Data re-uploading for a universal quantum classifier

Adrián Pérez-Salinas1,2, Alba Cervera-Lierta1,2, Elies Gil-Fuster3, and José I. Latorre1,2,4,5

1Barcelona Supercomputing Center
2Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain
3Dept. Física Quàntica i Astrofísica, Universitat de Barcelona, Barcelona, Spain.
4Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands.
5Center for Quantum Technologies, National University of Singapore, Singapore.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Updated version: The authors have uploaded version v3 of this work to the arXiv which may contain updates or corrections not contained in the published version v2. The authors left the following comment on the arXiv:
19 pages, 9 figures

Abstract

A single qubit provides sufficient computational capabilities to construct a universal quantum classifier when assisted with a classical subroutine. This fact may be surprising since a single qubit only offers a simple superposition of two states and single-qubit gates only make a rotation in the Bloch sphere. The key ingredient to circumvent these limitations is to allow for multiple $\textit{data re-uploading}$. A quantum circuit can then be organized as a series of data re-uploading and single-qubit processing units. Furthermore, both data re-uploading and measurements can accommodate multiple dimensions in the input and several categories in the output, to conform to a universal quantum classifier. The extension of this idea to several qubits enhances the efficiency of the strategy as entanglement expands the superpositions carried along with the classification. Extensive benchmarking on different examples of the single- and multi-qubit quantum classifier validates its ability to describe and classify complex data.

In this paper, we show how to use the computational power of a single qubit to solve non-trivial classification problems. We propose a hybrid classical-quantum algorithm based on re-uploading classical data into the angles of the single-qubit unitary gates multiple times along the circuit. Together with the data points, other parameters are introduced into the circuit and adjusted by classically minimizing a cost function. To construct this cost function, we train the circuit to distribute the data points into different regions of the Bloch sphere, one for each class. A particular division of the Bloch sphere accompanies this strategy for maximizing distinguishability between classes.
This procedure cannot provide any quantum advantage as a single qubit can be simulated classically. However, the capability of handling one qubit might be useful as a small piece of larger circuits. Besides, an extension of the algorithm for more qubits and entanglement is also presented in this work. The multi-qubit role remains unexplored and might be a candidate for quantum advantage. A first step analyzed, there exists a trade-off between the number of qubits needed and the times of data re-uploading for classifying, namely layers.
This algorithm is to be compared with a neural network with one hidden layer. Neural Networks re-upload classical data several times, once per hidden neuron, achieving the same kind of processing as in our quantum classifier. Success rates are also comparable for both models.

► BibTeX data

► References

[1] M. Schuld, I. Sinayskiy, and F. Petruccione, Quantum Information Processing 13, 2567 (2014).
https:/​/​doi.org/​10.1007/​s11128-014-0809-8

[2] K. H. Wan, O. Dahlsten, H. Kristjánsson, R. Gardner, and M. S. Kim, npj Quantum Information 3, 36 (2017).
https:/​/​doi.org/​10.1038/​s41534-017-0032-4

[3] E. Torrontegui and J. J. García-Ripoll, EPL (Europhysics Letters) 125, 30004 (2019).
https:/​/​doi.org/​10.1209/​0295-5075/​125/​30004

[4] N. Wiebe, D. Braun, and S. Lloyd, Physics Review Letters 109, 050505 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.109.050505

[5] P. Rebentrost, M. Mohseni, and S. Lloyd, Physics Review Letters 113, 130503 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.130503

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature 549, 195 (2017).
https:/​/​doi.org/​10.1038/​nature23474

[7] E. Farhi and H. Neven, ``Classification with quantum neural networks on near term processors,'' (2018), arXiv:1802.06002 [quant-ph].
arXiv:1802.06002

[8] M. Schuld, A. Bocharov, K. Svore, and N. Wiebe, ``Circuit-centric quantum classifiers,'' (2018), arXiv:1804.00633 [quant-ph].
arXiv:1804.00633

