through and leave behind
an X operator on the physical level. Following
this, the Pauli operator is updated according to
the CQCA transfer matrix T . After propagating
this operator though the tensor network a cone
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symmetry, depicted in Fig. 2 is left behind on
the physical degrees of freedom. Since evolution
under a CQCA can be simulated efficiently on a
classical computer, subsystem symmetries can be
determined in an efficient manner. In the remain-
der of this paper, all unitary QCA are CQCA.

2.4 Phases of symmetry-protected topological
order

In light of the correspondence of Sec. 2.3, it is
natural to ask: can any state with such subsys-
tem symmetries have a CQCA structure and be
considered a universal resource for MBQC? Fam-
ilies of symmetry respecting states can naturally
be discussed in terms of symmetry-protected
topological order (SPTO). SPTO is a property
of many-body ground states wherein the entan-
glement is robust to symmetry respecting pertur-
bations [42]. Furthermore, the low-energy spec-
trum of the corresponding Hamiltonian is depen-
dent on the topology of the system. Namely, in
the presence of open boundaries, the system ex-
hibits ground state degeneracy corresponding to
edge modes, whereas for periodic boundaries the
ground state is unique and symmetric [24, 43].
Such systems have been conjectured to be good
candidates for MBQC resources [25, 28, 29].

Subsystem symmetries can protect non-trivial
SPTO [44, 45]. A scheme for MBQC with 1D-
SPT phases that leverages the symmetry to do
universal MBQC at arbitrary points in the phase
was proposed in Refs. [30–32]. Note, however,
that this approach cannot be immediately ap-
plied to 2D SPTO because strict single-site lo-
cality of measurements is required for MBQC.
However, by considering additional lattice sym-
metries in 2D, the authors of Refs. [33] were able
to describe a 2D cluster phase, extending the 1D
results to quasi-1D systems with subsystem sym-
metries, such as those discussed in Sec. 2.3, and
giving rise to 2D resources phases that are univer-
sal for MBQC [33, 35]. A self-contained review
of MBQC protocols with quasi-1D SPT phases
is given in Appendix B. It turns out that a clus-
ter phase is an SPTO phase where the correspon-
dence between subsystem symmetries and CQCA
structures holds at every point. Remarkably, one
can recast the MBQC scheme entirely in terms of
symmetries, allowing the CQCA to be leveraged
to achieve entangling gates. For this reason, the
computational power is uniform throughout the

cluster phase.
Moving between states in an SPTO phase cor-

responds to applying some constant-depth quan-
tum circuit consisting of layers of symmetry-
respecting unitary gates with disjoint support
Uφ [42, 46]. Thus, an arbitrary point in the phase
|φ〉 can be thought of as Uφ applied to some refer-
ence state taken to be the graph state |ψC〉. One
can write a tensor network for |φ〉 by first taking
a tensor network description of the fixed point
|ψC〉, defined by tensors,

, (17)

and then apply the unitary Uφ, which can always
be expressed as a matrix product unitary (MPU)
due to its local nature (cf. [47–49]). Exploiting
this fact Uφ can be written as the MPU, we de-
scribe graphically, for the case of a square lattice,

, (18)

with local tensors,

. (19)

These are commonly referred to as “junk tensors”
[28] as they increase the bond dimension of the
tensor network and are dependent on the micro-
scopic details of the point in the phase. We can
then write a tensor network description of |φ〉 as

. (20)

Thus, the new tensors describing |φ〉 are

. (21)

The bottom layer of tensors generates the
CQCA, as seen in Sec 2.3. To enforce that |φ〉 be-
longs to a cluster phase, it is sufficient to require
that the MPU commutes with local X operators,
i.e.,

. (22)

Let ξ = ξ(x) ⊕ ξ(z) ∈ F2|V |
2 be used to denote

an arbitrary Pauli operator P (ξ), as defined in
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Figure 3: A product of Z operators that commutes with
all cone symmetries of the (44) lattice. Each circle rep-
resents a site in the lattice with the physical index sup-
pressed. Distinct cone symmetries correspond to lines
of a particular color that intersect the sites where the
particular symmetry supports an X operator. Each cone
symmetry intersects an even number of Z operators.
Notice this product of Z operators has support on the
neighbors of the central site and thus is stabilizer equiv-
alent to a single X operator at that site.

Eq. (11), with support on the lattice. Further-
more, let X(ξ(x)) and Z(ξ(z)) denote the X and
Z part of P (ξ) so that P (ξ) = X(ξ(x))Z(ξ(z)).
We can then expand Uφ in terms of Pauli opera-
tors,

Uφ =
∑

ξ

cξX
(
ξ(x)

)
Z
(
ξ(z)

)
. (23)

For Eq. (22) to hold, it is sufficient to require that
all Z operators in the above expression must be
of the form

Z
(
ξ(z)

)
=
∏
v∈V ′

⊗
j∈N (v)

Zj , (24)

where V ′ is a local, bounded-size subset of ver-
tices. An example of such an operator for the
(44) lattice is shown in Fig. 3 where V ′ is the
central qubit in the figure.

To see that Eq. (24) implies Eq. (22), recall
that our reference state is the graph state, and
thus, we may use the stabilizer relation Eq. (8)
to write

Z
(
ξ(z)

)
|ψC〉 =

∏
v∈V ′

Xv|ψC〉. (25)

Therefore, all Z operators in Eq. (23) can be
replaced by X operators. Hence, Eq. (23) can
be recast as

Uφ =
∑

ζ

cζX(ζ), (26)

where ζ ∈ F|V |2 is the length |V | binary vector
ζ = ξ(x) + ξV ′ (mod 2) where ξV ′ is binary vec-
tor with nonzero entries corresponding to vertices
in the subset V ′. Uφ has the MPU decomposition

Bk,φ =
∑

ζ

c
1
|V |
ζ Xζk

k ⊗ |ζ〉
⊗4, (27)

where Bk,φ is the MPU tensor at the kth site.
Hence, Eq. (22) holds.

One key takeaway is that, in order for an SPTO
phase constructed around a graph state to be a
cluster phase, it is sufficient to show that the only
products of Z operators in Eq. (23) that commute
with all subsystem symmetries are of the form of
Eq. (24)—see for example Fig. 3.

3 Cluster phases on Archimedean lat-
tices
Our approach is to find the underlying QCA
structure and subsystem symmetries for lattices
that can be appropriately partitioned into quan-
tum wires for MBQC. We use this procedure
to systematically study subsystem SPTO states
|φ〉’s on the Archimedean lattices. Note, how-
ever, since they share the bottom layer of ten-
sors in Eq. (20) determined by a corresponding
graph state, most of the following analysis can
be made as if we handled graph states. We find
that nine of these lattices support an underly-
ing QCA structure, two of which were previously
studied in Refs. [33, 34]. We use the subsystem
symmetries in each of the nine cases to define a
cluster phase and prove universality for MBQC.
Our results are summarized as follows together
with Table 1.

Main Result. Let |φ〉 be any SPTO state in
a 2D cluster phase constructed on one of the
vertex-translative Archimedean lattices, excluding
(3, 6, 3, 6) and (3, 122), and protected by its fun-
damental subsystem (i.e., cone or fractal) sym-
metry. All states |φ〉’s in the same phase share an
underlying (i.e., glider or fractal) QCA structure
respectively, so that they are uniformly universal
for MBQC, namely universal quantum computa-
tion is feasible under a common protocol of mea-
surements, regardless of microscopic specification
of |φ〉.

As shown in Table 1, the different lattices
have different types of symmetries. We describe
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Real space Real space Virtual space Computational Lattices
symmetry symmetry group QCA structure phase

1
kFractional Zk2 - - All

Ribbon Z2n
2 Periodic Yes Partially decorated

Cone Z2n
2 Glider Yes (44), (36), (3, 4, 6, 4)

Fractal Z2n
2 Fractal Yes (63), (4, 82), (4, 6, 12),

(34, 6), (3, 4, 32, 4), (33, 42)
1 - Form ZO(nN)

2 No No (3, 6, 3, 6), (3, 122)

Table 1: Classification of Archimedean cluster phases according to subsystem symmetry, QCA structure, and
computational capability. To each lattice, we identify the subsystem symmetry its corresponding fixed-point tensor
(i.e., graph state) possesses. The three fundamental symmetries giving rise to a universal cluster phase (ribbon,
cone, and fractal as defined in Sec. 2.2) always correspond to Clifford QCA (with periodic, glider, and fractal
structure, respectively) in the virtual space of the tensor network representation (see Sec. 2.3). Notice, the two
lattices supporting one-form symmetries do not support a computational phase (see Sec. 4). Furthermore, none of
the Archimedean lattices have ribbon symmetries, however, any of the nine lattices with cone or fractal symmetry
can be partially decorated to give a computationally universal phase protected by the ribbon symmetries as described
in Sec. 3.6.

the features of lattices with cone symmetries in
Sec. 3.4 by focusing on the (3, 4, 6, 4) lattice.
This is a particularly illuminating example be-
cause it reveals the fundamental importance of
cone symmetries in defining the cluster phase
in comparison to the emphasis on line symme-
tries in Ref. [35]). In Sec. 3.5 we describe fea-
tures of lattices with fractal symmetries by study-
ing the (4, 82) lattice. Note that none of the
Archimedean lattices have an underlying periodic
QCA structure. In Sec. 3.6, we describe how to
convert lattices possessing either a glider or frac-
tal QCA structure into partially decorated lat-
tices that have a periodic QCA structure.

3.1 Determining the QCA

We first discuss our general method for deter-
mining the underlying QCA structure for a given
lattice. The idea is to describe the 2D graph
state using several coupled 1D graph states writ-
ten in MPS form. The resulting tensor network
can then be converted into a quantum circuit de-
scribing the QCA.

Assume the lattice is embedded on a cylin-
der. When we do MBQC with a resource state
on this lattice, the length and circumference of
the cylinder will represent the time and space di-
rections of a (1+1) dimensional quantum circuit,
respectively. Notice, each lattice is invariant un-
der translation by ∆ and τ sites in the space and
time directions, respectively. For example, for

the square lattice ∆ = τ = 1 whereas for the
(3, 4, 6, 4) lattice τ = 3 and ∆ = 4 (see Fig. 1). In
order to ensure that the periodic boundary condi-
tions in the spatial direction are consistent, the
number of sites around the circumference must
be n = j∆ for some j ∈ N. Furthermore, denote
the length of the cylinder by N where N >> n.
The upshot of translational invariance is that the
analysis can be reduced to considering a single
τ×∆ sized patch of the lattice. For the (3, 4, 6, 4)
lattice, this patch is shown in Fig. 4 (a).

For this procedure to succeed in giving a uni-
tary QCA structure on the n encoded qubits at
the edge, it is necessary for the lattice to have
a partitioning into n induced path graphs—1D
linear subgraph that contains all edges connect-
ing its vertices in the original graph—along the
time direction such that every qubit in the lattice
lies in some partition. Edges in each path graph
make up distinct wires and all remaining edges
correspond to logical CZ gates between neigh-
boring wires. These are represented in Fig. 4
(a) by the yellow shaded edges. Given such a
partitioning, we can deform the lattice so as to
straighten out the wires and align the vertices
on a square grid as shown in Fig. 4 (b). Im-
portantly, the (3, 6, 3, 6) and (3, 122) lattices fail
to meet this condition and consequently have no
unitary QCA structure. We will revisit these two
examples in Sec. 4.

