Computational universality of symmetry-protected topologically ordered cluster phases on 2D Archimedean lattices

Austin K. Daniel, Rafael N. Alexander, and Akimasa Miyake

Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


What kinds of symmetry-protected topologically ordered (SPTO) ground states can be used for universal measurement-based quantum computation in a similar fashion to the 2D cluster state? 2D SPTO states are classified not only by global on-site symmetries but also by subsystem symmetries, which are fine-grained symmetries dependent on the lattice geometry. Recently, all states within so-called SPTO cluster phases on the square and hexagonal lattices have been shown to be universal, based on the presence of subsystem symmetries and associated structures of quantum cellular automata. Motivated by this observation, we analyze the computational capability of SPTO cluster phases on all vertex-translative 2D Archimedean lattices. There are four subsystem symmetries here called ribbon, cone, fractal, and 1-form symmetries, and the former three are fundamentally in one-to-one correspondence with three classes of Clifford quantum cellular automata. We conclude that nine out of the eleven Archimedean lattices support universal cluster phases protected by one of the former three symmetries, while the remaining lattices possess 1-form symmetries and have a different capability related to error correction.

► BibTeX data

► References

[1] Robert Raussendorf and Hans J. Briegel ``A One-Way Quantum Computer'' Phys. Rev. Lett. 86, 5188-5191 (2001).

[2] Hans J. Briegel and Robert Raussendorf ``Persistent Entanglement in Arrays of Interacting Particles'' Phys. Rev. Lett. 86, 910–913 (2001).

[3] Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, M Nest, and H-J Briegel, ``Entanglement in graph states and its applications'' arXiv preprint quant-ph/​0602096 (2006).

[4] F. Verstraete and J. I. Cirac ``Valence-bond states for quantum computation'' Phys. Rev. A 70, 060302 (2004).

[5] Maarten Van den Nest, Akimasa Miyake, Wolfgang Dür, and Hans J. Briegel, ``Universal Resources for Measurement-Based Quantum Computation'' Phys. Rev. Lett. 97, 150504 (2006).

[6] M Van den Nest, W Dür, A Miyake, and H J Briegel, ``Fundamentals of universality in one-way quantum computation'' New Journal of Physics 9, 204–204 (2007).

[7] D. Gross and J. Eisert ``Novel Schemes for Measurement-Based Quantum Computation'' Phys. Rev. Lett. 98, 220503 (2007).

[8] D. Gross, J. Eisert, N. Schuch, and D. Perez-Garcia, ``Measurement-based quantum computation beyond the one-way model'' Phys. Rev. A 76, 052315 (2007).

[9] Andrew C. Doherty and Stephen D. Bartlett ``Identifying Phases of Quantum Many-Body Systems That Are Universal for Quantum Computation'' Phys. Rev. Lett. 103, 020506 (2009).

[10] Akimasa Miyake ``Quantum computational capability of a 2D valence bond solid phase'' Annals of Physics 326, 1656–1671 (2011).

[11] Tzu-Chieh Wei, Ian Affleck, and Robert Raussendorf, ``Affleck-Kennedy-Lieb-Tasaki State on a Honeycomb Lattice is a Universal Quantum Computational Resource'' Phys. Rev. Lett. 106, 070501 (2011).

[12] Tzu-Chieh Wei, Ian Affleck, and Robert Raussendorf, ``Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation'' Phys. Rev. A 86, 032328 (2012).

[13] Tzu-Chieh Wei ``Quantum computational universality of Affleck-Kennedy-Lieb-Tasaki states beyond the honeycomb lattice'' Phys. Rev. A 88, 062307 (2013).

[14] Tzu-Chieh Wei, Poya Haghnegahdar, and Robert Raussendorf, ``Hybrid valence-bond states for universal quantum computation'' Phys. Rev. A 90, 042333 (2014).

[15] Tzu-Chieh Wei and Robert Raussendorf ``Universal measurement-based quantum computation with spin-2 Affleck-Kennedy-Lieb-Tasaki states'' Phys. Rev. A 92, 012310 (2015).

[16] Jacob Miller and Akimasa Miyake ``Hierarchy of universal entanglement in 2D measurement-based quantum computation'' npj Quantum Information 2, 16036 (2016).

[17] Tzu-Chieh Wei and Ching-Yu Huang ``Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases'' Phys. Rev. A 96, 032317 (2017).

[18] Jacob Miller and Akimasa Miyake ``Latent Computational Complexity of Symmetry-Protected Topological Order with Fractional Symmetry'' Phys. Rev. Lett. 120, 170503 (2018).

[19] Mariami Gachechiladze, Otfried Gühne, and Akimasa Miyake, ``Changing the circuit-depth complexity of measurement-based quantum computation with hypergraph states'' Phys. Rev. A 99, 052304 (2019).

[20] Zheng-Cheng Guand Xiao-Gang Wen ``Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order'' Phys. Rev. B 80, 155131 (2009).

[21] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen, ``Classification of gapped symmetric phases in one-dimensional spin systems'' Phys. Rev. B 83, 035107 (2011).