[9] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Nature 567, 209 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-0980-2

[10] M. Schuld and N. Killoran, Physics Review Letters 122, 040504 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.040504

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Physics Review Letters 100, 160501 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.100.160501

[12] K. Hornik, Neural Networks 4, 251 (1991).
https:/​/​doi.org/​10.1016/​0893-6080(91)90009-t

[13] R. Ghobadi, J. S. Oberoi, and E. Zahedinejhad, ``The power of one qubit in machine learning,'' (2019), arXiv:1905.01390 [quant-ph].
arXiv:1905.01390

[14] J. Gil Vidal and D. Oliver Theis, ``Input redundancy for parameterized quantum circuits,'' (2019), arXiv:1901.11434 [quant-ph].
arXiv:1901.11434

[15] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Physics Review A 98, 032309 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.032309

[16] C. W. Helstrom, Quantum detection and estimation theory /​ Carl W. Helstrom (Academic Press New York, 1976) pp. ix, p. : 309.
https:/​/​nla.gov.au/​nla.cat-vn617918

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. (Cambridge University Press, New York, NY, USA, 2011).
https:/​/​doi.org/​10.1017/​CBO9780511976667

[18] G. Cybenko, Mathematics of Control, Signals, and Systems 2, 303 (1989).
https:/​/​doi.org/​10.1007/​bf02551274

[19] B. C. Hall, Lie Groups, Lie Algebras, and Representations An Elementary Introduction (Graduate Texts in Mathematics, 222 (2nd ed.), Springer, 2015).
https:/​/​doi.org/​10.1007/​978-3-319-13467-3

[20] M. A. Nielsen, Neural networks and deep learning, Vol. 25 (Determination press USA, 2015).
http:/​/​neuralnetworksanddeeplearning.com/​

[21] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, SIAM Journal on Scientific Computing 16, 1190 (1995).
https:/​/​doi.org/​10.1137/​0916069

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Journal of Machine Learning Research 12, 2825 (2011).
https:/​/​www.scipy.org/​

[23] E. Jones, T. Oliphant, P. Peterson, et al., ``SciPy: Open source scientific tools for Python,'' https:/​/​www.scipy.org/​ (2001).
https:/​/​www.scipy.org/​

[24] A. Pérez-Salinas, ``Quantum classifier with data re-uploading,'' https:/​/​github.com/​AdrianPerezSalinas/​universal_qlassifier (2019).
https:/​/​github.com/​AdrianPerezSalinas/​universal_qlassifier

[25] S. Ahmed, ``Data-reuploading classifer,'' https:/​/​pennylane.ai/​qml/​app/​tutorial_data_reuploading_classifier.html (2019).
https:/​/​pennylane.ai/​qml/​app/​tutorial_data_reuploading_classifier.html

[26] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-Guzik, Quantum Science and Technology 4, 014008 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aad3e4

Cited by

[1] Parfait Atchade-Adelomou and Guillermo Alonso-Linaje, "Quantum-enhanced filter: QFilter", Soft Computing 26 15, 7167 (2022).

[2] Lucas Friedrich and Jonas Maziero, "Avoiding barren plateaus with classical deep neural networks", Physical Review A 106 4, 042433 (2022).

[3] Anna Dawid, Julian Arnold, Borja Requena, Alexander Gresch, Marcin Płodzień, Kaelan Donatella, Kim A. Nicoli, Paolo Stornati, Rouven Koch, Miriam Büttner, Robert Okuła, Gorka Muñoz-Gil, Rodrigo A. Vargas-Hernández, Alba Cervera-Lierta, Juan Carrasquilla, Vedran Dunjko, Marylou Gabrié, Patrick Huembeli, Evert van Nieuwenburg, Filippo Vicentini, Lei Wang, Sebastian J. Wetzel, Giuseppe Carleo, Eliška Greplová, Roman Krems, Florian Marquardt, Michał Tomza, Maciej Lewenstein, and Alexandre Dauphin, "Modern applications of machine learning in quantum sciences", arXiv:2204.04198, (2022).