We can then describe the remaining nine lat-
tices as n disjoint 1D graph states coupled by log-
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Figure 4: An outline of the procedure to construct the underlying QCA of a 2D graph state, focusing on the (3, 4, 6, 4)
lattice as an example. (a) Given a lattice, first identify the τ ×∆ sized translationally invariant structure, shaded in
grey. Next, partition the lattice into disjoint sets of wires, outlined in yellow. (b) Deform the lattice so that each
vertex lies on a square grid. Each wire may then be replaced by the MPS for a 1D graph state. All remaining edges
become CZ gates coupling the neighboring wires. These CZ gates can then be pushed down to the virtual level by
virtue of Eq. (29). (c) To enforce a proper causal structure, sort the components of the tensor network into common
time slices. CZ gates belonging to a common time slice are shaded in green, red, and blue, respectively. This results
in blocks of tensors that are connected only by wires. (d) Decompose each MPS tensor into a copy tensor and
Hadamard gate using Eq. (28). Moving all copy tensors to the front of their respective time slice and contracting
them with |0(x)〉 states gives the transfer matrix for the QCA, T = T3T2T1. For all circuit diagrams drawn, CZ
gates implemented in a single step are drawn so they overlap.
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ical CZ gates. By rewriting each 1D graph state
in terms of its MPS representation, we obtain a
tensor network description of the state, shown in
Fig. 4 (b). These MPS tensors are defined as

, (28)

where the appropriate tensor network notational
definitions are given in Appendix A. The logical
CZ gates coupling the wires can be pushed down
to the virtual degrees of freedom via the identity

, (29)

where the dangling wire represents half of a CZ
gate. This procedure is visually depicted in
Fig. 4 (b).

To make the temporal structure of the effec-
tive circuit description apparent, we will place
each node of the tensor network on a square grid
(where the wires correspond to horizontal edges).
Next, we partition the network into common time
slices that contain one node on each wire and
some additional logical CZ gates. We can ar-
range all CZ gates such that neighboring time
slices are only connected by wires as shown in
Fig. 4 (c).

Finally, we may use Eq. (28) to decompose
each node into a copy tensor and Hadamard.
Each time slice can then be turned into a Clifford
circuit by moving each copy tensor to the front of
the time slice and contracting each with a |0(x)〉
state as shown in Fig. 4 (d). Since a QCA is time
translationally invariant by definition, we should
compose τ many of the Clifford circuits, given
by unitaries T1, ..., Tτ , to get the time transla-
tionally invariant transfer operator for the QCA,
T = Tτ · · · T1.

We note that the above procedure does not
guarantee a unitary QCA structure. Namely, the
Clifford circuits, Tj , may not have a valid causal
ordering. This property is dependent on the ini-
tial embedding of the lattice on the cylinder, and
is explored more in Sec. 5.

3.2 Determining the symmetry

The subsystem symmetries can be determined
by the commutation relations of Pauli operators
with the tensors in each time slice. One can
see from the structure of each 1D MPS tensor

Propagate . . . . . . . . .{
{ { {

Figure 5: Determining subsystem symmetries via the
QCA. (a) A site dependent update rule for evolving
Pauli operators through the virtual space of the tensor
network. Propagating an X through any virtual degree
of freedom always leaves behind a physical X operator
on the corresponding physical site whereas Z operators
leave behind no physical operators. (b) Propagating
each of the 2n generators of the Pauli group through pτ
time slices on the virtual level maps each back to itself,
leaving behind a subsystem symmetry on the physical
degrees of freedom shown in blue (color available on-
line). Treating the pτ time slices as one large block of
sites in a quasi-1D system, each subsystem symmetry
generated gives an onsite representation of Z2n

2 .

shown in Eq. (28) that commuting an X on the
kth virtual wire through the collection of tensors
at a given time slice results in an X operator
appearing on the kth physical index as shown in
Fig. 5 (a). Using this fact we may write down an
explicit expression for the symmetry in terms of
the QCA.

For α, β ∈ Z and γ ∈ Zτ such that α = βτ +γ,
let us define an accumulated transfer matrix,

T [α] = Tγ · · · T2T1 (T )β . (30)

This is the unitary accumulated after evolving
through the QCA by α elementary time steps.
Let the same notation hold for the binary rep-
resentation of these Clifford unitaries T1, ..., Tτ .
Furthermore, let el ∈ F2n

2 be the binary represen-
tation of a generator of the Pauli group acting on
a virtual degree of freedom. Namely,

P (el) =
{
Xl if 1 ≤ l ≤ n
Zl−n if n+ 1 ≤ l ≤ 2n

. (31)

Now suppose the coordinates of a physical site
on the lattice embedded on the square grid are
parameterized as (x, y) where y increases from
top to bottom along the grid. If we evolve the
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lth such single site Pauli operator through x − 1
elementary time steps, then the components of
the updated vector T [x−1]el specify the support
of the evolved Pauli operator. Namely, if the yth

component of this vector is 1, then the yth vir-
tual wire in the tensor network will support an X
operator. Consequentially, this operator will be
pushed up to the (x, y) physical degree of free-
dom as described in Fig. 5 (a). In summary,
the yth component of the vector T [x−1]el spec-
ifies whether or not the lth symmetry generator
has non-trivial support on site (x, y).

Iterating this procedure generates the subsys-
tem symmetry as shown in Fig. 5 (b). Therefore,
we may express lth symmetry generator as

Sl =
⊗
x,y

X(T [x−1]el)y
x,y , (32)

where the superscript simply denotes raising to
the power of the binary variable (T [x−1]el)y.

3.3 Computational universality
A key component of our main result is that any
state in the cluster phase constructed about each
of the nine Archimedean lattices with a QCA
structure is universal for MBQC. To prove this
we determine the universal gate set available in
each case. Once we have this, we may appeal to
the techniques of Ref. [31] for the remaining de-
tails of a computational protocol. For complete-
ness, these techniques are reviewed in the context
of quasi-1D SPTO phases in Appendix B.

First we introduce relevant notation. Recall
that the state consists of n wires and the period
of the subsystem symmetry and QCA is denoted
as p. Let |j〉 with j ∈ Znpτ2 represent the state of
the npτ qubits in one QCA period of the tensor
network. We shall index the elements of the vec-
tor by the x and y coordinates of each qubit in
this block, assigning the state |0(x)〉, |1(x)〉 to the
qubit at site (x, y) whenever the corresponding
component j(x,y) = 0, 1, respectively. Finally, let
e(x,y) denote the unit vector with all entries being
0 except that associated with site (x, y).

The available gate set is determined by the
fixed point tensors making up the quasi-1D MPS
description of the SPTO state |φ〉 = Uφ|ψC〉. The
quasi-1D MPS description is obtained by con-

tracting a n×pτ sized block of the tensors A(local)
φ

defined in Eq. (21) around a cylinder. The result-
ing local tensors, denoted as Aφ, take the form

. . .

. . .

. . .

. . . . . .

{ . . .

. . .

. . .

. . .{
Figure 6: MBQC scheme at the fixed point versus
MBQC at arbitrary points in the cluster phase. (a)
MBQC with the quasi-1D fixed point state can be
achieved by measuring all qubits in the X basis except
for the qubit at site (x, y), which is measured in the Xθ

basis. This implements a unitary generated by the MPS
tensor component C(x, y) by an angle θ. (b) At an
arbitrary point in the quasi-1D SPTO phase, the same
procedure inevitably couples the logical and junk sub-
systems. To avoid this, the input (red) undergoes a
small rotation by an angle dθ, followed by a segment
of “oblivious wire”, in which many blocks are measured
in the X basis and the outcome is discarded after un-
doing the measurement byproduct operators. To linear
order in dθ, this results in a rotated state at the output
(green) while keeping the logical and junk subsystems
decoupled.

of MPS tensors,

Aφ =
∑

j∈Znpτ2

C(j)⊗B(j) |j〉, (33)

where C(j) are the logical tensors coming from
the graph state fixed point and B(j) are the junk
tensors coming from the symmetric constant-
depth unitary Uφ. In Ref. [28], it was shown that
the fixed point tensors can be uniquely deter-
mined by the onsite representation of the sym-
metry and corresponding edge operators in the
projective representation of the symmetry. The
structure of the fixed point tensors for each lat-
tice is explicitly derived in Appendix C.

To determine the gate set, we need only con-
sider the tensors C(x, y) := C(e(x,y)). The gate
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set native to the cluster phase is,

{Ux,y(θ) = exp (iθC(x, y)) | ∀(x, y)} . (34)

To implement such gates physically, we measure
the qubit at site (x, y) in the Xθ-basis and all oth-
ers in the npτ sized block in the X-basis. This
will, up to adaptive corrections of measurement
byproduct operators, implement the desired gate.
An illustration of this is shown in Fig. 6. At ar-
bitrary points in the cluster phase, the edge state
is made up of a logical and junk subsystem. In
order to avoid losing logical information to the
junk system, the qubit at site (x, y) is measured
in the Xdθ-basis for small dθ. To build up to a
substantial angle θ, we repeat this many times,
interleaving each iteration with a large number
of blocks measured entirely in the X-basis. In
this way we have to break the symmetry gradu-
ally. The protocol is discussed in more detail in
Appendix B.

3.4 Lattices with cone symmetries
In this section, we discuss the computational
capability of cluster phases constructed around
Archimedean lattices with physical cone symme-
tries and underlying glider QCA. These are the
(44), (36), and (3, 4, 6, 4) lattices. Furthermore,
we emphasize the fundamental role of cone sym-
metries in constructing the phase (c.f. the use
of line symmetries in Ref. [35]). The resulting
properties of each lattice are summarized in Ta-
ble 2.

The defining property of glider QCA is the ex-
istence of gliders, which are operators whose sup-
port is simply shifted by ∆ sites under the action
of T . On the physical space gliders correspond
to subsystem symmetries called line symmetries,
which are composed of 1D strings of X opera-
tors . In Sec. 4.2 of Ref. [35], the line symme-
tries, which are a subgroup of the group of cone
symmetries, were conjectured to protect cluster
phases with underlying glider QCA at the fixed
point. We will show the (3, 4, 6, 4) lattice is a
counterexample to this conjecture for the follow-
ing reason; the line symmetry group is too small.
The implications of this are twofold. First, the
line symmetry group forms a Zn2 subgroup of the
cone symmetry group and thus has a much larger
commutant that restricts the construction of a
cluster phase based on these symmetries. Fur-
thermore, the support of each line symmetry is

Figure 7: Top: An example of a cone symmetry and the
corresponding QCA evolution for the (3, 4, 6, 4) lattice.
Bottom: An example line symmetry and corresponding
glider in the QCA.

disjoint and so the set of logical tensors C(x, y)
cannot generate entangling gates when exponen-
tiated. Thus, the available gate set throughout
the SPTO phase is not universal. For compari-
son, we will also discuss in parallel the line sym-
metries for the (44) and (36) lattices, which turn
out to be sufficient for defining a computationally
universal cluster phase in those cases.

