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We develop a formalism for mod-
elling exact time dynamics in waveguide
quantum electrodynamics (QED) using
the real-space approach. The formal-
ism does not assume any specific con-
figuration of emitters and allows the
study of Markovian dynamics fully an-
alytically and non-Markovian dynam-
ics semi-analytically with a simple nu-
merical integration step. We use the
formalism to study subradiance, super-
radiance and bound states in contin-
uum. We discuss new phenomena such
as subdivision of collective decay rates
into symmetric and anti-symmetric sub-
sets and non-Markovian superradiance
effects that can lead to collective decay
stronger than Dicke superradiance. We
also discuss possible applications such
as pulse-shaping and coherent absorp-
tion. We thus broaden the range of ap-
plicability of real-space approaches be-
yond steady-state photon transport.

1 Introduction

Careful control of interactions between single-
photons and multiple quantum systems
within waveguide arrays is an important in-
gredient in the development of quantum net-
works [1-3]. In such structures the waveg-
uides would operate as quantum channels that
efficiently transport information in the form of
quantum light between the quantum systems,
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while the quantum systems themselves would
store and process the quantum information.

Waveguides that, to a good approximation,
confine light to one spatial dimension (1D)
have two advantages over three-dimensional
waveguides. The first is practical: scattering
in 1D makes photon transport more efficient.
The second is theoretical: 1D waveguides
are much simpler to model. Understanding
time evolution of single-photon states in 1D
waveguide quantum electrodynamics (QED)
will therefore benefit development of quan-
tum networks and quantum information sci-
ence and technologies more broadly [4].

Various approaches have been explored
to describe interactions between light con-
fined in 1D waveguides and two-level systems
such as atoms, cavities, resonators, super-
conducting qubits etc. Some examples in-
clude the real-space approach [5-9], diagram-
matic approaches [10], computational meth-
ods for energy-non-conserving systems [11],
the input-output formalism [12, 13, 13, 14],
generalized master equations [15, 16], the LSZ
Reduction formula [17, 18] and the more-
recently-developed SLH Framework [19, 20].
Each method offers unique intuition and can
be preferable over another depending on the
problem of interest.

Of particular interest in 1D waveguide sys-
tems is the identification of excitation proba-
bilities of quantum systems and photon scat-
tering amplitudes. These have been com-
puted using various methods [21-29], but of-
ten semi-analytically (that is, through a com-
bination of analytical and numerical meth-
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ods). While semi-analytical approaches are
quite reliable for calculating excitation prob-
abilities of atoms and single-photon scattered
pulse shapes [26, 30, 31], a fully analytical
treatment of quantum networks would deepen
intuition and enhance understanding by mak-
ing clear the general relationship between the
system’s parameters and its behaviour. We
thus choose the real-space approach, whose
strength lies in its ability to yield exact
solutions—as long as the light-matter inter-
actions take the form of delta functions lo-
cated at positions of quantum emitters—
particularly for single- or few-photon scatter-
ing problems (the approach is less suited to
multi-photon scattering with many photons
[4], for which numerical approaches such as
[15, 16] are more appropriate).

In this paper, we make several funda-
mental and applied contributions. We ex-
tend the applicability of the theory of single-
excitation time dynamics of photon-mediated
interactions—in both the Markovian and non-
Markovian [32-34] regimes—Dby incorporating
bound states in continuum (BIC) for a gen-
eral system and performing complex analy-
sis. We describe the connection between the
poles of the scattering parameters and collec-
tive decay rates, opening the way to analytic
results in a variety of scenarios. We study
time-delayed coherent quantum feedback for
a system of three qubits, and introduce the
notion of super-superradiance (SSR). We also
identify a connection between collective de-
cay modes and the symmetry /anti-symmetry
of the system. On the applied side, we in-
troduce a recursive method for finding the
scattering parameters, making tractable the
study of time-dynamics in systems with an
unprecedented number of qubits, as well as
non-identical qubits. We also consider ap-
plied aspects such as Fano minima (transpar-
ent frequencies), a method for pulse shaping
and nearly-perfect coherent absorption.

In doing so, we make—what we believe
to be—a strong case that the real-space ap-
proach should become the method-of-choice
when dealing with single-excitation subspaces
in 1D waveguide QED systems.

2 Outline

In Section 3, we review previous work on
the real-space formalism while clarifying some
steps that were omitted in the literature, and
construct the time evolution operator for the
single-excitation subspace. We review the
scattering problem in the real-space formal-
ism [32, 35] and extend the analysis to multi-
qubit systems coupled to a 1D waveguide.
We also touch on some interesting many-body
physics phenomena such as bound states in
continuum (BIC) [36-41]— which had only
been studied for N = 2 qubits [34] using the
real space approach, and had not been consid-
ered in time evolution—and the related dark
and bright states. We show that while this
scenario may be challenging to model exactly
using numerical techniques, we can take ad-
vantage of the analytical nature of the real-
space approach to study it. More broadly, we
provide a fully analytical description for the
time evolution of any regular single-photon
states and system observables, such as atomic
excitation probabilities. For the scope of this
paper, we define a regular state |¢), as a state
such that (k|¢) has analytic expansion in the
complex plane and has vanishing behavior as
its energy Fj tends to complex infinity. As
an example, a superposition of singly excited
states such as |¢)) = X0y, |em) is always reg-
ular, whereas a Gaussian scattering state is
not.