[4] David Peral García, Juan Cruz-Benito, and Francisco José García-Peñalvo, "Systematic Literature Review: Quantum Machine Learning and its applications", arXiv:2201.04093, (2022).

[5] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran, "Quantum embeddings for machine learning", arXiv:2001.03622, (2020).

[6] Alexey Melnikov, Mohammad Kordzanganeh, Alexander Alodjants, and Ray-Kuang Lee, "Quantum machine learning: from physics to software engineering", Advances in Physics X 8 1, 2165452 (2023).

[7] Tobias Haug, Chris N. Self, and M. S. Kim, "Quantum machine learning of large datasets using randomized measurements", Machine Learning: Science and Technology 4 1, 015005 (2023).

[8] Ryan LaRose and Brian Coyle, "Robust data encodings for quantum classifiers", Physical Review A 102 3, 032420 (2020).

[9] Matthias C. Caro, Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, and Patrick J. Coles, "Generalization in quantum machine learning from few training data", Nature Communications 13, 4919 (2022).

[10] Maria Schuld and Nathan Killoran, "Is Quantum Advantage the Right Goal for Quantum Machine Learning?", PRX Quantum 3 3, 030101 (2022).

[11] Johannes Jakob Meyer, Marian Mularski, Elies Gil-Fuster, Antonio Anna Mele, Francesco Arzani, Alissa Wilms, and Jens Eisert, "Exploiting Symmetry in Variational Quantum Machine Learning", PRX Quantum 4 1, 010328 (2023).

[12] El Amine Cherrat, Snehal Raj, Iordanis Kerenidis, Abhishek Shekhar, Ben Wood, Jon Dee, Shouvanik Chakrabarti, Richard Chen, Dylan Herman, Shaohan Hu, Pierre Minssen, Ruslan Shaydulin, Yue Sun, Romina Yalovetzky, and Marco Pistoia, "Quantum Deep Hedging", Quantum 7, 1191 (2023).

[13] Leonardo Banchi, Jason Pereira, and Stefano Pirandola, "Generalization in Quantum Machine Learning: A Quantum Information Standpoint", PRX Quantum 2 4, 040321 (2021).

[14] Louis Schatzki, Martín Larocca, Quynh T. Nguyen, Frédéric Sauvage, and M. Cerezo, "Theoretical guarantees for permutation-equivariant quantum neural networks", npj Quantum Information 10, 12 (2024).

[15] Liangliang Fan and Haozhen Situ, "Compact data encoding for data re-uploading quantum classifier", Quantum Information Processing 21 3, 87 (2022).

[16] Evan Peters, João Caldeira, Alan Ho, Stefan Leichenauer, Masoud Mohseni, Hartmut Neven, Panagiotis Spentzouris, Doug Strain, and Gabriel N. Perdue, "Machine learning of high dimensional data on a noisy quantum processor", npj Quantum Information 7, 161 (2021).

[17] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko, "Quantum agents in the Gym: a variational quantum algorithm for deep Q-learning", Quantum 6, 720 (2022).

[18] Mahabubul Alam and Swaroop Ghosh, "QNet: A Scalable and Noise-resilient Quantum Neural Network Architecture for Noisy Intermediate-Scale Quantum Computers", Frontiers in Physics 9, 702 (2022).

[19] Nicolas Heurtel, Andreas Fyrillas, Grégoire de Gliniasty, Raphaël Le Bihan, Sébastien Malherbe, Marceau Pailhas, Eric Bertasi, Boris Bourdoncle, Pierre-Emmanuel Emeriau, Rawad Mezher, Luka Music, Nadia Belabas, Benoît Valiron, Pascale Senellart, Shane Mansfield, and Jean Senellart, "Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing", Quantum 7, 931 (2023).