Let us first understand the subgroup structure
of the line symmetries. Using the techniques of
Sec. 3.2, we can determine the 2n generators of
the group of cone symmetries for the (3, 4, 6, 4)
lattice. See Fig. 7 for an illustration. The injec-
tivity of the map from virtual to physical space
ensures that the group of cone symmetries is iso-
morphic to the Pauli group on n qubits modulo
phases, i.e.,

Scone ∼=
〈
{Xj , Zj}nj=1

〉
/U4 ∼= (Z2 × Z2)n , (35)

where U4 = {1, i,−1,−i} denotes the fourth
roots of unity. The relation between generators
of the Pauli group and generators of the group
of cone symmetries is depicted in Fig. 8. On the
other hand, the gliders are constructed from the
following subset of Pauli operators

Γ = {Z4lX4l+1, X4lZ4l+1, Z4l+2X4l+3, X4l+2Z4l+3}
n/4
l=1.

(36)
The group of line symmetries is then isomorphic
to

Sline ∼= 〈Γ〉 /U4 ∼= Zn2 . (37)
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Table 2: The three lattices supporting glider QCA are shown. By tiling space with each lattice’s QCA tile, the QCA
for that lattice is obtained. Also listed are the gliders and gate sets used to prove computational universality of each
lattice. To implement each gate, every qubit in a n × pτ sized block must be measured in the X basis except for
one qubit located at site (x, y), which is measured in the Xdθ basis. Furthermore, to achieve the gate set we must
restrict some qubits to be always fixed in a specific state to get the appropriate two body interaction desired.
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Figure 8: Generators for the group of cone symmetries of the (3,4,6,4) lattice. Shown is a tensor network description
of the (3,4,6,4) lattice with the physical indices suppressed. The X operators in each white circle act on the physical
degrees of freedom and give the generators for the cone symmetry group of the (3, 4, 6, 4) lattice up to vertical
translation by ∆ sites. Shown at a particular internal edge in the middle of the lattice are two red Pauli operators
in the virtual space of the tensor network. The symmetry on the left (right) half of the lattice can be generated by
propagating the left (right) red Pauli in the left (right) direction using the rules of Fig. 5. Notice, however, the red
Pauli’s cancel, indicating the resulting black X operators represent a symmetry of the state.
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Figure 9: Generators for the group of line symmetries of the (3, 4, 6, 4) lattice. All conventions are the same as in
Fig. 8. These physical symmetries on the left (right) half of the lattice are generated by commuting pairs of Pauli
operators to the left (right). Notice each vertical pair of Pauli’s is a glider of the corresponding QCA.

The line symmetries are a subgroup of the cone
symmetries because the generators Γ form a sub-
set of the generators of the cone symmetries in
Eq. (35). The gliders for the (44) and (36) lat-
tices are given in Table 2. One Pauli operator
from each of these sets is not independent, in-
dicating that the structure of the line symmetry
subgroup in each case is of the form Z2n−1

2 .

We now wish to construct a cluster phase
about the (3, 4, 6, 4) graph state fixed point. The
objective is to determine which symmetries give
rise to locally acting symmetric unitaries that
leave invariant the correspondence between the
physical symmetries and underlying QCA struc-
ture. As discussed in Sec. 2.4, this boils down to
determining which products of Z operators com-
mute with all the symmetries in question.

Let us first attempt to construct a cluster
phase protected by the line symmetries of the
(3, 4, 6, 4) graph state. The generators of this
symmetry group along with the corresponding
edge operators, up to vertical translation of their
support, are shown in Fig. 9. The simplest local
product of Z operators commuting with all sym-
metries is a product of two Z operators supported
on opposite corners of any four sided tile and also∏
j∈N (v) Zj for any vertex v. We stress that the

former is not stabilizer equivalent to some prod-
uct of X operators. Furthermore, if this term
is included in the Pauli expansion of the sym-
metric constant-depth unitary in Eq. (23), the
local tensors Bφ will not commute with the lo-
cal action of the symmetry (recall the condition
in Eq. (22)). The local correspondence between

QCA evolution and subsystem symmetries is lost
and thus the resulting SPTO phase defined by
the line symmetries is not a cluster phase. On
the other hand, the commutant of the line sym-
metries of the (44) and (36) lattices consists of Z
operators of the form

∏
j∈N (v) Zj and a pair of

non-local Z operators separated half way around
the torus from each other. The latter operators,
referred to as two-local operators in Ref. [33], are
omitted successfully from Uφ by an extra consid-
eration that global operators cannot be imple-
mented by Uφ. Notice that the key point in this
argument is that the line symmetry group of the
(3, 4, 6, 4) lattice is simply too small to allow one
to define a cluster phase.

The line symmetries also restrict the available
gate set from being universal in the case of the
(3, 4, 6, 4) lattice. This is apparent upon comput-
ing the tensors C(x, y) defined by the line sym-
metries. From Fig. 9 it can be seen that the line
symmetries have disjoint support. This means
that for any qubit at some site (x, y) in the n×pτ
sized block of qubits, C(x, y) will be an operator
that anticommutes with only one operator from
the set of gliders Γ as defined in Eq. (36). Thus
the available gate set cannot generate entangle-
ment between encoded qubits at the edge in dif-
ferent blocks of size ∆ = 4. Again, we emphasize
that for the (44) and (36) lattices, the available
gate set defined by the line symmetries of each
lattice can indeed be used to construct a uni-
versal gate set on a restricted subset of encoded
qubits at the edge. Namely, on the even or odd
qubits.
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Understanding that the line symmetries of the
(3, 4, 6, 4) lattice fail to give a universal cluster
phase, we now consider the full group of cone
symmetries. The generators of Scone are depicted
in Fig. 8. Each symmetry operator has support
on even number of neighbors of any vertex in the
lattice. The only place where this may not be
true is near the boundary of the region depicted.
However, evolving the edge operators through
the QCA gives a new edge operator, which is
some product of Pauli operators. Thus, near the
edge of the region shown the symmetry simply
looks like a product of several generators. If an
operator commutes with all symmetries in the
vicinity of the center of the region shown, it is
guaranteed to commute with the symmetry ev-
erywhere. The local operator commuting with
all these symmetries is

∏
j∈N (v) Zj which by the

stabilizer relation is equivalent to Xv. There-
fore, we can construct a cluster-like SPT phase
around the (3, 4, 6, 4) graph state defined by the
cone symmetries.

We finally show that every point in the clus-
ter phase constructed about the (3,4,6,4) lattice
is universal for MBQC. Since the quasi-1D MPS
tensors are formed from blocks of size n × pτ
(i.e. a whole QCA cycle), we can perform iden-
tity gates and implement a segment of oblivious
wire by measuring all qubits in the X basis (Note
that pτ = 3n

2 for the (3, 4, 6, 4) lattice). Fur-
thermore, preparation and readout can be per-
formed by measuring the first column of qubits in
a block in the Z basis and measuring the remain-
ing qubits in the X basis. Finally, we determine
the relevant tensors for implementing a universal
gate set to be,

C(1, l) = Zl (38)
C(pτ, l) = Xl (39)

C(2, 4l + 1) = Z4lX4l+1Z4l+2 (40)
C(pτ − 1, 4l + 2) = Y4l+2Y4l+3X4(l+1). (41)

These tensor components were determined us-
ing the subsystem symmetry generators shown in
Fig. 8. The fact that each symmetry is diagonal
in the X-basis and that each symmetry can be
pushed through to the virtual level gives a set of
commutation relations of each C(x, y) with the
edge representation of each symmetry (i.e. each
single site Pauli operator on the virtual degrees
of freedom). This uniquely determines C(x, y).
For more information we point the reader to Ap-

pendix B.1 where Eq. (40) is derived explicitly as
an example (see also Fig. 20).

To achieve universality we must fix the 4l+1th

and 4l+ 3th qubits to be in the +1 eigenstates of
X and Y respectively. This procedure of fixing
qubits to be in certain Pauli eigenstates can be
done deterministically. For more details we point
the reader to Appendix B.5. The accessible uni-
versal gate set is given in Table 2. Similar results
for the (44) and (36) lattices are worked out in
detail in Appendix C.

3.5 Lattices with fractal symmetries

In this section, we study Archimedean lat-
tices supporting fractal subsystem symmetries
and underlying fractal QCA. Six of the eleven
Archimedean lattices have this property. We con-
firm that in each case a computationally univer-
sal cluster phase protected by fractal subsystem
symmetries can be constructed. As an example,
we will study the (4, 82) lattice in detail. Apart
from being a new example of a lattice supporting
a cluster phase protected by fractal subsystem
symmetries, it has the added benefit of achieving
universality on all n qubits encoded at the edge.
We remark that the (63) lattice also shares this
property (c.f. the two site construction of [34,
35]). Details for the other five lattices are worked
out in Appendix C and are listed in Table 3.

To study the (4, 82) lattice in detail, we must
first determine the underlying QCA structure.
The translational invariance parameters for the
(4, 82) lattice are ∆ = 2 and τ = 4. We then
use this information to construct a translation-
ally invariant block of tensors for the tensor net-
work description of the (4, 82) graph state. The
resulting Clifford circuit defining the QCA can
easily be obtained from this and is given in Ta-
ble 3. Simulating the evolution of Pauli opera-
tors through the circuit, we get fractal subsystem
symmetries as depicted in Fig. 10. For the same
reason discussed before, these symmetries again
form a representation of Z2n

2 .

The fractal symmetries of the (4, 82) lattice are
capable of protecting a cluster phase. Plotting
the generators of the symmetry up to vertical
translation in Fig. 11, we see that each genera-
tor has support on an even number of sites in the
neighborhood of any vertex. Thus, the only prod-
uct of Z operators that commutes with all the
subsystem symmetries is of the form

∏
j∈N (v) Zj
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Table 3: The six lattices supporting fractal QCA are shown. By tiling space with each lattice’s QCA tile, the QCA
for that lattice is obtained. Also listed are the gate sets used to prove computational universality of each lattice. To
implement each gate, every qubit in a n × pτ sized block must be measured in the X basis except for one qubit
located at site (x, y), which is measured in the Xdθ basis. Furthermore, to achieve the gate set we must restrict
some qubits to be always fixed in a specific state to get the appropriate two body interaction desired.

Accepted in Quantum 2019-01-28, click title to verify. Published under CC-BY 4.0. 16



1 2 3 4 5 6

1

2

3

4

5

6

X

X
X

X

X
X

X
X

X

X

X
X

X

X

X

X

X

X

X

X

X

X
X

X

X
X

X

X

X

X

X

X

X
X

X

X

X

Y
Z

X

Y
Z

Figure 10: Finite size fractal symmetry and correspond-
ing QCA evolution for the (4, 82) lattice. The self similar
structure of the fractal QCA becomes apparent for large
n, the circumference of the cylinder.

for any vertex v. This meets the condition de-
scribed in Sec. 2.4 so we can define a cluster phase
protected by the fractal subsystem symmetries.