[22] Norbert Schuch, David Pérez-García, and Ignacio Cirac, ``Classifying quantum phases using matrix product states and projected entangled pair states'' Phys. Rev. B 84, 165139 (2011).

[23] Frank Pollmann, Erez Berg, Ari M. Turner, and Masaki Oshikawa, ``Symmetry protection of topological phases in one-dimensional quantum spin systems'' Phys. Rev. B 85, 075125 (2012).

[24] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen, ``Symmetry protected topological orders and the group cohomology of their symmetry group'' Phys. Rev. B 87, 155114 (2013).

[25] Akimasa Miyake ``Quantum Computation on the Edge of a Symmetry-Protected Topological Order'' Phys. Rev. Lett. 105, 040501 (2010).

[26] Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki, ``Rigorous results on valence-bond ground states in antiferromagnets'' Phys. Rev. Lett. 59, 799–802 (1987).

[27] Ian Affleck, Tom Kennedy, Elliott H Lieb, and Hal Tasaki, ``Valence bond ground states in isotropic quantum antiferromagnets'' Communications in Mathematical Physics 115, 477–528 (1988).

[28] Dominic V. Else, Ilai Schwarz, Stephen D. Bartlett, and Andrew C. Doherty, ``Symmetry-Protected Phases for Measurement-Based Quantum Computation'' Phys. Rev. Lett. 108, 240505 (2012).

[29] Dominic V Else, Stephen D Bartlett, and Andrew C Doherty, ``Symmetry protection of measurement-based quantum computation in ground states'' New Journal of Physics 14, 113016 (2012).

[30] Jacob Miller and Akimasa Miyake ``Resource Quality of a Symmetry-Protected Topologically Ordered Phase for Quantum Computation'' Phys. Rev. Lett. 114, 120506 (2015).

[31] David T. Stephen, Dong-Sheng Wang, Abhishodh Prakash, Tzu-Chieh Wei, and Robert Raussendorf, ``Computational Power of Symmetry-Protected Topological Phases'' Phys. Rev. Lett. 119, 010504 (2017).

[32] Robert Raussendorf, Dong-Sheng Wang, Abhishodh Prakash, Tzu-Chieh Wei, and David T. Stephen, ``Symmetry-protected topological phases with uniform computational power in one dimension'' Phys. Rev. A 96, 012302 (2017).

[33] Robert Raussendorf, Cihan Okay, Dong-Sheng Wang, David T. Stephen, and Hendrik Poulsen Nautrup, ``Computationally Universal Phase of Quantum Matter'' Phys. Rev. Lett. 122, 090501 (2019).

[34] Trithep Devakul and Dominic J. Williamson ``Universal quantum computation using fractal symmetry-protected cluster phases'' Phys. Rev. A 98, 022332 (2018).

[35] David T. Stephen, Hendrik Poulsen Nautrup, Juani Bermejo-Vega, Jens Eisert, and Robert Raussendorf, ``Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter'' Quantum 3, 142 (2019).

[36] Daniel E Browne, Elham Kashefi, Mehdi Mhalla, and Simon Perdrix, ``Generalized flow and determinism in measurement-based quantum computation'' New Journal of Physics 9, 250–250 (2007).

[37] Mehdi Mhalla, Mio Murao, Simon Perdrix, Masato Someya, and Peter S Turner, ``Which graph states are useful for quantum information processing?'' Conference on Quantum Computation, Communication, and Cryptography 174–187 (2011).

[38] Johannes Richter, Jörg Schulenburg, and Andreas Honecker, ``Quantum magnetism in two dimensions: From semi-classical Néel order to magnetic disorder'' Springer Berlin Heidelberg (2004).

[39] Dirk-M. Schlingemann, Holger Vogts, and Reinhard F. Werner, ``On the structure of Clifford quantum cellular automata'' Journal of Mathematical Physics 49, 112104 (2008).

[40] Johannes Gütschow, Sonja Uphoff, Reinhard F. Werner, and Zoltán Zimborás, ``Time asymptotics and entanglement generation of Clifford quantum cellular automata'' Journal of Mathematical Physics 51, 015203 (2010).

[41] Daniel Gottesman ``The Heisenberg representation of quantum computers'' arXiv preprint quant-ph/​9807006 (1998).

[42] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen, ``Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order'' Phys. Rev. B 82, 155138 (2010).

[43] Xie Chen, Zheng-Xin Liu, and Xiao-Gang Wen, ``Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations'' Phys. Rev. B 84, 235141 (2011).

[44] Yizhi You, Trithep Devakul, F. J. Burnell, and S. L. Sondhi, ``Subsystem symmetry protected topological order'' Phys. Rev. B 98, 035112 (2018).

[45] Trithep Devakul, Dominic J. Williamson, and Yizhi You, ``Classification of subsystem symmetry-protected topological phases'' Phys. Rev. B 98, 235121 (2018).

[46] M. B. Hastings and Xiao-Gang Wen ``Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance'' Phys. Rev. B 72, 045141 (2005).