[20] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego García-Martín, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza, "Qibo: a framework for quantum simulation with hardware acceleration", Quantum Science and Technology 7 1, 015018 (2022).

[21] Sofiene Jerbi, Lukas J. Fiderer, Hendrik Poulsen Nautrup, Jonas M. Kübler, Hans J. Briegel, and Vedran Dunjko, "Quantum machine learning beyond kernel methods", Nature Communications 14, 517 (2023).

[22] Elena Peña Tapia, Giannicola Scarpa, and Alejandro Pozas-Kerstjens, "A didactic approach to quantum machine learning with a single qubit", Physica Scripta 98 5, 054001 (2023).

[23] Aleksei Tolstobrov, Gleb Fedorov, Shtefan Sanduleanu, Shamil Kadyrmetov, Andrei Vasenin, Aleksey Bolgar, Daria Kalacheva, Viktor Lubsanov, Aleksandr Dorogov, Julia Zotova, Peter Shlykov, Aleksei Dmitriev, Konstantin Tikhonov, and Oleg V. Astafiev, "Hybrid quantum learning with data reuploading on a small-scale superconducting quantum simulator", Physical Review A 109 1, 012411 (2024).

[24] Carlos Bravo-Prieto, Josep Lumbreras-Zarapico, Luca Tagliacozzo, and José I. Latorre, "Scaling of variational quantum circuit depth for condensed matter systems", Quantum 4, 272 (2020).

[25] Jingwei Wen, Zhiguo Huang, Dunbo Cai, and Ling Qian, "Enhancing the expressivity of quantum neural networks with residual connections", arXiv:2401.15871, (2024).

[26] Matthias C. Caro, Elies Gil-Fuster, Johannes Jakob Meyer, Jens Eisert, and Ryan Sweke, "Encoding-dependent generalization bounds for parametrized quantum circuits", Quantum 5, 582 (2021).

[27] Adrián Pérez-Salinas, David López-Núñez, Artur García-Sáez, P. Forn-Díaz, and José I. Latorre, "One qubit as a universal approximant", Physical Review A 104 1, 012405 (2021).

[28] Patrick Huembeli and Alexandre Dauphin, "Characterizing the loss landscape of variational quantum circuits", Quantum Science and Technology 6 2, 025011 (2021).

[29] Youle Wang, Lei Zhang, Zhan Yu, and Xin Wang, "Quantum phase processing and its applications in estimating phase and entropies", Physical Review A 108 6, 062413 (2023).

[30] Evan Peters and Maria Schuld, "Generalization despite overfitting in quantum machine learning models", Quantum 7, 1210 (2023).

[31] Dar Gilboa and Jarrod R. McClean, "Exponential Quantum Communication Advantage in Distributed Learning", arXiv:2310.07136, (2023).

[32] Franz J. Schreiber, Jens Eisert, and Johannes Jakob Meyer, "Classical Surrogates for Quantum Learning Models", Physical Review Letters 131 10, 100803 (2023).

[33] Zhongtian Dong, Marçal Comajoan Cara, Gopal Ramesh Dahale, Roy T. Forestano, Sergei Gleyzer, Daniel Justice, Kyoungchul Kong, Tom Magorsch, Konstantin T. Matchev, Katia Matcheva, and Eyup B. Unlu, "$\mathbb{Z}_2\times \mathbb{Z}_2$ Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks", arXiv:2311.18744, (2023).

[34] Marcello Benedetti, Brian Coyle, Mattia Fiorentini, Michael Lubasch, and Matthias Rosenkranz, "Variational Inference with a Quantum Computer", Physical Review Applied 16 4, 044057 (2021).

[35] S. Shin, Y. S. Teo, and H. Jeong, "Exponential data encoding for quantum supervised learning", Physical Review A 107 1, 012422 (2023).