Finally, the cluster-like phase defined by the
fractal symmetries is universal for MBQC. To de-
termine the gate set available to us, we analyze
Fig. 11 and employ the argument made in Sec. 3.3
to obtain the following set of relevant tensors.

C(1, l) = Zl (42)
C(pτ, l) = Xl (43)
C(2, 2l) = X2lZ2l+1 (44)

C(pτ − 1, 2l) = Z2lX2(l−1)+1 (45)

Measuring the corresponding qubits in the usual
rotated basis we can exponentiate these operators
to obtain the universal gate set shown in Table 3.
Therefore the cluster phase constructed around
the (4, 82) graph state is universal for MBQC on
all n qubits at the edge.

3.6 Decorated Archimedean lattices and peri-
odic QCA structure
All Archimedean lattices possessing a QCA
structure have given either a glider or fractal
Clifford QCA. Due to the incompatibility of the
Hadamard and CZ gates, one can never obtain
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Figure 11: Symmetry generators for the group of fractal
symmetries of the (4, 82) lattice. All conventions are the
same as in Fig. 8.

a periodic QCA from a vertex translative lattice.
To achieve a periodic QCA structure, it suffices
to add an additional qubit along each edge that
constituting a segment of wire in the QCA con-
struction. This is analogous to a gauging proce-
dure, and referred to as partially decorating the
lattice. This causes all Hadamard gates in the
underlying QCA to cancel leaving behind a Clif-
ford circuit consisting only of CZ gates. The re-
sulting QCA has a period that is some constant
dependent on the lattice geometry.

Partially decorating each of the nine
Archimedean lattices discussed previously,
the resulting subsystem symmetries are ribbon
symmetries with 2n generators resulting in a
group structure isomorphic to Z2n

2 . We call
these ribbon symmetries because the generators
have bounded support in the spatial direction of
the underlying (1 + 1) dimensional circuit. The
generators again correspond to the evolution
of generators of the Pauli group though the
underlying QCA. We depict in Fig. 12 the
partially decorated lattices and resulting ribbon
symmetries for the (4, 82) lattice, whose original
symmetry is fractal, and the (3, 4, 6, 4) lattice,
whose original symmetry is cone.

The ribbon symmetries of each partially deco-
rated lattice can protect a cluster phase in which
every point is universal for MBQC. This was dis-
cussed previously in Ref. [35] for the (44), or
square, lattice. There it was stated that since the
QCA period is constant, they enjoy a quadratic
reduction in the number of qubits to be measured
in each quasi-1D segment of wire. Due to this
fact, partially decorated lattices are argued to be
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Figure 12: Partially decorated Archimedean lattices and
their ribbon symmetries. Left: The dressed (4, 82) lat-
tice and its line-like symmetries. Right: The dressed
(3, 4, 6, 4) lattice and its line-like symmetries. The blue
and green symmetries correspond to QCA evolution of
Z and X operators at the edge respectively.

efficient for doing MBQC with this scheme.

4 Archimedean lattices with 1-form
symmetries
In this section, we discuss the two Archimedean
lattices for which there is no underlying Clifford
QCA structure, i.e., the (3, 6, 3, 6) and (3, 122)
lattices. By appropriate multiplication of cluster-
state stabilizers, one can construct new operators
that consist of a ring of X operators around a sin-
gle 6 or 12 side plaquette, such as that shown in
Fig. 13. These are referred to as one-form sym-
metries. In contrast to the other three classes of
subsystem symmetries, one-form symmetries are
deformable in the sense that multiplying a pair
of loops of X operators yields a larger loop. That
is why they generate the group of products of X
operators that lie on homologically trivial loop
configurations over the torus. The existence of
one-form symmetries is an indicator of robust-
ness to errors [50–53]. Below we shall see that
the existence on such symmetries both precludes
the construction of a cluster phase, and enables
quantum teleportation on an encoded qubit pro-
tected by an error correction code.

It is the presence of these one-form symme-
tries that prevents these lattices from supporting
a cluster phase. The simplest product of Z op-
erators that commutes with all the 1-form sym-
metries is a product of three Z operators acting

X

X

X X

X

X

Figure 13: 1-form symmetries of the (3,6,3,6) lattice act
around each hexagonal plaquette. A bowtie subgraph is
shaded in grey.

1

2

c

3

4

Figure 14: Labeling of qubits for the bowtie subgraph of
the (3, 6, 3, 6) lattice.

on the vertices about any triangular tile on the
lattice. Such an operator cannot be recast as
a product of X operators by the stabilizer rela-
tions, and hence, by following analogous reason-
ing as in Sec. 3.4, the resulting SPTO phase is
not a cluster phase.

Despite their failure to support a cluster phase,
both the (3, 6, 3, 6) and (3, 122) lattices have the
feature that they are equivalent to a foliated clas-
sical repetition code capable of teleporting a sin-
gle encoded qubit. Here we will focus on the
(3, 6, 3, 6) lattice, treating the (3, 122) lattice in
Appendix D.

Consider the bowtie subgraph, shown in
Fig. 13. Labeling the vertices as shown in Fig. 14,
suppose qubits 1 and 2 encode logical inputs. We
can write their corresponding logical operators as

XL
1 = X1ZcZ3 (46)

XL
2 = X2ZcZ4 (47)

ZL1 = Z1 (48)
ZL2 = Z2 (49)

and the graph state stabilizers of Eq. (8). Notice
that,

X1X2Xc = ScX
L
1 Z

L
1 X

L
2 Z

L
2 ≡ −Y L

1 Y
L

2 . (50)
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Figure 15: The (3, 6, 3, 6) lattice as a foliated repetition
code. Measuring all qubits in the X-basis yields a circuit
of outcome dependent projections onto an eigenspace of
Y Y . With classical post-processing single qubit Z errors
can be detected.

Thus, measuring the first, second, and center
qubits in the X basis performs a logical measure-
ment of −Y L

1 Y
L

2 , thereby projecting the input
into the (−1)m1+m2+m3+1 eigenspace.

Returning to the (3, 6, 3, 6) lattice, perform-
ing X measurements on each qubit along each
column implements a circuit consisting of Y LY L

parity measurement on each pair of neighboring
qubits as shown in Fig. 15. By the second time-
step, information is automatically projected onto
the single qubit code space (or error space) of the
stabilizer code with stabilizer group equivalent to〈{

Y L
j Y

L
j+1

}
∀j

〉
. (51)

5 Changing foliation of time slices: ef-
fects of global topology
The description of computational models in
Secs. 3.4, 3.5, and 3.6 made use of a specific
choice of the set of input qubits, the set of output
qubits, and the way in which the lattice is em-
bedded on to a cylinder/torus. In this section, we
investigate the effects of global topology, such as
specifying the direction of the periodic boundary
conditions, on MBQC.

First we consider varying the shape of the
Cauchy surface (slice of constant time), which
corresponds to the different ways that a torus
can be cut open into a cylinder. This choice
specifies the location of the inputs and outputs,
corresponding to nodes on either end of the cylin-
der, respectively. It also defines which qubits lie
within a common time slice. Though this choice
has no effect on the physical symmetries of the
state, it can affect the structure of each QCA

block by simply changing the ordering gates in
the circuit.

To see this, consider the two distinct time-
slices A and B of the (44) lattice graph state
as shown in Fig. 16. The choice of time slice
affects the arrangements of the gates in the Clif-
ford QCA structure. For a given time-slice cut,
the QCA may not be translationally invariant,
and thus, gates native to that case could be ex-
tremely nonlocal. This could be advantageous for
entangling many encoded qubits at once.

As before, let the lattice be invariant under
τ translations in the simulated time direction,
and consider two distinct cuts A and B. Let
TA = TAτ · · · , TA1 and TB = TBτ · · ·TB1 be the
transfer matrix corresponding to each cut. Note
that it is possible to transform the cylinder with
cut A into one with cut B by performing X mea-
surements on a subset of the input nodes. Let
VA→B denote the Clifford circuit implemented by
changing the time slice from A to B in this way.
In a similar way, we can perform additional mea-
surements to return from time-slice B to A, im-
plementing the Clifford circuit VB→A. Note that

T k+d
A = VB→AT

k
BVA→B (52)

and

T k+d
B = VA→BT

k
AVB→A (53)

for all integers k, and where d is a non-negative
integer fixed by the choice of A and B (in par-
ticular, d = 2 for the example shown in Fig. 16).
Modifying the time-slice cut preserves the trace
of the transfer matrix, since

tr [TA] = tr
[
V −1
A→BT

d+1
B V −1

B→A

]
(54)

= tr
[
T d+1
B (VA→BVB→A)−1

]
(55)

= tr
[
T d+1
B (T dB)−1

]
(56)

= tr [TB] . (57)

Consequently, for any cuts A and B, the transfer
matrices TA and TB correspond to the same QCA
class.

The second, more nontrivial degree of freedom
to vary is the choice of how the lattice becomes
embedded onto the torus, i.e., the identification
of edges with periodic boundary conditions. We
focus our analysis to the (36), on which the com-
putational capability is highly dependent on how
the lattice gets embedded.
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Figure 16: Changing the definition of time slices, new
QCA blocks are obtained that correspond to local trans-
lations of the temporal structure of the old blocks.
Above: The original foliation (cut A) of the (44) graph
state. Below: A new non-translationally invariant QCA
block obtained from deforming the original foliation (cut
B).

Figure 17: Changing the foliation of the (36) lattice by
modifying the boundary conditions. (a) On the left is
the good foliation of the (36) lattice that has under-
lying unitary CQCA structure described in Table 2. By
rotating the (36) lattice and changing the boundary con-
ditions the resulting foliation is bad in the sense that the
virtual space has a nonunitary structure. (b) Using push
through properties each tensor can be expressed in terms
of the 1D graph state MPS tensor with additional CZ
gates on the virtual legs. (c) Expressing the tensor net-
work in this way, we see each collumn of tensors consists
of an acausal cycle of CZ gates.

. . .

. . .

. . .

. . . . . .

Figure 18: The quantum circuit obtained from measure-
ment of a ring of sites around the (36) lattice with bad
foliation. The circuit consists of a projector and a uni-
tary part that commute.

Recall that the (36) lattice embedded as shown
in Table 2 has an underlying glider QCA struc-
ture. This was made by using the “good” em-
bedding in Fig. 17 (a). However, an alterna-
tive “bad” embedding of Fig. 17 (a), where the
time slice is parallel to a line-like symmetry, re-
sults in a circuit with an invalid causal order-
ing (see Fig. 17 (c)). When such circuits arise
from MBQC, they can be interpreted as combi-
nation of unitary evolution and projective mea-
surement [54]. Therefore, the (36) lattice with
the altered boundary conditions has a dramati-
cally different computational capability.