In Section 4, we discuss collective decay
behaviour such as subradiance [42, 43] and
superradiance [44, 45]. In the Markovian
limit the photon-mediated interactions be-
tween qubits occur instantly. Consequently,
the collective behavior of the multi-qubit
network gains immense importance through
the formation of so-called “collective decay
rates” of the network. In the non-Markovian
regime’, the qubits are separated far enough

! In the literature, one finds two types of non-
Markovianity: one that already exists at the level of
a single qubit due to coupling to the environment and
another that becomes important at the level of collec-
tive behavior due to time-delayed feedback within the
system. The single-qubit level non-Markovianity was



such that the interactions between the light
and the qubits remain effectively isolated.
This leads to a slightly different definition of
collective decay rates, as non-Markovian pro-
cesses introduce new types of decay modes
[33] and individual interactions between dis-
tant qubits can now be observed.

In Sections 5 and 6, we apply the formal-
ism to study time-dependent dynamics of var-
ious observables. We first model spontaneous
decay of an initially excited system, then ex-
plore pulse scattering. In the Markovian limit
(Section 5) we demonstrate how to apply var-
ious complex analysis tricks to obtain highly
intuitive and simple results. In the non-
Markovian regime (Section 6), we show that
modeling time-evolution boils down to com-
puting a single numerical integral, which is
much simpler than existing approaches such
as the finite-difference time-domain (FDTD)
method [26, 30] or solving coupled delay dif-
ferential equations [47].

In Section 7, we sketch out various, more
exotic, scenarios in which we expect the real-
space approach to shine. In subsection 7.1,
we conjecture that the set of collective de-
cay rates is divided into two subsets: sym-
metric and anti-symmetric. In subsection 7.2,
we introduce a method towards pulse shaping
by exploiting collective decay rates. Finally,
in subsection 7.3, we consider time dynam-
ics of a photon interacting with a 500-qubit
system, and show that the system approaches
near-perfect coherent excitation with increas-
ing number of qubits, demonstrating the full
power of the real-space approach in terms of
scale-ability.

We conclude in Section 8 with a discussion
of the results.

considered in [32, 46] and we re-derive the findings of
[46] in Appendix A. Throughout this paper, we study
only the non-Markovianity introduced by the many-
body behavior of the system, i.e. by the macroscopic
separation of qubits and corresponding time-delayed
coherent interactions.

3 System model

In the real-space formalism, the light-matter
interactions almost always take the form of
delta functions located at positions of quan-
tum emitters (although, at least one example
of non-delta interactions exists [48]). Delta
interactions simplify the model significantly—
the light propagates as a free field inside the
waveguide, its amplitude changing only at the
positions of interaction. From a mathemat-
ical point of view, this results in scattering
energy eigenstates that are plane waves out-
side the system. Consequently, the problem
of scattering from quantum emitters becomes
analogous to delta-function scattering taught
in introductory quantum mechanics courses
[49]. This property of the real-space formal-
ism makes it simple to obtain exact eigen-
states for single and few-photon scattering
[30].

In this section, we demonstrate the real-
space approach for a linear chain of iden-
tical N = 3 qubits inside a one-dimensional
waveguide (we generalize the formalism to
multi-qubit systems in Appendix B and to
non-identical qubits in Appendix C). We show
how to identify the single-photon eigenstates
(both scattering and bound) for the system
using the Bethe ansatz. We set up the for-
malism for modelling time-evolution using the
eigenstates. We then show that, in the Marko-
vian limit, the time evolution of any regular
state can be described via a contour integra-
tion. Finally, we show that the real-space ap-
proach can be preferable for modelling exact
time evolution in the presence of BICs, since
analytical methods only require knowing the
scattering eigenstates (without BICs).

3.1 Hamiltonian and energy eigenstates

Consider the interaction of a single qubit
(such as a two-level atom or a quantum emit-
ter) with light in 1D. The real-space Hamil-
tonian [35, 50] that describes the qubit-light
system is H = Hy + Hyp + H;, where

H, = Z ol omQ (1)

me{qubits}



is the free qubit Hamiltonian, where o, is the
de-excitation operator for the m!* qubit and
Q) is its energy separation,

Hy = ihvg/_ dz (2)

< (Cl@)5Cula) - Chtw) 5 Cro))

is the free field Hamiltonian, where vy is the
group velocity of photons inside the waveg-
uide and Cg/r(z) are annihilation operators
for right/left moving photons, and

H =+/Jy Z - dzd(z — mL)

me{qubits} * ~ > (3)
x ((Ch(@) + CL@)om +He.)

is the qubit-field interaction Hamiltonian with
coupling energy Jy. Here, Hyp is obtained
assuming a linear dispersion relation for the
photon such that Ej = hvg|k| and that Ej, is
much larger than the cut-off frequency of the
waveguide [51], and H, is in the rotating-wave
approximation. Hence, our approach focuses
on energy scales Q + O(Jy) where Jy < Q.
With our definition of the coupling energy,
the population decay rate of a single emitter
is 79 = 2Jy. For the remainder of the paper,
we set i = vy = 1 to simplify notation and use
Jo as the main units of energy, distance and
time; while measuring collective decay rates
in units of 7.

In the real-space formalism, the station-
ary states of the Hamiltonian can be found
via the Bethe Ansatz approach. For a sin-
gle qubit, scattering eigenstates are the only
type of stationary states, whereas for multi-
qubits, the stationary states consist of both
scattering eigenstates and BIC ([35] considers
a similar problem and identifies the scattering
eigenstates, but does not discuss the existence
of BIC).