[36] Teresa Sancho-Lorente, Juan Román-Roche, and David Zueco, "Quantum kernels to learn the phases of quantum matter", Physical Review A 105 4, 042432 (2022).

[37] Yuxuan Du, Yibo Yang, Dacheng Tao, and Min-Hsiu Hsieh, "Problem-Dependent Power of Quantum Neural Networks on Multiclass Classification", Physical Review Letters 131 14, 140601 (2023).

[38] Yong-Mei Li, Hai-Ling Liu, Shi-Jie Pan, Su-Juan Qin, Fei Gao, Dong-Xu Sun, and Qiao-Yan Wen, "Quantum k -medoids algorithm using parallel amplitude estimation", Physical Review A 107 2, 022421 (2023).

[39] Junde Li, Mahabubul Alam, Congzhou M Sha, Jian Wang, Nikolay V. Dokholyan, and Swaroop Ghosh, "Drug Discovery Approaches using Quantum Machine Learning", arXiv:2104.00746, (2021).

[40] Annie E. Paine, Vincent E. Elfving, and Oleksandr Kyriienko, "Quantum kernel methods for solving regression problems and differential equations", Physical Review A 107 3, 032428 (2023).

[41] Lucas Friedrich and Jonas Maziero, "Evolution strategies: application in hybrid quantum-classical neural networks", Quantum Information Processing 22 3, 132 (2023).

[42] Mo Kordzanganeh, Pavel Sekatski, Leonid Fedichkin, and Alexey Melnikov, "An exponentially-growing family of universal quantum circuits", Machine Learning: Science and Technology 4 3, 035036 (2023).

[43] Tarun Dutta, Adrián Pérez-Salinas, Jasper Phua Sing Cheng, José Ignacio Latorre, and Manas Mukherjee, "Single-qubit universal classifier implemented on an ion-trap quantum device", Physical Review A 106 1, 012411 (2022).

[44] Carlos Bravo-Prieto, Julien Baglio, Marco Cè, Anthony Francis, Dorota M. Grabowska, and Stefano Carrazza, "Style-based quantum generative adversarial networks for Monte Carlo events", Quantum 6, 777 (2022).

[45] Seongwook Shin, Yong Siah Teo, and Hyunseok Jeong, "Dequantizing quantum machine learning models using tensor networks", arXiv:2307.06937, (2023).

[46] Smit Chaudhary, Patrick Huembeli, Ian MacCormack, Taylor L. Patti, Jean Kossaifi, and Alexey Galda, "Towards a scalable discrete quantum generative adversarial neural network", Quantum Science and Technology 8 3, 035002 (2023).

[47] Atchade Parfait Adelomou, Elisabet Golobardes Ribe, and Xavier Vilasis Cardona, "Using the Parameterized Quantum Circuit combined with Variational-Quantum-Eigensolver (VQE) to create an Intelligent social workers' schedule problem solver", arXiv:2010.05863, (2020).

[48] Yong Siah Teo, Seongwook Shin, Hyukgun Kwon, Seok-Hyung Lee, and Hyunseok Jeong, "Virtual distillation with noise dilution", Physical Review A 107 2, 022608 (2023).

[49] Vasilis Belis, Patrick Odagiu, and Thea Klæboe Årrestad, "Machine Learning for Anomaly Detection in Particle Physics", arXiv:2312.14190, (2023).

[50] Nhat A. Nghiem, Samuel Yen-Chi Chen, and Tzu-Chieh Wei, "Unified framework for quantum classification", Physical Review Research 3 3, 033056 (2021).

[51] Berta Casas and Alba Cervera-Lierta, "Multidimensional Fourier series with quantum circuits", Physical Review A 107 6, 062612 (2023).

[52] Muhammad Kashif and Saif Al-Kuwari, "The impact of cost function globality and locality in hybrid quantum neural networks on NISQ devices", Machine Learning: Science and Technology 4 1, 015004 (2023).