In Appendix E, we use the ZX-calculus [55, 56]
to explicitly compute the total non-unitary evo-
lution operator, which is equivalent to the cir-
cuit shown in Fig. 18. This circuit consists of a
projection onto either of the ±1 eigenspaces of
the operator X̄ =

∏n
j=1Xj , followed by unitary

gates.
Intuitively, the non-unitary nature of this re-

sult can be understood by considering the orig-
inal line-like symmetries of the triangular lat-
tice. With this embedding, one of the three line-
symmetry directions has become parallel the the
time-slice of the input states, and thus, X mea-
surements made to teleport the inputs horizon-
tally implement a projection onto the stabilizer
code with the single generator〈

n∏
j=1

Xj

〉
(58)

Though very simple, this code can be used to
detect a single Z error. The logical operators for
this code are

XL
k = Xk+1, (59)

ZLk = Z1Zk+1. (60)

We also note that the unitary part of Fig. 18 pre-
serves the code space, having the following action
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on the logical operators

XL
1 7→ ZL1 X

L
2 ...X

L
n−1

XL
k 7→ XL

k−1Z
L
k−1X

L
k Z

L
k ; for 2 ≤ k ≤ n− 1 (61)

ZLk 7→
n−1∏
l=k

XL
l ; ∀k.

To do MBQC, one must perform encoded logi-
cal operations. Note, however, that in MBQC we
are restricted to local (single-site) measurements
on the physical qubits. At the graph state fixed
point, such measurements on edge qubits apply
exp(iθZk) on the corresponding virtual degree of
freedom, which does not preserve the code space.
A code-space-preserving map such as a rotation
by ZLk requires an entangling (multiple-site) mea-
surement, which is prohibited in MBQC. There-
fore, universal MBQC is not possible for the (36)
lattice with the bad embedding on the torus,
though one can use any state of this phase to
teleport (i.e., perform the identity gate) n − 1
logical qubits encoded in an error detection code
down the length of the lattice.

6 Conclusion
Our main results are summarized in the theo-
rem at the beginning of Sec. 3 and Table 1. Us-
ing 2D vertex-translative Archimedean lattices,
we showed that nine of these eleven lattices sup-
ported universal cluster phases, where three have
glider QCA structures and six have fractal QCA
structures. Moreover, the lack of universality in
the two other cases can be attributed to the pres-
ence of one-form symmetries. Our systematic
analysis on 2D lattice geometry led to several new
insights specific to particular QCA classes. For
glider QCA, we found that the line symmetries
were—in some cases—insufficient for construct
universal phases. For this reason, we emphasize
the importance of cone symmetries in defining
SPTO phases that are also cluster phases. Pre-
vious work with fractal cluster phases [34, 35] re-
quired sparse usage of qubits by pairing sites in
order to prove universality. We improve on this
result by showing that, in some cases, the cluster
phases afford more efficient usage, where MBQC
is universal on all inputs. Our results on partially
decorated lattices generalize the work of Ref. [35]
by showing that any lattice can be partially deco-
rated, resulting in a change in the QCA structure

from fractal or glider to a periodic QCA.
As an outlook, there seem to remain interest-

ing research directions whenever MBQC does not
match a conventional picture of quantum com-
putation, i.e., the quantum-circuit model. The
lattices supporting one-form symmetries are in-
teresting, since they precluded a unitary QCA
and universal cluster phase, and yet, could also
be imbued with certain protection from a foliated
error correction code. Though in the present 2D
and vertex-translative cases, it was not possible
to support a non-trivial QCA structure at the
logical level, it remains an open problem whether
one can construct a cluster phase, in particular in
3D, that supports a foliated quantum error cor-
recting code such that there is also a non-trivial
QCA structure acting within the logical code
space that enables universal quantum computa-
tion. Our investigation on the effects of modify-
ing the temporal ordering of measurements and
global boundary conditions on the torus is rel-
evant as well. While we showed that the for-
mer cannot change the QCA class, the latter can
result in dramatically different QCA structure.
These considerations seem to be timely, given
the recent interests in combing single-shot quan-
tum error correction with measurement-based
routes to universal quantum computation, such
as Refs. [57, 58].
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A Tensor network notation
Here we introduce the tensor network nota-
tion used throughout this article. For a more
pedagogical introduction to tensor networks see
Ref. [59]. All our tensors can be decomposed into
one, two, and three index tensors that correspond
to X measurements, a Hadamard gate, and copy-
ing the value of an index (known as a copy ten-
sor), respectively. They are the following,

(62)

(63)

(64)

where δjkl = δjkδkl. Here |m(x)〉 is defined by
X|m(x)〉 = (−1)m|m(x)〉. These satisfy the fol-
lowing relations,

(65)

(66)

(67)

(68)

(69)

We can use these to construct two more objects
that will show up frequently throughout this ar-
ticle. The CZ gate can be represented as,

. (70)
Furthermore the matrix product state (MPS)
tensor for the 1D graph state can be constructed
as,
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Figure 19: The measurement pattern to achieve an ar-
bitrary SU(2) operation. 1-index yellow tensors repre-
sent X measurments. ∝a is equivalence after measuring
adaptively and up to Pauli byproduct operators.

. (71)

We will refer to the vertical wavy index as the
physical index and the horizontal indices as the
left and right virtual indices. Notice then that
this MPS tensor has the following symmetries:

(72)

. (73)

Comparing this to (71), one sees that any op-
erator diagonal in the Z basis can be moved from
the physical index to the left virtual index. One
such relation that will be useful to us is

, (74)

which involves moving one end of a CZ operator
from the physical to the left virtual index.

One benefit of this notation is that it makes
single-qubit MBQC transparent, as shown in
Fig. 19.

B MBQC with quasi-1D SSPT phases
In this section we review the fundamentals of per-
forming MBQC with SPTO phases. This section
is a review of the results of Refs. [31, 32] that are
necessary for this work.

To use a subsystem SPTO phase for MBQC,
the notion of locality that arises from the 2D lat-
tice must be replaced by a quasi-1D notion of lo-
cality as follows. All Archimedean lattices can be
deformed such that each vertex lies on a square
grid. We then embed the resulting lattice on a
torus of dimension n × N where n = m1∆ and
N = m2pτ where m1,m2,∈ N, p is the period
of the QCA, and the lattice has ∆ (τ)-site space
(time) translational invariance. Next, we coarse
grain the torus into a quasi-1D wire made up of
n × pτ sized cylindrically-shaped blocks. This
quasi-1D structure is equivalent to a generalized
1D quantum wire with an MPS description that
has physical Hilbert space dimension 2npτ and
bond dimension 2n.

The tensors used in this MPS description are
determined by the symmetries of the system.
Each MPS tensor has the so-called Clifford prop-
erty, by which X-type subsystem symmetries on
the physical degrees of freedom map to Pauli op-
erators on a connected virtual edge. In fact, the
2n generators of the n qubit Pauli group are in
one to one correspondence of the 2n generators
of the subsystem symmetries. More precisely, n-
qubit Pauli operators acting on the virtual de-
grees of freedom form a non-trivial projective rep-
resentation of the symmetry group, which corre-
sponds to a particular cohomology class that de-
fines a 1D SPTO phase. Since the physical lattice
is actually 2D, such an SPTO phase is referred to
as a quasi-1D SPTO phase. This SPTO phase is
protected by subsystem symmetry, which in the
1D picture acts on the coarse grained blocks in
an onsite manner.

B.1 Determining fixed point tensors
The subsystem symmetries on the physical level
form a reducible representation of Z2n

2 that con-
sists of tensor products of X operators. Thus,
the symmetry group is a direct sum of 1D irre-
ducible representations when written in the basis
{|0(x)〉, |1(x)〉}⊗npτ . At the fixed point, the quasi-
1D MPS tensors, denoted as C, can be written in
this basis as,

C =
∑

j∈Znpτ2

C (j)⊗ |j〉 (75)

where, j ∈ Znpτ2 is a binary vector and the state
|j〉 represents the configuration where the kth

physical qubit is in the (−1)jk eigenstate of Xk.
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The action of the symmetry u(g) on the phys-
ical degrees of freedom gives a phase χj(g) to
each component j since by definition u(g)|j〉 =
χj(g)|j〉. However, we may also push the sym-
metry through to the virtual level where it acts
via the projective representation V (g). Equating
these two pictures we have,∑

j
χj(g)C(j)⊗ |j〉 =

∑
j
V (g)C(j)V (g)† ⊗ |j〉.

(76)
Equating each component we find,

V (g)C(j) = χj(g)C(j)V (g). (77)

Eq. (77) is of fundamental importance in deter-
mining the structure of the quasi-1D MPS tensors
for a given 2D lattice embedded on a torus. To
determine the tensor C(x, y) = C(e(x,y)), we note
that χe(x,y)(g) = χ(x,y)(g) will be −1 for any sym-
metry g that has support on the site (x, y) and
+1 for all other symmetries. As a consequence of
Eq. (77), C(x, y) should anti-commute with the
edge representation V (g) of the symmetry oper-
ators supported at site (x, y) and commute with
all others. Since the edge representations of the
symmetry generators are exactly the generators
of the n-qubit Pauli group, this uniquely specifies
C(x, y) as a product of Pauli operators.

For clarity, let us derive Eq. (40). That is, we
wish to determine C(2, 4l + 1) for the (3, 4, 6, 4)
lattice. First, for each model we study, V (g) is
always some string of Pauli operators. Further-
more, since all symmetries consist purely of X
operators we have, |j〉 ∈ {|0(x)〉, |1(x)〉}⊗npτ and
so χj(g) = ±1 depending on j and g. Thus, C(j)
will simply be some string of Pauli operators de-
termined by the commutation relations (77).

To determine C(2, 4l+1), we must analyze the
symmetry generators in Fig. 8. For completeness
we have included it here (Fig. 20) with some ad-
ditional details. C(2, 4l+1) is the component cor-
responding to the physical state |e(2,4l+1)〉. This
is a product state that has each physical qubit
in the state |0(x)〉 except for the qubit at site
(2, 4l + 1), which is in the state |1(x)〉. This site
is circled in blue in Fig. 20.

The respective eigenphase, χ(2,4l+1)(g) = ±1,
obtained from the action of each symmetry gen-
erator u(g) on the state |e(2,4l+1)〉 is denoted
for each symmetry generator in Fig. 20 in the
pink shaded bubbles. Notice eigenphase is −1
whenever the symmetry has support on the site

(2, 4l + 1) and is +1 otherwise. We find that
C(2, 4l + 1) should have the following commuta-
tion/ anti-commutation relations with each vir-
tual representation of the symmetry, denoted in
red in Fig. 20,

X4lC(2, 4l + 1) = −C(2, 4l + 1)X4l (78)
Z4l+1C(2, 4l + 1) = −C(2, 4l + 1)Z4l+1 (79)
X4l+2C(2, 4l + 1) = −C(2, 4l + 1)X4l+2 (80)

PC(2, 4l + 1) = C(2, 4l + 1)P otherwise.
(81)

Where P is some single site Pauli operator.
Therefore, we find that,

C(2, 4l + 1) = Z4lX4l+1Z4l+2. (82)

Once the tensors C have been determined, we
can devise a method for implementing MBQC.
This is broken down into three key ingredi-
ents [31]; oblivious wire, unitary gates, and
preparation and readout. Below we review each
of these in detail in the context of quasi-1D
SPTO.