We now review how to find the scattering
eigenstates and find the condition of BIC for
the linear chain of N qubits. An example
scattering energy-eigenstate incident from far
left is illustrated in Fig. 1. Here, three identi-
cal equidistant qubits are L apart from each
other. To preserve mirror symmetry in the
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Figure 1: The system model for N = 3 qubits in a
linear chain with arrows depicting photon-scattering
coefficients.

system, the position of the center of the atom
chain is taken arbitrarily as z = 0.

The Bethe Ansatz for a scattering eigen-
state for a photon incident from far left can
be written as

B= Y. [ degz@ci@)]o)
Ze{L,R} "~ (4)
+ Z em (k) em) ,

me{qubits}

where |0) is the vacuum state, |e,,) = o}, |0),
em (k) is the excitation coefficient for the m!*
atom and ¢r(x)/¢r(z) are right/left moving
field amplitudes, that contain the transmis-
sion and reflection coefficients, t,, and r,, re-
spectively, as illustrated in Fig. 1. As already
discussed in [35], the parameters t,,, r, and
em (k) can be found by solving the eigenvalue
equation H |Ex) = Ex|Ek). As a next step,
we define Ay, = E) — € and assume Jy < €,
consistent with the rotating-wave approxima-
tion. This is particularly important for con-
structing the time evolution operator, as we
assume that the eigenstates are continuum
normalized. This approximation becomes ex-
act in the limit Jy/Q — 0. Nonetheless, the
final result obtained using this approximation
is more general and applies to the case of fi-
nite Jo/2 as well. We leave the discussion
to a future work. For practical purposes, the
delta-interaction Hamiltonian assumption is
only reasonable under the condition Jy/Q — 0
anyway [48].

The example scattering state illustrated in
Fig. 1 does not constitute the complete basis



for the scattering eigenstates as identified by
[35]. In fact, we denote k < 0 values for scat-
tering eigenstates, where the field is initially
incident from right. For |[E_), where the pho-
ton is initially incident from far left, one can
simply mirror the state |Fj) w.r.t. the center
of the multi-qubit system (which is 2 = 0 for
the 3 qubit system in Fig. 1). The operator
corresponding to this operation is called the
parity operator and is discussed in Appendix
D. Using the parity operator, finding the scat-
tering eigenstates incident from one side only
is sufficient to form the complete scattering
eigenbasis.

Defining 0 = QL as the phase acquired by a
plane wave of frequency €2 travelling between
two adjacent qubits, when 0 = nm, the pho-
ton gains a pre-factor of (—1)™ while travelling
between qubits. For this highly special con-
dition, the scattering eigenstates do not con-
stitute a complete basis for the single-photon
subspace. To form a complete basis for this
case, one must also include BICs (which are
equivalent to dark states in the absence of
non-radiative decay). BICs have previously
been found and used for N = 2 qubits cou-
pled to a 1-D waveguide [34]. Here we identify
BICs in a linear chain of N atoms coupled to
a 1D waveguide. A Bethe ansatz for the BIC
can be written as

D)= >

me{qubits}

em|€m>+‘5>’ (5)

where (z|S) o sin(Qz) describes a station-
ary field (since BICs are non-radiating) con-
fined within the system boundary. The fre-
quency of the photonic component (Fj = 2)
is a direct consequence of the eigenvalue equa-
tion H|D) = Q|D), where the out-radiating
photonic parameters in | D) are constrained to
zero by the definition of BIC.

The quantity (x|S) effectively vanishes in
the Markovian limit (which will be discussed
in Section 3.2.1) and is not relevant for the
discussion of collective qubit subspaces. Solv-
ing the eigenvalue equation H |D) = Q|D) for
both Markovian and non-Markovian cases, we

obtain the following mutual conditions”

0 =nm, Z

me{qubits}

Thus, for 8 = nm, the dimensionality of the
BIC subspace is N — 1 where N is the to-
tal number of qubits. This result shows an
important property in waveguide QED: the
dark and bright states, i.e. states that cou-
ple to light, manifest differently for odd and
even n (in (6)). For example, in a two-qubit
system, the symmetric state is dark for odd n
[53], whereas it is bright for even n [54]. This
clarifies why the seemingly conflicting results
of [53] and [54] are not actually conflicting.

From (5-6), we find the BICs (i.e. dark
states) |D;) (i = 1...N). From these, we
identify the superradiant bright state |B),
which is orthogonal to the dark states. Col-
lectively, these form a basis for the single-
excitation subspace of the atomic effective
Hamiltonian that can be obtained by adiabat-
ically eliminating the photonic degrees of free-
dom in Markov approximation. For N = 3,
this basis is

Dy) = ¢1§ (le_1) — lex)) (7a)
1Dy = jg (le_1) ~2(~1)" leo) +|e1)), (Tb)
IB) = = (Je_1) +(=1)"[eo) + Jen)) . (Tc)

V3

The basis for the general Hamiltonian can be
obtained by including the photonic degrees
of freedom. Throughout this paper, we use
both definitions interchangeably. The dis-
tinction should be made for considerations of
non-Markovian dynamics, where |B) and |D;)
have non-vanishing photonic components in
this regime. It is important to note that we
have picked the basis states |D;) that are ei-
ther symmetric or anti-symmetric w.r.t. the
center qubit (for reasons which will become
clear in Section 7.1). Any linear combina-
tion of |D;) is still within the bound-state
subspace. |B) is orthogonal to the subspace

“These conditions for BIC were also found in [52]
using a different approach.



spanned by |D;). Having specified the com-
plete eigenbasis for the single-photon eigen-
states, we can now turn our attention to the
time-evolution dynamics.