[53] N. Schetakis, D. Aghamalyan, P. Griffin, and M. Boguslavsky, "Review of some existing QML frameworks and novel hybrid classical-quantum neural networks realising binary classification for the noisy datasets", Scientific Reports 12, 11927 (2022).

[54] Pere Mujal, Johannes Nokkala, Rodrigo Martínez-Peña, Gian Luca Giorgi, Miguel C. Soriano, and Roberta Zambrini, "Analytical evidence of nonlinearity in qubits and continuous-variable quantum reservoir computing", Journal of Physics: Complexity 2 4, 045008 (2021).

[55] Chuan-Dong Song, Jian Li, Yan-Yan Hou, Qing-Hui Liu, and Zhuo Wang, "Quantum canonical correlation analysis algorithm", Laser Physics Letters 20 10, 105203 (2023).

[56] Chih-Chieh Chen, Masaru Sogabe, Kodai Shiba, Katsuyoshi Sakamoto, and Tomah Sogabe, "General Vapnik-Chervonenkis dimension bounds for quantum circuit learning", Journal of Physics: Complexity 3 4, 045007 (2022).

[57] Rodrigo Martínez-Peña and Juan-Pablo Ortega, "Quantum reservoir computing in finite dimensions", Physical Review E 107 3, 035306 (2023).

[58] Pablo Bermejo and Román Orús, "Variational quantum and quantum-inspired clustering", Scientific Reports 13, 13284 (2023).

[59] Erfan Abedi, Salman Beigi, and Leila Taghavi, "Quantum Lazy Training", Quantum 7, 989 (2023).

[60] Yue Ban, E. Torrontegui, and J. Casanova, "Quantum neural networks with multi-qubit potentials", Scientific Reports 13, 9096 (2023).

[61] Jonas Landman, Natansh Mathur, Yun Yvonna Li, Martin Strahm, Skander Kazdaghli, Anupam Prakash, and Iordanis Kerenidis, "Quantum Methods for Neural Networks and Application to Medical Image Classification", Quantum 6, 881 (2022).

[62] Carlos A. Riofrío, Oliver Mitevski, Caitlin Jones, Florian Krellner, Aleksandar Vučković, Joseph Doetsch, Johannes Klepsch, Thomas Ehmer, and Andre Luckow, "A performance characterization of quantum generative models", arXiv:2301.09363, (2023).

[63] Y. S. Teo, "Robustness of optimized numerical estimation schemes for noisy variational quantum algorithms", Physical Review A 109 1, 012620 (2024).

[64] P. A. M. Casares and M. A. Martin-Delgado, "A quantum active learning algorithm for sampling against adversarial attacks", New Journal of Physics 22 7, 073026 (2020).

[65] Soumik Adhikary, "Entanglement assisted training algorithm for supervised quantum classifiers", Quantum Information Processing 20 8, 254 (2021).

[66] Javier Mancilla and Christophe Pere, "A Preprocessing Perspective for Quantum Machine Learning Classification Advantage in Finance Using NISQ Algorithms", Entropy 24 11, 1656 (2022).

[67] Teppei Suzuki and Michio Katouda, "Predicting toxicity by quantum machine learning", Journal of Physics Communications 4 12, 125012 (2020).

[68] Xiaokai Hou, Guanyu Zhou, Qingyu Li, Shan Jin, and Xiaoting Wang, "A duplication-free quantum neural network for universal approximation", Science China Physics, Mechanics, and Astronomy 66 7, 270362 (2023).

[69] Anqi Zhang and Shengmei Zhao, "Evolutionary-based searching method for quantum circuit architecture", Quantum Information Processing 22 7, 283 (2023).

[70] Mahsa Karimi, Ali Javadi-Abhari, Christoph Simon, and Roohollah Ghobadi, "The power of one clean qubit in supervised machine learning", Scientific Reports 13, 19975 (2023).