B.2 Oblivious Wire
At an arbitrary point in a quasi-1D SPT phase
the MPS tensors take the form

Aφ =
∑

j∈Znpτ2

C(j)⊗B(j)|j〉 (83)

where the B(j) are the so-called junk tensors that
depend on the location of the state within the
phase and the C(j) are the logical tensors that are
the same at every point in the phase. The sup-
port of these tensors partition the virtual Hilbert
space, and are referred to as the logical and junk
subspaces/subsystems. The logical subspace is
used to house the encoded input for MBQC. At
generic points in the phase, measuring in a basis
rotated away from X couples the logical and junk
subsystems, resulting in unwanted leakage of the
encoded information into the junk subspace.

This effect can be mitigated by a procedure
that uncouples the logical and junk subsystems
between computational steps. This is known as
implementing an oblivious wire segment. It in-
volves measuring L-many n × pτ sized blocks
in the symmetry protected basis {|j〉}, where
L is assumed to be a large number. Suppose
the outcome of each measurement is given by
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Figure 20: Details of the derivation of Eq. (40). Here we have included Fig. 8 with additional details to aid in
following the derivation. The symmetry generators of the (3, 4, 6, 4) lattice are displayed along with their respective
projective representation at the edge written twice in red. The site (2, 4l + 1) is circled in blue. For each symmetry
generator, we have specified the eigenphase χ(2,4l+1)(g) = ±1 obtained from the action of each symmetry generator
u(g) on the state |e(2,4l+1)〉 in the pink shaded bubbles. The tensor C(2, 4l + 1) is then the n-qubit Pauli operator
that either commutes or anti-commutes with the virtual representation of each symmetry for χ(2,4l+1)(g) = +1 or
−1, respectively. A simple analysis leads to the conclusion that C(2, 4l + 1) = Z4lX4l+1Z4l+2.
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{|jk〉|k = 1, ..., L} for each block. Representing
the edge state as ρ, this measurement implements
the map,

L∏
k=1

C(jk)⊗B(jk)ρC(jk)† ⊗B(jk)† (84)

on the virtual edge state. Correcting the logical
part of the byproduct operator and “forgetting”
the measurement outcome—effectively averaging
over all possible outcomes—implements a Krauss
map, L, for each n× pτ sized block that is mea-
sured. We may write one iteration of this map
as,

L(ρ) =
∑

j
1⊗B(j) ρ 1⊗B(j)†. (85)

Notice this map acts trivially on the logical space.
When the quasi-1D MPS tensors are injective
and put in canonical form, this map has 1⊗ ρfix
as a unique fixed point with eigenvalue one. All
other fixed points have eigenvalue less than one.
Thus as L → ∞ this procedure decouples the
junk and logical subsystems by driving the junk
subsystem to ρfix. The state in the logical sub-
system is no longer entangled with the junk sub-
system, and we denote the resulting state by σ.
Hence,

lim
L→∞

LL(ρ) = σ ⊗ ρfix. (86)

This procedure can be used repeatedly to sup-
press information leakage from the logical sub-
system to the junk subsystem.

B.3 Unitary gates
On the graph state, universal MBQC is possible
via measuring some qubits in the rotated basis
Xθ, for some θ that is not an integer multiple of
π/2. As described above, doing this at generic
points in the SPTO phase is problematic, since
it results in non-unitary evolution on the logical
subspace. However, when the measured basis is
only rotated by a small angle dθ away from the

X basis, then the non-unitary component of the
evolution can be suppressed to second order in dθ
by immediately implementing a section of oblivi-
ous wire. Iterating this procedure for sufficiently
small dθ yields an arbitrarily good approxima-
tion to universal MBQC. Below, we review this
procedure in more detail.

After implementing a segment of oblivious
wire, the state of the system can be written as∑

j,k
A[j] (σ ⊗ ρfix)A[k]† ⊗ |j〉〈k| (87)

where A[j] = C(j)⊗B(j).
For the n × pτ qubits in the next measure-

ment round, let the standard basis vector ej ∈
{0, 1}npτ label the jth qubit. We will assume that
the sth qubit is measured in the basis{

|0′〉 = |0(x)〉+ eiγdθ|1(x)〉
|1′〉 = |1(x)〉 − e−iγdθ|0(x)〉

(88)

and all others are measured in the X basis.

Let m ∈ {0, 1}npτ be the binary vector of out-
comes of this measurement, and assume that the
sth qubit outcome was 0′. Conditioned on these
outcomes, the virtual space evolves via

A0′ = A[m] + eiγdθA[m′], (89)

where m′ = m + es. In terms of the logical and
junk tensors we may write this as,

A0′ = C(m)
(
1⊗B(m) + eiγdθC ⊗B(m′)

)
,

(90)
where C = C(m)−1C(m′). Moreover, we can
undo the C(m) part by applying the byproduct
operator:

A0′ 7→ C(m)−1A0′ (91)

For all cluster phases studied in this paper, C(m)
is a product of Pauli operators and C = C(es).
Up to order dθ, the measurement implements the
map

A0′ (σ ⊗ ρfix)A†0′ =σ ⊗B(m)ρfixB(m)† + dθ
[
eiγCσ ⊗B(m′)ρfixB(m)†e−iγσC† ⊗B(m)ρfixB(m′)†

]
.

(92)
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Next, we define
lim
L→∞

LL(B(j)ρfixB(k)†) = νj,kρfix. (93)

Notice that since L(O)† = L(O†) and ρ†fix = ρfix we have that νj,k = ν∗k,j. Also since
∑

jB(j)ρfixB(j)† =
ρfix we have

∑
j νj,j = 1. The state after implementing such a length L segment of oblivious wire can

be written to first order as

A0′ (σ ⊗ ρfix)A†0′ =
(
νm,mσ + dθ

[
eiγνm′,mCσ + e−iγνm,m′σC

†])⊗ ρfix (94)

= νm,mσ ⊗ ρfix + dθ

2
(
[eiγνm′,mC − e−iγν∗m′,mC†, σ] + {eiγνm′,mC + e−iγν∗m′,mC

†, σ}
)
⊗ ρfix.

(95)

By an analogous calculation, the output conditioned on outcome 1′ on qubit s is

A1′ (σ ⊗ ρfix)A†1′ =νm′,m′σ ⊗ ρfix + · · · (96)
dθ

2
(
[eiγνm′,mC − e−iγν∗m′,mC†, σ]− {eiγνm′,mC + e−iγν∗m′,mC

†, σ}
)
⊗ ρfix.

If the measurement record is discarded, then the resulting evolution is the average of Eqs. (95) and
(??), resulting in

σ ⊗ ρfix 7→
∑
m

(
(νm,m + νm′,m′)σ + dθ[eiγνm′,mC − e−iγν∗m′,mC†, σ]

)
⊗ ρfix. (97)

Let us write
∑

m νm′,m = νs. In the case of the
cluster-like phase (i.e. whenever C = C(es) are
Pauli operators) this procedure implements the
unitary,

U(dθ) = exp
(
idθ

eiγνs − e−iγν∗s
i

C(es)
)
. (98)

We may simplify this to

U(dθ, γ) = exp (−i2dθ|νs| sin(γ + δ)C(es))
(99)

by writing νs = |νs|e−iδ. If we have determined
which point of the phase we are at by first mea-
suring the νs, we can choose γ such that γ+δ = π

2
to obtain the unitary,

U(dθ) = exp (−i2dθ|νs|C(es)) . (100)

Iterating this procedure many times, these
small rotations compound to give a large rota-
tion by angle θ. Hence, we can implement the
unitary

U(θ) = exp (−iθC(es)) (101)
up to some ε of error. Notice all errors come from
the fact that if we were to carry out the calcula-
tion up to O(dθ2) we see the map implemented

is no longer unitary. To minimize error, we must
make dθ as small as possible.

B.4 Measurement

Here we shall see that we may perform weak mea-
surements of an observable corresponding any
fixed point tensor component C(es). These weak
measurements may be performed many times to
give a strong, approximately projective measure-
ment of C(es). For each lattice with an underly-
ing QCA structure studied in this paper we find
that C(1, l) = Zl for each l = 1, ..., n, which im-
plies we can always do single qubit Z measure-
ments on any edge qubit.

To perform such a measurement, we must com-
pletely break the symmetry and measure the
qubit at site s in the Z-basis. All other qubits
in the n × pτ sized block are measured in the
X-basis. This is immediately followed by a seg-
ment of oblivious wire, and the results of all X
measurements are discarded after applying the
relevant correction/ byproduct operators. The
resulting map acts trivially on the junk subsys-
tem (it gets driven to the fixed point), and thus,
we are free to ignore the ⊗ρfix factor present on
the output state. The overall map implemented
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on the logical part of the edge state σ is,

Λ0 (σ) = σ + νsC(es)σ + ν∗sσC(es)† + C(es)σC(es)†
(102)

Λ1 (σ) = σ − νsC(es)σ − ν∗sσC(es)† + C(es)σC(es)†.
(103)

Using the eigenbasis,

C(es)|φj〉 = eiφj |φj〉 (104)

we can expand the density matrix of the edge
state as

σ =
∑
j,j′

〈φj |σ|φ′j〉 ⊗ |φj〉〈φj′ | (105)

and similarly for the conditional output states
Λ0(1) (σ),

Λ0(1) (σ) =
∑
j,j′

f0(1)(φj , φj′)〈φj |σ|φj′〉 ⊗ |φj〉〈φj′ |

(106)

where,

f0(1)(φj , φj′) = 1± νseiφj ± ν∗s e−iφj′ + ei(φj−φj′ )

(107)
is the so-called filtering function.

Repeating this procedure N times, obtaining
N0 outcomes of 0 and N1 outcomes of 1, the map
induced on the edge state is

σ 7→
∑
j,j′

f0(φj , φj′)N0f1(φj , φj′)N1 |φj〉〈φj |σ|φj′〉〈φj′ |

(108)

By considering the diagonal elements (j = j′)
and maximizing f0(φ, φ)N0f1(φ, φ)N1 with re-
spect to φ, one sees that this procedure imple-
ments a strong, approximately projective mea-
surement. The maximum can be found by solv-
ing

φ = f0(φ, φ)
f1(φ, φ) = N0

N1
(109)

for φ and finding the eigenphase φj closest to
φ. The measurement outcome is the eigenstate
corresponding to this eigenphase.

B.5 Initialization
The measurement scheme can also be used to ini-
tialize all edge qubits for computation. For many
of the computationally universal cluster phases
on different Archimedean lattices, it is necessary

to fix some edge qubits to be in the Pauli eigen-
states |0(x)〉 or |0(y)〉 to achieve the necessary two
qubit interactions to build a universal gate set.
We now describe how such states can be initial-
ized deterministically.