3.2 Time evolution

In this section, we extend the real-space for-
malism to include time-evolution of arbitrary
single-photon states. We also show that, in
the Markovian limit, for a broad class of
states, which we call regular states, the poles
of the stationary states of the system play an
important role in the time evolution.

First, let us consider the case where 6 #
nm, where the scattering states constitute
the complete basis with the normalization
(Ex|Ep) ~ 2m0(k — p). Here, the negative
k values stand for scattering of the photon
from far right, for which we use the symme-
try considerations (discussed in Appendix D)
to construct. The time evolution operator in
this case is

v = [ B Bl

The state of the system, at time ¢, is
< dk —iEt
0©) = [ 5o 1B (Blw) e, (99)
> dk i
= [ G lak) e, (90)

where |g(k)) = [Ek) (Ex[v(0)) +
|E_k) (E_k|1b(0)). The case where 6 # nm
was discussed in [35], where they studied time
evolution in a linear chain of atoms coupled
to a 1D waveguide. Their work, however,
focused on the qubit survival probability
rather than evolution of the entire system.
Therefore, they did not include BICs. Here
we also introduce the special case where
@ = nm. In this case, a full basis must also
include BICs, so the time-evolution operator
is

~ dk »
Unio(t) = / S IER) (El|,_ e

—00

N-—1
+ Y |D;) (Di| e M. (10)
=1

Here, |D;) denote the bound states of the full
Hamiltonian, rather than of the atomic effec-
tive Hamiltonian (in contrast to Eq. (7)). The
state of the system, at time ¢, is

[Vpic(t) = % /OOO dk |g(k)) ekt

O=nm
N-1

+ > Jhaye (11)
i=1

where |h;) = |D;) (D;]¥(0)).

Equations (9b) and (11) can be used to
compute the dynamics of various observables,
which we do in Section 6. But first, we con-
sider the Markovian limit, and show that in
this limit, one can drastically simplify the
expressions by taking advantage of complex
analysis.

3.2.1 The Markovian limit and the power of
complex analysis

The Markovian limit considered here is the
limit where the qubits are separated by mi-
croscopic distances such that L ~ O(Q71).
Following the approach by [35], we linearize
the phase shift e*f ~ ¢ where kL =
(A + Q)L ~ QL = 0 is the phase that
light acquires when travelling between ad-
jacent qubits. This linearization process—
which is the real space equivalent of the
Wigner-Weisskopf approximation in Laplace
space—ignores the time delay caused by inter-
system propagation of photons and is accu-
rate as long as L ~ O(Q~!). This is because
the characteristic time for the time evolution
of states in the Markovian limit is ~ O(J; ")
(consequently |Ag| < O(Jy)), as we show in
Section 5. Since the propagation time of pho-
tons between qubits is ~ O(Q71), it is ne-
glected in this limit (hence the name Marko-
vian).

For 6 # nm, we perform the substitution
Ay =k —Q, and rewrite (9b) as

i) = [ e lgtye ™, (122)
= [T gy )
= Res [|g(k‘))e_mkt] , (12¢)

Ap=
P k=P



where p are the lower-half plane (LHP)
poles of the collective system such that
lima, | Ex) diverges, and Res stands for
residue. Here, we made use of the assump-
tion Jy < Q and L ~ O(Q71) in the first
step, and invoked the residue theorem in the
second step. The regularity condition of the
state |1) has been used when completing the
contour through a circle including the lower
half plane. When applicable, we neglect the
global phase. The state |g(k)) has the same
lower half plane poles as the scattering param-
eters tm, 'm,€m (see equations (13-15) from
[35]). In fact, for a linear chain of qubits, all
poles are in the LHP. Therefore finding the
poles of any of the scattering parameters is
the same as finding the poles of |Ey) (except
for rare occasions where poles are cancelled by
an introduced zero for a specific scattering pa-
rameter, in which case one shall pick another
one that has N poles for N qubits).

The key result here is that, according to
(12¢), the time evolution of any regular state
can be described via a contour integration and
poles p. As an analytical approach, this is of-
ten much simpler to do than solving the inte-
grals in (9b) directly.

For N = 3 qubits, we identify the three
poles of the scattering parameters as

p1 = —%J() (e%e +2+€?v/8 + e2i9) , (13a)
Dy = —%JO (€% 42— V8 + %), (13b)
pP3 = —iJo <1 — 62i9) .

What about when § = nn? Taking the limit
6 — nm (in, e.g., (13) for N = 3) results in
N —1 of the poles converging at the origin and
getting cancelled by a zero introduced in the
numerator of the scattering parameters. The
cancellation of these poles corresponds to loss
of information about the system. In this case,
the BIC terms in the time-evolution operator
would be needed to supply this lost informa-
tion. In fact, one would first need to find the
BICs and then evolve the state according to
(11). But we now show that if the problem
is treated analytically, we can get around this
apparent loss of information as long as we are

(13c¢)

clever about it.

The scattering eigenstates contain all the
information needed to model time evolution
of the system, even in the limit § — nw. But
the limit must be taken at the right step in
the calculation. The correct strategy is to
first evaluate the residues at the positions of
the poles p and then take the limit § — nm.
Reversing the order (i.e. first taking the limit
and then computing the residues) does not re-
sult in the same expression due to pole can-
cellation. Concretely,

li —iAgt
Jim 3 Res [lg(k)) e8] 2
9=n7r:| '

A natural question may arise: why is the
residue corresponding to N — 1 subradiant
poles not zero in the limit § = nw? We discuss
this in Appendix E.