[47] J Ignacio Cirac, David Perez-Garcia, Norbert Schuch, and Frank Verstraete, ``Matrix product unitaries: structure, symmetries, and topological invariants'' Journal of Statistical Mechanics: Theory and Experiment 2017, 083105 (2017).

[48] M. Burak Şahinoğlu, Sujeet K. Shukla, Feng Bi, and Xie Chen, ``Matrix product representation of locality preserving unitaries'' Phys. Rev. B 98, 245122 (2018).

[49] Dominic J. Williamson, Nick Bultinck, Michael Mariën, Mehmet B. Şahinoğlu, Jutho Haegeman, and Frank Verstraete, ``Matrix product operators for symmetry-protected topological phases: Gauging and edge theories'' Phys. Rev. B 94, 205150 (2016).

[50] Robert Raussendorf, Jim Harrington, and Kovid Goyal, ``A fault-tolerant one-way quantum computer'' Annals of Physics 321, 2242–2270 (2006).

[51] Sam Roberts, Beni Yoshida, Aleksander Kubica, and Stephen D. Bartlett, ``Symmetry-protected topological order at nonzero temperature'' Phys. Rev. A 96, 022306 (2017).

[52] Sam Roberts and Stephen D Bartlett ``Symmetry-protected self-correcting quantum memories'' arXiv preprint arXiv:1805.01474 (2018).

[53] Aleksander Kubica and Beni Yoshida ``Ungauging quantum error-correcting codes'' arXiv preprint arXiv:1805.01836 (2018).

[54] Raphael Dias da Silva, Ernesto F. Galvão, and Elham Kashefi, ``Closed timelike curves in measurement-based quantum computation'' Phys. Rev. A 83, 012316 (2011).

[55] Bob Coecke and Ross Duncan ``Interacting quantum observables: categorical algebra and diagrammatics'' New Journal of Physics 13, 043016 (2011).

[56] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart, ``A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics'' Proceedings of the 33rd Annual ACM/​IEEE Symposium on Logic in Computer Science 559–568 (2018).

[57] Naomi Nickerson and Héctor Bombín ``Measurement based fault tolerance beyond foliation'' arXiv preprint arXiv:1810.09621 (2018).

[58] Hector Bombin ``2D quantum computation with 3D topological codes'' arXiv preprint arXiv:1810.09571 (2018).

[59] Jacob C Bridgeman and Christopher T Chubb ``Hand-waving and interpretive dance: an introductory course on tensor networks'' Journal of Physics A: Mathematical and Theoretical 50, 223001 (2017).

Cited by

[1] Jonathan Francisco San Miguel, Arpit Dua, and Dominic J. Williamson, "Bifurcating subsystem symmetric entanglement renormalization in two dimensions", Physical Review B 103 3, 035148 (2021).

[2] Arpit Dua, Pratyush Sarkar, Dominic J. Williamson, and Meng Cheng, "Bifurcating entanglement-renormalization group flows of fracton stabilizer models", Physical Review Research 2 3, 033021 (2020).

[3] Nathanan Tantivasadakarn and Sagar Vijay, "Searching for fracton orders via symmetry defect condensation", Physical Review B 101 16, 165143 (2020).

[4] Trithep Devakul and Dominic J. Williamson, "Fractalizing quantum codes", Quantum 5, 438 (2021).

[5] Caroline de Groot, David T Stephen, Andras Molnar, and Norbert Schuch, "Inaccessible entanglement in symmetry protected topological phases", Journal of Physics A: Mathematical and Theoretical 53 33, 335302 (2020).

[6] Michael Newman, Leonardo Andreta de Castro, and Kenneth R. Brown, "Generating Fault-Tolerant Cluster States from Crystal Structures", Quantum 4, 295 (2020).

[7] Trithep Devakul, Wilbur Shirley, and Juven Wang, "Strong planar subsystem symmetry-protected topological phases and their dual fracton orders", Physical Review Research 2 1, 012059 (2020).

[8] David T. Stephen, José Garre-Rubio, Arpit Dua, and Dominic J. Williamson, "Subsystem symmetry enriched topological order in three dimensions", Physical Review Research 2 3, 033331 (2020).

[9] Daniel Azses, Rafael Haenel, Yehuda Naveh, Robert Raussendorf, Eran Sela, and Emanuele G. Dalla Torre, "Identification of Symmetry-Protected Topological States on Noisy Quantum Computers", Physical Review Letters 125 12, 120502 (2020).

[10] Austin K. Daniel and Akimasa Miyake, "Quantum Computational Advantage with String Order Parameters of One-Dimensional Symmetry-Protected Topological Order", Physical Review Letters 126 9, 090505 (2021).

[11] Sam Roberts and Dominic J. Williamson, "3-Fermion topological quantum computation", arXiv:2011.04693.

The above citations are from Crossref's cited-by service (last updated successfully 2021-10-19 20:56:04) and SAO/NASA ADS (last updated successfully 2021-10-19 20:56:05). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “Computational universality of symmetry-protected topologically ordered cluster phases on 2D Archimedean lattices

  1. Pingback: Subsystem symmetry enabling quantum computation – CQuIC