For each lattice with an underlying QCA struc-
ture, the tensor C(pτ, y) is a Pauli operator that
is diagonal in the X-basis for each y = 1, ..., n.
These come in two varieties. The first type—seen
in (44), (3, 4, 6, 4), (63), (4, 82), and (4, 6, 12)—
are single site Xy operators. For example, for
the (3,4,6,4) lattice,

C(pτ, 4l) = X4l (110)
C(pτ, 4l + 1) = X4l+1 (111)
C(pτ, 4l + 2) = X4l+2 (112)
C(pτ, 4l + 3) = X4l+3. (113)

This structure allows us to prepare all edge qubits
to be individually in some Pauli X eigenstate.
In all other cases—(36), (34, 6), (33, 42), and
(3, 4, 32, 4)—these are strings of sequential Pauli
operators build up from a single site Z-operator
recursively. For example, for the (34, 6) lattice,

C(pτ, 6l) = X6lX6l+1 (114)
C(pτ, 6l + 1) = X6l+1 (115)
C(pτ, 6l + 2) = X6l+2 (116)
C(pτ, 6l + 3) = X6l+2X6l+3 (117)
C(pτ, 6l + 4) = X6l+2X6l+3X6l+4 (118)
C(pτ, 6l + 5) = X6l+2X6l+3X6l+4X6l+5. (119)

This structure allows us to also prepare all edge
qubits to be individually in some X-eigenstate.
However, we must now prepare them sequen-
tially, starting from the edge qubits correspond-
ing to the tensors that are single site Pauli oper-
ators and working our way out.

Finally, in all lattices, the tensor C(1, y) is al-
ways Zy for each y = 1, ..., n, which gives the
capability to perform the single qubit rotation
exp (iθZy) for each edge qubit y. Therefore, after
initializing each edge qubit to some X-eigenstate,
which we can determine from the measurement
record, we can utilize this Z-rotation to rotate
each edge qubit to the state |0(x)〉 or |0(y)〉.

C Proofs of phase and universality
In this section we prove that each lattice dis-
cussed in Sec. 3.4 and Sec. 3.5 constitutes a com-
putationally universal cluster phase, as defined
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in Sec. 2.4. We analyze each lattice case by case,
first proving the existence of the cluster phase
and then use the symmetries to determine the
universal gate set native to each lattice. Recall
from Sec. 2.4 that determining whether or not
a graph state can be used to construct a clus-
ter phase requires us to identify the products of
Z operators that commute with all the genera-
tors of the symmetry group. If these turn out to
be stabilizer equivalent to a product of X opera-
tors, the lattice can be used to construct a cluster
phase.

The symmetry generators are products of X
operators on the physical degrees of freedom that
arise from propagating single site Pauli operators
through the virtual degrees of freedom of the ten-
sor network representation. Due to the inherent
translational invariance of the lattices studied, we
need only consider the symmetry generators up
to translation by ∆ sites in the spatial direction.
Therefore, we need only check commutation re-
lations with 2∆ symmetry generators generated
within the space translationally invariant block.

To show each cluster phase is universal for
MBQC, we must determine the C(x, y) ten-
sors defined in Sec. 3.3. Using the techniques
described in Appendix B, the C(x, y) may be
exponentiated to implement gates of the form
exp (−iθC(x, y)). In many cases it will be nec-
essary to fix some qubits to be in certain Pauli
eigenstates to achieve the 2-body interactions
necessary for proving computational universality.
Below we prove that each lattice supports a com-
putationally universal cluster phase.

C.1 (44) cluster phase

The line symmetries of the (44) lattice were
proven in Ref. [33] to protect a cluster phase.
As discussed in Sec. 3.4, the same cluster phase
arises from using either line symmetries, or the
larger group of cone symmetries as the symmetry
group. Here we focus on a construction based on
the cone symmetries.

The generators of the cone symmetry group
are depicted in Fig. 21 up to vertical translation.
One can see that for each vertex, each symmetry
generator has support on an even number of its
neighbors. Thus, the simplest product of Z oper-
ators that commutes with all the symmetry gen-
erators is of the form

∏
j∈N (v) Zj for each vertex

v. Such a product of Z operators can be visually

X

X

X

X XX ZX Z

Figure 21: Symmetry generators for the group of cone
symmetries of the (44) lattice. All conventions are the
same as in Fig. 8.

seen to commute with all symmetries as depicted
in Fig. 3. This operator is stabilizer equivalent
to Xv and hence the resulting phase defined by
the subsystem symmetries is a cluster phase.

Furthermore, making use of Eq. (77), one can
determine the logical part of the MPS tensors
for a n × pτ sized quasi-1D block C(x, y). The
relevant tensors for MBQC are,

C(1, l) = Zl (120)
C(pτ, l) = Xl (121)
C(2, l) = Zl−1XlZl+1 (122)

By measuring the corresponding qubits at site
(x, y) in the Xθ basis we can implement the gates,

U1,l(θ) = e−iθZl (123)
Upτ,l(θ) = e−iθXl (124)
U2,l(θ) = e−iθZl−1XlZl+1 (125)

By fixing every even qubit, indexed by 2l, to be
in the |0(x)〉 state this becomes a universal gate
set on n

2 qubits:

U1,2l+1(θ) = e−iθZ2l+1 (126)
Upτ,2l+1(θ) = e−iθX2l+1 (127)

U2,2l(θ) = e−iθZ2l−1Z2l+1 . (128)

C.2 (36) cluster phase

The generators of the cone symmetry group are
depicted in Fig. 22 up to vertical translation.
One can see that for each vertex, each symme-
try generator has support on an even number of
its neighbors. Thus, the simplest product of Z
operators that commutes with all the symmetry
generators is of the form

∏
j∈N (v) Zj for each ver-

tex v. This operator is stabilizer equivalent to
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Figure 22: Symmetry generators for the group of cone
symmetries of the (36) lattice. All conventions are the
same as in Fig. 8.

Xv and hence the resulting phase defined by the
subsystem symmetries is a cluster phase.

Furthermore, making use of Eq. (77), one can
determine the logical part of the MPS tensors
for a n × pτ sized quasi-1D block C(x, y). The
relevant tensors for MBQC are,

C(1, 2l) = Z2l (129)
C(pτ, 2l) = X2l−1X2lX2l+1 (130)

C(2, 2l + 1) = Z2lX2l+1Z2l+2 (131)

By measuring the corresponding qubits at site
(x, y) in the Xθ basis we can implement the gates,

U1,2l(θ) = e−iθZ2l (132)
Upτ,2l(θ) = e−iθX2l−1X2lX2l+1 (133)
U2,l(θ) = e−iθZ2lX2l+1Z2(l+1) (134)

By fixing every odd qubit, indexed by 2l+1, to be
in the |0(x)〉 state this becomes a universal gate
set on n

2 qubits:

U1,2l(θ) = e−iθZ2l (135)
Upτ,2l(θ) = e−iθX2l (136)
U2,2l(θ) = e−iθZ2lZ2(l+1) . (137)

C.3 (3, 4, 6, 4) cluster phase
See Sec. 3.4.
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X
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Figure 23: Symmetry generators for the group of fractal
symmetries of the (63) lattice. All conventions are the
same as in Fig. 8.

C.4 (63) cluster phase

The generators of the fractal symmetry group
are depicted in Fig. 23 up to vertical translation.
One can see that for each vertex, each symme-
try generator has support on an even number of
its neighbors. Thus, the simplest product of Z
operators that commutes with all the symmetry
generators is of the form

∏
j∈N (v) Zj for each ver-

tex v. This operator is stabilizer equivalent to
Xv and hence the resulting phase defined by the
subsystem symmetries is a cluster phase.

Furthermore, making use of Eq. (77), one can
determine the logical part of the MPS tensors
for a n × pτ sized quasi-1D block C(x, y). The
relevant tensors for MBQC are,

C(1, l) = Zl (138)
C(pτ, l) = Xl (139)
C(2, 2l) = X2lZ2l+1 (140)

C(pτ − 1, 2l + 1) = Z2l+1X2(l+1) (141)

By measuring the corresponding qubits at site
(x, y) in the Xθ basis we can implement the gates,

U1,l(θ) = e−iθZl (142)
Upτ,l(θ) = e−iθXl (143)
U2,2l(θ) = e−iθX2lZ2l+1 (144)

Upτ−1,2l+1(θ) = e−iθZ2l+1X2(l+1) (145)

Together these gates form a universal gate set on
all n qubits encoded at the edge.
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C.5 (4, 82) cluster phase
See Sec. 3.5.

C.6 (4, 6, 12) cluster phase
The generators of the fractal symmetry group
are depicted in Fig. 24 up to vertical translation.
One can see that for each vertex, each symme-
try generator has support on an even number of
its neighbors. Thus, the simplest product of Z
operators that commutes with all the symmetry
generators is of the form

∏
j∈N (v) Zj for each ver-

tex v. This operator is stabilizer equivalent to
Xv and hence the resulting phase defined by the
subsystem symmetries is a cluster phase.

Furthermore, making use of Eq. (77), one can
determine the logical part of the MPS tensors
for a n × pτ sized quasi-1D block C(x, y). The
relevant tensors for MBQC are,

C(1, 4l + 2) = Z4l+2 (146)
C(pτ, 4l + 2) = X4l+2 (147)

C(2, 4l) = Z4(l−1)+2X4lX4l+1Z4l+2.(148)

By measuring the corresponding qubits at site
(x, y) in the Xθ basis we can implement the gates:

U1,4l+2(θ) = e−iθZ4l+2 (149)
Upτ,4l+2(θ) = e−iθX4l+2 (150)

U2,4l(θ) = e−iθZ4(l−1)+2X4lX4l+1Z4l+2 .(151)

By fixing every qubit indexed by 4l and 4l + 1
to be in the |0(x)〉 state this becomes a universal
gate set on n

4 qubits.

U1,4l+2(θ) = e−iθZ4l+2 (152)
Upτ,4l+2(θ) = e−iθX4l+2 (153)

U2,4l(θ) = e−iθZ4(l−1)+2Z4l+2 . (154)

C.7 (34, 6) cluster phase
The generators of the fractal symmetry group
are depicted in Fig. 25 up to vertical translation.
One can see that for each vertex, each symme-
try generator has support on an even number of
its neighbors. Thus, the simplest product of Z
operators that commutes with all the symmetry
generators is of the form

∏
j∈N (v) Zj for each ver-

tex v. This operator is stabilizer equivalent to
Xv and hence the resulting phase defined by the
subsystem symmetries is a cluster phase.