This analysis highlights two important
properties of the real-space formalism. First,
that the time evolution as described in this
section is only exact in the limit Jy/Q — 0,
otherwise the analytical expressions found for
the poles are approximate due to the lineariza-
tion kL ~ QL and the exact poles are de-
scribed by a transcendental equation. Second,
in the regimes that it is valid, the method can
be preferable for modelling time evolution in
the presence of BICs, since with the analytical
methods the time evolution can be obtained
through only the scattering eigenstates.

In Sections 5 and 6, we will use the time-
evolved state to compute dynamics of various
observables. But first, we will discuss another
interesting property of multi-qubit systems:
their collective decay rates.

(14)

Res [rg<k>>e—mkt
7 Agp=p

4 Collective decay rates

Collective behavior of many-qubit systems
can best be probed by considering the col-
lective decay rates, as they reveal interesting
physical phenomena such as subradiance and
superradiance. In this section, we propose a
strategy for finding the collective decay rates.



Collective excitations of two qubits have
been investigated perturbatively in the
Markovian limit using the SLH formalism and
a general master equation [53]. Time evolu-
tion via the real-space formalism offers fur-
ther insight by providing exact collective de-
cay rates. In this limit, our strategy provides
collective decay rates that describe the exact
time evolution of regular states according to
(12¢). Non-Markovian collective decay rates
for N = 2 qubits coupled to a 1D waveguide
have been investigated in [33] using a Green’s
function method. We develop a more general
theory applicable to any multi-qubit system.

Our proposed strategy for computing the
collective decay rates is based on the obser-
vation that the complete set of decay rates
is given by the poles of the scattering pa-
rameters via a rotation and scaling such that
I' = 2ip. A similar observation was made in
[35], but they did not explore it further. We
do this here.

The strategy for finding collective decay
rates is as follows:

1) Write down the Bethe Ansatz (4) and
find the scattering parameters.

2) Pick a scattering parameter, say r1, and
set its denominator to zero. This gives
the characteristic equation for the collec-
tive decay rates.

3a) For the Markovian limit, find analytical
expressions for the poles.

3b) For the non-Markovian regime, apply nu-
merical methods to find the roots.

This strategy parallels the well-known connec-
tion between the resonance poles of a scatter-
ing matrix and the decay of unstable states.
In the context of waveguide QED, the scatter-
ing parameters’ poles provide a more general
description due to the existence of qubit exci-
tation coefficients (ey), which may not always
be eliminated to construct an S-matrix. Con-
sequently, our definition of collective decay
rates is analogous to resonance poles in quan-
tum scattering theory, quasi-normal modes
in gravitational wave physics and scattering
poles of the wave scattering theory [55].

To illustrate this approach, for both the
Markovian and non-Markovian regimes, we
consider N = 3 identical qubits coupled to
a 1D waveguide. The characteristic equation
for this case is

0 = 26X Bt DL(AL 4 4)

where we normalize Ay w.r.t. Jp.

4.1 Markovian regime

In the Markovian limit, the qubits are sepa-
rated by a distance L ~ O(271), which justi-
fies the linearization of the light propagation
phase kL ~ QL = 6, which results in a poly-
nomial characteristic equation for the collec-
tive decay rates. Solving this equation yields
following collective decay rates:

1/, . :

Fl — 5 (6216' +24 626’ /8 + 6210) 0, (16&)
1/, . :

Ty = (2 +2 - VB4 %), (16b)

Ty = (1) 5, (16¢)

where we recall that vy = 2Jy is the single-
qubit decay rate.

If we set # = nm, we find that two of
the decay rates become zero, whereas one be-
comes 37g. This also occurs for an arbitrary
N-qubit system: as § — nw, N — 1 collec-
tive decay rates cluster around zero, while the
Nth one approaches N~y. The correspond-
ing physical phenomena are called subradi-
ance and superradiance, respectively. Sub-
radiance occurs when destructive interference
suppresses spontaneous emission. Conversely,
superradiance occurs when constructive inter-
ference enhances spontaneous emission. Con-
sequently, the corresponding collective decay
rates are called subradiant or superradiant de-
cay rates of the system. Hence, finding collec-
tive decay rates also gives further information
on superradiance and subradiance occurring
in the multi-qubit system. The N~y scaling
of the superradiant decay rate is well-known



and is usually referred to as the Dicke super-
radiance [56]. We observe the Dicke super-
radiance in the Markovian limit, however we
will observe a new kind of superradiance when
we discuss the non-Markovian limit.

4.2 Non-Markovian regime

In the non-Markovian regime, which consists
of every condition where the Markovian ap-
proximation is no longer valid, the qubits are
separated by macroscopic distances such that
L ~ O(Jy1). The propagation time of light
within the network is no longer negligible,
consequently, for L ~ O(J, 1), the second
term of kL = QL 4 Ay L can no longer be ne-
glected. Hence, the important distinction in
the non-Markovian limit is that the charac-
teristic equation of poles is a transcendental
equation that includes complex exponentials
in addition to polynomial terms. We must
thus use numerical methods.

To use our approach in the non-Markovian
limit, we first expand the exponential as

ctAet Q)L _ i0(1+A,/Q)

(17a)

~ ZHZ ,

where we truncate this expansion for some
large M. This approach works as long as the
poles have the property |p| < €, such that
(AR/M — 0 for the region of interest. If
this is not the case, one needs to employ more
complicated numerical approaches to find the
roots.