[71] Noah L. Wach, Manuel S. Rudolph, Fred Jendrzejewski, and Sebastian Schmitt, "Data re-uploading with a single qudit", arXiv:2302.13932, (2023).

[72] Marco Ballarin, Stefano Mangini, Simone Montangero, Chiara Macchiavello, and Riccardo Mengoni, "Entanglement entropy production in Quantum Neural Networks", Quantum 7, 1023 (2023).

[73] Anqi Zhang, Xiaoyun He, and Shengmei Zhao, "Quantum classification algorithm with multi-class parallel training", Quantum Information Processing 21 10, 358 (2022).

[74] Francisco Orts, Gloria Ortega, Elías F. Combarro, Ignacio F. Rúa, and Ester M. Garzón, "Optimized quantum leading zero detector circuits", Quantum Information Processing 22 1, 28 (2023).

[75] Paolo Braccia, Filippo Caruso, and Leonardo Banchi, "How to enhance quantum generative adversarial learning of noisy information", New Journal of Physics 23 5, 053024 (2021).

[76] Soronzonbold Otgonbaatar, Gottfried Schwarz, Mihai Datcu, and Dieter Kranzlmüller, "Quantum Transfer Learning for Real-World, Small, and High-Dimensional Remotely Sensed Datasets", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 16, 9223 (2023).

[77] Li Ding and Lee Spector, "Multi-Objective Evolutionary Architecture Search for Parameterized Quantum Circuits", Entropy 25 1, 93 (2023).

[78] William Cappelletti, Rebecca Erbanni, and Joaquín Keller, "Polyadic Quantum Classifier", arXiv:2007.14044, (2020).

[79] S. Carrazza, S. Efthymiou, M. Lazzarin, and A. Pasquale, "An open-source modular framework for quantum computing", Journal of Physics Conference Series 2438 1, 012148 (2023).

[80] Bálint Máté, Bertrand Le Saux, and Maxwell Henderson, "Beyond Ansätze: Learning Quantum Circuits as Unitary Operators", arXiv:2203.00601, (2022).

[81] Y. S. Teo, "Optimized numerical gradient and Hessian estimation for variational quantum algorithms", Physical Review A 107 4, 042421 (2023).

[82] Pablo Bermejo and Román Orús, "Variational quantum non-orthogonal optimization", Scientific Reports 13, 9840 (2023).

[83] Ruhan Wang, Philip Richerme, and Fan Chen, "A hybrid quantum-classical neural network for learning transferable visual representation", Quantum Science and Technology 8 4, 045021 (2023).

[84] Tailong Xiao, Jingzheng Huang, Hongjing Li, Jianping Fan, and Guihua Zeng, "Quantum generative adversarial imitation learning", New Journal of Physics 25 3, 033034 (2023).

[85] Eva Andrés, M. P. Cuéllar, and G. Navarro, "Efficient Dimensionality Reduction Strategies for Quantum Reinforcement Learning", IEEE Access 11, 104534 (2023).

[86] Axel Pérez-Obiol, Adrián Pérez-Salinas, Sergio Sánchez-Ramírez, Bruna G. M. Araújo, and Artur Garcia-Saez, "Adiabatic quantum algorithm for artificial graphene", Physical Review A 106 5, 052408 (2022).

[87] Hanif Heidari and Gerhard Hellstern, "Early heart disease prediction using hybrid quantum classification", arXiv:2208.08882, (2022).

[88] Nico Meyer, Daniel D. Scherer, Axel Plinge, Christopher Mutschler, and Michael J. Hartmann, "Quantum Policy Gradient Algorithm with Optimized Action Decoding", arXiv:2212.06663, (2022).

[89] Yudai Suzuki and Muyuan Li, "Effect of alternating layered ansatzes on trainability of projected quantum kernel", arXiv:2310.00361, (2023).