Furthermore, making use of Eq. (77), one can
determine the logical part of the MPS tensors
for a n × pτ sized quasi-1D block C(x, y). The
relevant tensors for MBQC are,

C(1, 6l + 2) = Z6l+2 (155)
C(pτ, 6l + 2) = X6l+2 (156)

C(pτ − 2, 6l + 1) = X6(l−1)+2X6(l−1)+3X6(l−1)+4

×X6(l−1)+5Y6lY6l+1Y6l+2Y6l+4

(157)

By measuring the corresponding qubits at site
(x, y) in the Xθ basis we can implement the gates,

U1,6l+2(θ) = e−iθZ6l+2 (158)
Upτ,6l+2(θ) = e−iθX6l+2 (159)

Upτ−2,6l+1(θ) = e−iθC(p−2,6l+1) (160)

The scheme for universal MBQC is slightly more
complicated with this lattice. First, fix every
qubit indexed by 6l and 6l+ 1 to be in the |0(y)〉
state. Also fix every qubit indexed by 6l+ 2 and
6l + 3 to be in the |0(x)〉 state. Finally, notice
that the 6(l − 1) + 4th qubit should be fixed in
the |0(x)〉 state whereas the 6l+ 4th qubit should
be in the |0(y)〉 state. Luckily, there is a way to
rotate between these two states so that we can
perform entangling gates between any neighbor-
ing qubits at sites indexed by 6l + 2.

To be consistent, the entangling gates must be
broken up into two steps. Let l be an even in-
teger and refer to the qubits at site 6l + 2 as
even qubits and qubits at 6(l − 1) + 2 as odd
qubits. To generate entanglement between any
even qubit and the previous odd qubit fix each
qubit indexed by 6(l − 1) + 4 to be fixed in the
|0(x)〉 state and each indexed by 6l + 4 to be in
the |0(y)〉 state. Then, to generate entanglement
between any even qubit and the next odd qubit
first note that C(1, 6j+4) = Z6j+4 for any integer
j. Since this allows us to perform Z rotations on
the 6j+ 4th qubits, the qubits at site 6(l− 1) + 4
may be rotated to be in the |0(y)〉 state and those
at site 6l + 4 may be rotated to be in the |0(x)〉
state. We may then perform the same entangling
gate before between any even qubit and the next
odd qubit.

This scheme allows us to implement the uni-
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Figure 24: Symmetry generators for the group of fractal symmetries of the (4, 6, 12) lattice. All conventions are the
same as in Fig. 8.
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Figure 25: Symmetry generators for the group of fractal symmetries of the (34, 6) lattice. All conventions are the
same as in Fig. 8.

versal gate set on n
6 qubits,

U1,6l+2(θ) = e−iθZ6l+2 (161)
Upτ,6l+2(θ) = e−iθX6l+2 (162)

Upτ−2,6l+1(θ) = e−iθX6(l−1)+2Y6l+2 . (163)

C.8 (33, 42) cluster phase

The generators of the fractal symmetry group
are depicted in Fig. 26 up to vertical translation.
One can see that for each vertex, each symme-
try generator has support on an even number of
its neighbors. Thus, the simplest product of Z
operators that commutes with all the symmetry
generators is of the form

∏
j∈N (v) Zj for each ver-

tex v. This operator is stabilizer equivalent to
Xv and hence the resulting phase defined by the
subsystem symmetries is a cluster phase.

Furthermore, making use of Eq. (77), one can
determine the logical part of the MPS tensors
for a n × pτ sized quasi-1D block C(x, y). The
relevant tensors for MBQC are,

C(1, 4l) = Z4l (164)
C(pτ, 4l) = X4l (165)
C(3, 4l + 2) = Z4lY4l+1Y4l+2X4l+3Z4(l+1).

(166)

By measuring the corresponding qubits at site
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(x, y) in the Xθ basis we can implement the gates,
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Figure 26: Symmetry generators for the group of fractal
symmetries of the (33, 42) lattice. All conventions are
the same as in Fig. 8.

U1,4l(θ) = e−iθZ4l (167)
Upτ,4l(θ) = e−iθX4l (168)
U3,4l+2(θ) = e−iθZ4lY4l+1Y4l+2X4l+3Z4(l+1) .(169)

By fixing every qubit indexed by 4l+1 and 4l+2
to be in the |0(y)〉 state and every qubit indexed
by 4l+ 3 to be in the |0(x)〉 state, this becomes a
universal gate set on n

4 qubits.

U1,4l(θ) = e−iθZ4l (170)
Upτ,4l(θ) = e−iθX4l (171)
U3,4l+2(θ) = e−iθZ4lZ4(l+1) . (172)
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Figure 27: Symmetry generators for the group of fractal
symmetries of the (3, 4, 32, 4) lattice. All conventions
are the same as in Fig. 8.

C.9 (3, 4, 32, 4) cluster phase

The generators of the fractal symmetry group
are depicted in Fig. 27 up to vertical translation.
One can see that for each vertex, each symme-
try generator has support on an even number of
its neighbors. Thus, the simplest product of Z
operators that commutes with all the symmetry
generators is of the form

∏
j∈N (v) Zj for each ver-

tex v. This operator is stabilizer equivalent to
Xv and hence the resulting phase defined by the
subsystem symmetries is a cluster phase.

Furthermore, making use of Eq. (77), one can
determine the logical part of the MPS tensors
for a n × pτ sized quasi-1D block C(x, y). The
relevant tensors for MBQC are,

C(1, 2l + 1) = Z2l+1 (173)
C(pτ, 2l + 1) = X2l+1 (174)

C(2, 2l) = Z2l−1X2lZ2l+1. (175)

By measuring the corresponding qubits at site
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(x, y) in the Xθ basis we can implement the gates,

U1,2l+1(θ) = e−iθZ2l (176)
Upτ,2l+1(θ) = e−iθX2l (177)

U2,2l(θ) = e−iθZ2l−1X2lZ2l+1 . (178)

By fixing every even qubit, indexed by 2l, to be
in the |0(x)〉 state this becomes a universal gate
set on n

2 qubits:

U1,2l+1(θ) = e−iθZ2l (179)
Upτ,2l+1(θ) = e−iθX2l (180)

U2,2l(θ) = e−iθZ2l−1Z2l+1 . (181)

D 1-form symmetry of the (3, 122) lat-
tice

In this section we describe implications of the 1-
form symmetry of the graph state on the (3, 122)
lattice. As seen in Fig. 28, the 1-form symmetry
is generated by loops of X operators around any
12 sided shape in the lattice. To understand the
computational properties of this state we analyze
the capacity of a bowtie subgraph (shaded in grey
in Fig. 28) to teleport two qubits encoded at the
left edge to the two at the right edge.

X
X X

X

XX

X
X X

X

X X

Figure 28: 1-form symmetry of the (3, 122) graph state.
There is one symmetry generator for each 12 sided shape
in the lattice. The bowtie subgraph of interest is shaded
in grey.

Let us follow the labeling of qubits shown in
Fig. 29. For two qubits encoded on the left edge
the logical operators are

1

2

c1

c2

3

4

Figure 29: Labeling of qubits for the bowtie subgraph of
the (3, 122) lattice.

XL
1 = X1Zc1Z3 (182)

XL
2 = X2Zc2Z4 (183)

ZL1 = Z1 (184)
ZL2 = Z2. (185)

Also, there are the standard graph state stabiliz-
ers of Eq. (8), Sv, centered at all other qubits.
Notice that,

X1X2Xc1Xc2 = −Sc1Sc2Z
L
1 X

L
1 Z

L
2 X

L
2 ≡ Y L

1 Y
L

2 .
(186)

Thus, measuring the first, second, and two center
qubits in the X basis performs a logical measure-
ment of Y L

1 Y
L

2 , thereby projecting the input into
the (−1)m1+m2+mc1+mc2 eigenspace.

Returning to the (3, 122) lattice, we see that
performing X measurements on each qubit along
each column implements a circuit consisting of
Y L
j Y

L
j+1 parity measurements. Thus, this lattice

acts as a foliated repetition code with stabilizer
generators

〈
{
Y L
j Y

L
j+1

}
∀j
〉. (187)

E Proof of QCA circuit for alterna-
tively foliated (36) lattice

In this section we derive the expression for the
circuit shown in Fig. 18 corresponding to the ring
tensors for the triangular lattice graph state with
the alternative foliation, shown in Fig. 17. First,
contract each physical index around the ring with
an arbitrary X eigenstate (i.e. the measurement
tensor in Eq. (62)). By Eq. (73) any Z operator
can be pulled through to the left virtual index of
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Figure 30: The basics of the ZX-calculus. (a)The ZX-Calculus consists of three basic elements. Z-Spiders, X-Spiders,
and the Hadamard. Notice X and Z-spiders are related by applying a Hadamard to each leg. (b) The only two rewrite
rules we will need are the spider and bi-algebra rules. These can be easily derived using the definitions of the X and
Z-spiders. (c) Simple identities that will be useful for our purposes. Notice for the CNOT operation the target is
the red spider.
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Figure 31: The ZX-diagram for the a-causal circuit. By pushing Hadamards to the end, applying the bi-algebra rule,
and deforming the resulting diagram, the a-causal part of the circuit is reduced to n− 1 wires.
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Figure 32: Simplifying the ZX-diagram. Applying the bi-algebra and spider rule iteratively, the a-causality of the
diagram can be shown to have the structure of a circuit in which one qubit is measured.
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its respective site,

. (188)

Notice that |m(x)〉 = Zm|0(x)〉 so contracting a
physical index with |m(x)〉 is equivalent to first
applying Zm, and then contracting with |0(x)〉.
Decomposing each measurement tensor in this
way and pushing the outcome dependent Z op-
erator to the virtual level, each tensor can be
replaced with a Hadamard gate by Eq. (71),

. (189)

Contracting the upper and lower indices of
these tensors around a ring gives a quantum cir-
cuit that contains an acausal component. To
exorcise the acausality we appeal to the ZX-
calculus [55, 56], a diagramatic language for sim-
plifying and rewriting quantum operations. The
basic rules of this formalism needed for this cal-
culation are summarized in Fig. 30.

Let us focus on the acausal part of the cir-
cuit. This is recast as the ZX-diagram in Fig. 31.
By first moving all Hadamard gates to the right,
applying the bi-algebra rule on the bottom wire
untwists that wire out of the acausal loop. Lever-
aging the spider rule, the resulting diagram con-
tains an acausal loop on the remaining n−1 wires
with the last wire separated out.

Iterating this procedure until the acausal part
only acts on three wires, one more iteration leaves
us with a diagram containing a structure that
looks like the right hand side of the bi-algebra
law on the top two wires. Apply the bi-algebra
rule on this structure and insert an identity as a
Z and X-spider on the left and right, respectively.
By the spider rule we may then pull out a single
node of an Z and X-spider from these identities.
Pulling out a Hadamard on the right hand side
and inserting a resolution of the identity in the
form of,

1 =

 n∏
j=2

CNOT1,j

2

, (190)

we end up with the diagram at the bottom of
Fig. 32.

Noting that,

 n∏
j=2

CNOT1,j

ΠX

 n∏
j=2

CNOT1,j

 = ΠX̄ ,

(191)
the operation on the left hand side of the last
diagram in Fig. 32 may be replaced by ΠX̄ . The
resulting circuit is then,

. . .

. . .

. . .

.
(192)

Returning to the full circuit, we may Heisen-
berg evolve the outcome dependent Z operators
through the circuit to obtain an expression for
the contracted ring tensor. Therefore, preform-
ing X measurements on each site around a ring
at the boundary of the state implements the fol-
lowing circuit,

. . .

. . .

. . .

. . .

.
(193)
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