For illustration purposes, we pick Q =
100Jy and plot the Markovian and non-
Markovian collective decay rates (more accu-
rately, their real part which is responsible for
the decaying behavior) in Fig. 2. Here, we
denote the symmetric (anti-symmetric) collec-
tive decay rates with S (A). This figure shows
many resemblances to the findings of [33],
where the non-Markovian decay rates become
subradiant in the large 6 limit. As explained
in [33], after the initial emission of a decaying
exponential pulse from the first qubit, it gets
reflected by the second and third qubits and
re-excites the first qubit. This cycle continues

(17b)

for longer times due to light trapping between
the qubits, as we shall see in Section 6.2. The
non-Markovian decay rates describe this light-
trapping and slow decay quantitatively. Since
in the non-Markovian regime, the interactions
are effectively isolated between single qubits
and light, increasing L decreases the collective
decay rates due to the increased time delay of
inter-qubit photon propagation.

Fig. 2 shows another interesting phe-
nomenon. For 6 ~ 4w, the superradiant
collective decay rate becomes larger than
379. Dicke superradiance alone cannot de-
scribe this phenomenon, an additional phys-
ical mechanism (i.e. time-delayed coherent
quantum feedback) must be at play. We
will discuss this new mechanism—which we
call super-superradiance (SSR)—in Section
6.1 when we discuss strong collective spon-

(@ °
—— S1: Non-Markovian ------- S2: Markovian
S1: Markovian —— A: Non-Markovian
4 —— S2: Non-Markovian - A: Markovian
=
Q H

(b)

0/m

Figure 2: The behavior of three Markovian and non-
Markovian collective decay rates (in units of 7) for
N = 3 qubits coupled to a 1D waveguide for a)
6 € [0,60]r, b) § € [0,5]w, c) 6 € [55,60]r. S
(A) stand for symmetric (anti-symmetric) collective
decay rates. In all figures, 2 = 100.Jy.



taneous emission from N = 3 qubits in the
non-Markovian regime. For now, we note the
highly counter-intuitive observation that by
introducing time delay of photon propagation
within the system, the overall decay of the
system can be enhanced. This has also been
observed for N = 2 in Fig. 4(d) of [33], but
was not discussed in the main text. Recently,
[47] discussed this effect for N = 2 using a
different approach. The findings of [33], [47]
and our findings agree perfectly for N = 2
although all three papers use different meth-
ods. Our findings suggest that SSR is a more
general phenomenon than the N = 2 case.

On another note, the non-Markovian pro-
cesses introduce many more decay modes, in
addition to 3 original decay modes that are
present in the Markovian limit. This can be
understood by the travel time of light be-
tween qubits in two different regimes. In
the non-Markovian regime, the delayed feed-
back mechanism introduces infinitely many
poles, as light gets trapped inside the sys-
tem and is released within intervals of 2L
with each release time corresponding to a non-
Markovian process. For the Markovian limit,
all these processes happen at an instant and
are confined to an infinitesimal amount of
time, since photons propagate between qubits
without any delay. Hence, any exclusively
non-Markovian process in the Markovian limit
has an infinite decay rate. In other words, one
can think of the additional non-Markovian
collective decay rates as flowing from LHP
complex infinity to finite values as the photon
travel time between qubits becomes relevant,
i.e. as f increases. When plotting Fig. 2, we
picked the three decay rates with the lowest
real part, following [33].

In Fig. 3, we plot the three Marko-
vian poles (two corresponding to symmet-
ric modes and one to anti-symmetric mode)
and additional poles corresponding to non-
Markovian processes. For the parameters con-
sidered, the processes corresponding to non-
Markovian poles decay much faster and there-
fore can be neglected. For larger 6, this is no
longer the case and non-Markovian processes
gain importance.
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Figure 3: The poles (in units of Jy) obtained via
the numerical method for § = 5.77, €2 = 100J, and
N = 3 qubits marked by blue crosses. S (A) stand
for symmetric (anti-symmetric) collective decay rates
(See Section 7.1), NM stands for decay modes gen-
erated by non-Markovian processes. The color figure
shows the logarithmic modulus plot of the full char-
acteristic equation, where the darker regimes corre-
spond to lower values of the function. Since the
characteristic equation is analytical, its modulus has
a minimum inside a finite region only if it has a zero
within that region (from the minimum modulus prin-
ciple). Thus, it is clear that the poles found via the
numerical method are indeed physical, as the marks
correspond to the zeros of the plotted function.

The method introduced in this section is
more general and can be applied to any multi-
qubit system, as the characteristic equation
for any general system can be found by sim-
ply finding energy eigenstates. Analogously,
we also note that a similar approach can be
applied to consider Fano minima, i.e.
flection minima, that lead to transparency of
the multi-qubit system for certain frequencies.
[35] finds N — 1 such frequencies for a linear
chain of N qubits. Non-Markovian processes
can increase this number, as the characteris-
tic equation describing the minima frequen-
cies become transcendental in this limit. For
example, for N = 3, we have observed several
non-Markovian Fano minima (in addition to
2 that are observed in the Markovian limit
[35]) in our own explorations. [57] observes

re-



similar effects for a two-qubit system. We be-
lieve that this is an interesting phenomenon
to study in future work.

We have also developed an alternative
method for finding collective decay rates,
which we describe in Appendix F. While this
method is less efficient than the one pre-
sented here, it provides further insight into
the physics of the system, which might be use-
ful for constructing proofs.

5 Time dynamics of observables in
the Markovian limit

In this section, we study time dynamics in
the Markovian limit. We can therefore take
advantage of complex analysis to simplify the
analysis.

As an example, we consider a chain of three
qubits. We first consider spontaneous emis-
sion and study the time dynamics of atom
excitation probabilities and emitted single-
photon pulses. We then study the scattering
of a single photon pulse from a system on mul-
tiple qubits.