[90] Takafumi Ono, Wojciech Roga, Kentaro Wakui, Mikio Fujiwara, Shigehito Miki, Hirotaka Terai, and Masahiro Takeoka, "Demonstration of a Bosonic Quantum Classifier with Data Reuploading", Physical Review Letters 131 1, 013601 (2023).

[91] Elijah Pelofske, "Single Qubit Multi-Party Transmission Using Universal Symmetric Quantum Cloning", arXiv:2310.04920, (2023).

[92] Yong-Mei Li, Hai-Ling Liu, Shi-Jie Pan, Su-Juan Qin, Fei Gao, and Qiao-Yan Wen, "Quantum discriminative canonical correlation analysis", Quantum Information Processing 22 4, 163 (2023).

[93] Masahito Hayashi and Yuxiang Yang, "Efficient algorithms for quantum information bottleneck", Quantum 7, 936 (2023).

[94] A. Mandilara, B. Dellen, U. Jaekel, T. Valtinos, and D. Syvridis, "Classification of data with a qudit, a geometric approach", arXiv:2307.14060, (2023).

[95] Stefano Markidis, "Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies", Entropy 25 4, 694 (2023).

[96] Nikolaos Schetakis, Davit Aghamalyan, Michael Boguslavsky, Agnieszka Rees, Marc Raktomalala, and Paul Griffin, "Quantum Machine Learning for Credit Scoring", arXiv:2308.03575, (2023).

[97] Bryan Liu, Toshiaki Koike-Akino, Ye Wang, and Kieran Parsons, "Variational Quantum Compressed Sensing for Joint User and Channel State Acquisition in Grant-Free Device Access Systems", arXiv:2205.08603, (2022).

[98] Nannan Ma, Wenhao Chu, P. Z. Zhao, and Jiangbin Gong, "Adiabatic quantum learning", Physical Review A 108 4, 042420 (2023).

[99] Yoshiaki Kawase, Kosuke Mitarai, and Keisuke Fujii, "Parametric t-stochastic neighbor embedding with quantum neural network", Physical Review Research 4 4, 043199 (2022).

[100] Iván Panadero, Yue Ban, Hilario Espinós, Ricardo Puebla, Jorge Casanova, and Erik Torrontegui, "Regressions on quantum neural networks at maximal expressivity", arXiv:2311.06090, (2023).

[101] Michael Kölle, Alessandro Giovagnoli, Jonas Stein, Maximilian Balthasar Mansky, Julian Hager, Tobias Rohe, Robert Müller, and Claudia Linnhoff-Popien, "Weight Re-Mapping for Variational Quantum Algorithms", arXiv:2306.05776, (2023).

[102] Bowen Li, Ting Li, and Fei Li, "A design method for efficient variational quantum models based on specific Pauli axis", Quantum Information Processing 22 10, 387 (2023).

[103] Philip Easom-Mccaldin, Ahmed Bouridane, Ammar Belatreche, and Richard Jiang, "On Depth, Robustness and Performance Using the Data Re-Uploading Single-Qubit Classifier", IEEE Access 9, 65127 (2021).

[104] Yuan Li and Jin-Yang Li, "Quantum Coding via Quasi-Cyclic Block Matrix", Entropy 25 3, 537 (2023).

[105] Maida Shahid and Muhammad Awais Hassan, "Introducing Quantum Variational Circuit for Efficient Management of Common Pool Resources", IEEE Access 11, 110862 (2023).

[106] Vasilis Belis, Patrick Odagiu, Michele Grossi, Florentin Reiter, Günther Dissertori, and Sofia Vallecorsa, "Guided Quantum Compression for Higgs Identification", arXiv:2402.09524, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-01-18 04:41:20) and SAO/NASA ADS (last updated successfully 2024-02-27 11:59:38). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2024-02-27 11:59:31: Encountered the unhandled forward link type postedcontent_cite while looking for citations to DOI 10.22331/q-2020-02-06-226.