5.1 Spontaneous emission

Here we consider spontaneous emissions with
the initial condition where the central qubit
(m = 0) is excited. We begin by defining the
relevant observables.

5.1.1 Survival probability

The survival probability (introduced in [35])
is defined as the probability that an initially
excited atom remains in its excited state:

0=l

After performing the complex analysis, this
quantity takes the form

2

|2 —iAgt (18)

2
(19)

s {2|60(k) |2€fiAkt}
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5.1.2 Side-atom excitation probability

The side-atom excitation probability is the
probability that a side atom (either m = —1
or 1) is excited at time ¢, given that the cen-
ter atom is initially prepared in an excited
state. To find this probability, we first note
that the initial state of the system can be pro-
jected onto energy eigenstates via a resolution
of identity

a0) = [~ SE 1B (Bila) e B, (20)

where |a) = 0'(]; |0) is the initial state of the
system. We realize that (Ej|a) = ef, where
* denotes the complex conjugate. We find
that the probability, Ps(t) = | (e1]|a(t))|* =
| {e_1|a(t)) |?, that a side atom is excited at
time ¢t is

2

’/ —eil O(k)e_m’ft (21)

After performing the complex analysis, this
quantity takes the form

= ‘Z Res { )(e1(k)
(22)

)

+ 6_1(k))67iAkt} 2

where we recall that e; (k) = e_1(—k) due to
Symmetry.

5.1.3 Emitted photon probability density

The emitted photon probability density is de-
fined as P(z,t) = |¢(z,t)|*> where ¥(x,t) =
(x|a(t)) is the emitted photon waveform. Fol-
lowing a derivation similar to that of the side-
atom excitation probability, the emitted pho-
ton probability density takes the form

dk 2

P(x,t) = ‘/OO 5 -

After performing the complex analysis, this
quantity takes the form

(| By ef(k)e ot

Res

Ag=p

Plx,t) = ‘ (83 + r1)ef(k)eant=leD] '2 :

(24)



where we recall that in the Markovian limit,
the complete system is effectively situated at
r = 0 and (z|Ep) = t3e**O(k) + (rie*® +
e~ *T)O(—k) for 2 > 0. The e ™ term be-
comes zero since efj(k) has no upper-half plane
poles and the emitted photon probability den-
sity is symmetric w.r.t. the origin.

For completeness, we define the probability
of photon emission as P, = [0 P(z,t)dz.
We also include an illustrative example of how
these formulae can be applied to a single atom
inside a waveguide in Appendix A for compar-
ison with existing literature.

5.1.4 Numerical results

Recall that the scattering parameters t,,, 7m
and e, (k) can be found by solving the eigen-
value equation H |E}) = Ej |Ek). Since H de-
pends on 6 (H depends on € and L indepen-
dently), so do the scattering parameters, and
consequently so do P.(t), Ps(t) and P(x,t).
This 6-dependence can be seen in Fig. 4 for
0 =7/6, /3, /2 and m. We note that since
vy = 1, both x and t are plotted with units
Jy 1 The poles are also given for each case,
where in all cases the third pole ps has no
residue contribution ¢ and has therefore been
omitted. The imaginary part of the poles dic-
tates the atom decay, as was pointed out by
[35], which become the real part of the decay
rates via the relation I' = 2ip.

The early behavior of the system is dic-
tated by the (superradiant) decay rate with
the largest real component, whereas the late
behavior is dictated by the (subradiant) one
having the smallest real component. In Fig.
4, the immediate decay of excitation proba-
bilities just after ¢ 0 confirms the early
behavior (superradiant decay rate is domi-
nant), while the slow decaying behavior at
t =29 = 10J, 1 confirms the late behavior
(subradiant decay rate is dominant). This is
also the case for the photon density profile,

SThe absence of a residue contribution for ps is
highly intriguing and a possible reason for it will be
considered further in Section 7.1. Our analytical cal-
culations show that the ps pole can only contribute if
the state of the collective system no longer has mirror
symmetry w.r.t. the center atom (z = 0).
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but is less obvious from the figure. Addition-
ally, comparing 4(a,d) with 4(b,c) shows that
the system exhibits oscillatory behavior for 6
values close to m/2. This is expected, since
the separation in the imaginary part of the
decay rates (e.g. the difference between col-
lective energy levels) is responsible for oscil-
lations and is highest for § = 7/2. The early
(superradiant) decay rates are higher and late
(subradiant) decay rates are slower for 6 val-
ues that are far away from 7/2.

For the special cases § = 7 and 7/2, inter-
esting properties occur. We discuss these in
detail next.

5.1.5 Analytic solution for quarter-resonance-
wavelength atom spacing (6 = 7/2)

In this case, the separation between two
neighboring atoms is L = A/4, where A is
the resonant wavelength. This means that a
non-interacting photon propagating between
the two ends of the system acquires an over-
all phase of w/2. 1In this special case, the
side atoms never emit to the waveguide,
rather only into the system itself with mirror-
symmetric initial conditions.

To see why, consider that when the mid-
dle atom emits the photon, it excites a su-
perposition of side atoms (m = —1 and 1) at
later times. The side atoms become excited
equally due to mirror symmetry for times
t > 0. The atoms then emit a photon in su-
perposition, which suggests that the superpo-
sition terms are in-phase at time ¢ of emission,
whereas they acquire an overall phase of /2
due to propagation inside the system before
they leave the system. Since the propagation
time of the superposition terms inside the sys-
tem can be neglected in the Markovian limit,
the superposition terms of the photon emit-
ted by the two side atoms (non-interacting
with the central atom) interfere destructively
and only the photon emission from the central
atom leaves the system and gets radiated to
the waveguide. For this case, P.(t), Ps(t) and
P(z,t) reduce to
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Figure 4: Spontaneous emission in a system of three qubits in the Markovian limit. Emitted photon probability
densities P(x,t) = |1(x,t)|? (normalized w.r.t. Jy, for t = 10/.Jp), and atomic excitation probabilities P,
and P; and emission probability P, for different values of 6 in (a)-(d). The corresponding poles are: (a)
p1/Jo = —0.794 — i0.133 and py/Jy = 1.66 — i1.37, (b) p1/Jo = —1.323 — 0.5 and po/Jy = 1.323 — 0.5,
(c) p1/Jo = —1.323 —40.5 and p2/Jy = 1.323 — i0.5, and (d) p1/Jo = —3i and pa/Jo = 0. The three-
qubit systems is located at = 0, the distance between the atoms become effectively zero for the scales
x~ O(Jy"), as Jo/Q — 0. The system is symmetric w.r.t. the origin, therefore only = > 0 is illustrated.
The qubits at later times decay corresponding to the pole with lowest imaginary component, as observables
decay with a rate ~ 2Imlp]. In all cases, P, + 2P, + P. = 1 for all times.
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4
Ps(t) = ?e_JOt

sin? (

e,

(3 cos (\ﬁJot) —/Tsin (\ﬁJot) + 4)@(t),

(25a)

(25b)

Pla,t) = %6_‘]‘)“_“‘) (3cos (VTJo(t = ) = VTsin (VTJo(t — [2])) + 4)O(t - |a]), (25¢)

where ©(x) is the Heavy-side function.

We notice that P(x, 7)|(r—jz)=t = JoPe(t),
with the proportionality factor Jy, suggesting
that a photon leaving the linear chain system
is indeed emitted by the center atom, as the
probability density function of a photon emit-
ted at time t is proportional to the excitation
probability of the center atom at time ¢. In
Appendix A, this proportionality is discussed
for a single qubit inside a waveguide.

Another important result for § = 7/2 is
that the existence of side-atoms changes the
decay rate. An atom on its own has a de-
cay rate of 7p, whereas the collective decay
rates become v0(0.5 £i¢ ), where ¢4 is some
phase factor. The decrease in the exponential
decay (the real part of the decay rate) and
the existence of oscillations (imaginary part
of the decay rate) can be explained by the
partial reflection of the photon from the two
side atoms. Moreover, the first local minima
of P(t) and P(x,T)|(r—z)=¢ coincide with the
first local maxima of Ps(t), implying that the
side atoms are excited with highest probabil-
ity when the center atom is in its ground state
(where the photon emission is also zero) and
vice versa.

While we considered the symmetric exci-
tation where the middle qubit is excited, it
is also interesting to consider the case where
the side qubits are excited with equal weights.
Then, by the virtue of the fact that the
side qubits do not radiate outside of the sys-
tem for § = 7/2, the outgoing pulse shape
looks less like a decaying exponential and has
a more symmetric shape. We believe that
it could be interesting to consider potential
pulse-production applications of this config-
uration (6 = m/2) for increasing number of
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qubits (N) as a future work.

5.1.6 Analytic solution for half-resonance-
wavelength atom spacing (0 = 7)

In this case, the separation between two
neighboring atoms is L = A\/2 and the sys-
tem exhibits super- and subradiant modes.
The superradiance phenomenon is manifested
mathematically in the first pole where p;
—13Jy. This phenomenon is an “enhancement
effect due to collective dipoles” as pointed out
in [35]. Additionally, the second pole becomes
p2 = 0, implying that one of the decay modes
has zero decay rate, e.g. a finite survival prob-
ability is obtained as ¢ — oo. In this case,
P.(t), Ps(t) and P(x,t) reduce to

Pt) = é (3 4 2)%0@),  (260)
Pu(t) = é (30 —1)%0(@),  (260)
Plx,t) = Joe 00D — |z]).  (26¢)

Interestingly, the integral of (26¢) over x, does
not tend to one as ¢ — oo. This suggests
that some amplitude of the photon will al-
ways remain inside the system. We can also
see this from the atom excitation probabili-
ties. As t — oo, the center atom remains
excited with probability %, and each one of
the side atoms remains excited with proba-
bility é. With probability %, all atoms de-
cay and photon-emission takes place. This
is in contrast with other values of 6, where
photon-emission is certain for large enough
times. This is a consequence of the existing
dark states in the system, which are signalled
by the fact that two of the three collective de-
cay rates become zero when 0 = 7. In fact,



we can obtain this result without any contour
integration by first realizing that

|2(0)) = leo) = 27)

2 1
75 \P2 = 7B |

Then, the state evolves as

2 o 1
1)) = Do) e — —_|B(t)), (28
0(0) = =102 = 1BO). @9
where as ¢ — o0, (ep|B) = 0 for any m

due to superradiance. Then, we find that
Py = |Zle|D2) P = | Z (el D2) P = §
and P, = ]% (eo|D2)|? = . The probabil-
ity of complete decay can also be found as
|75 (Bla(0)) [* = 3.

This property may prove fruitful for future
quantum memory applications using identical
qubits. In fact, as [58] has shown, cavity-
waveguide coupling can be controlled, which
opens up the possibility of exciting BICs via
time-dependent control of cavities using only
single-photon scattering states, in addition to
exploiting the delayed quantum feedback and
multi-photon scattering as discussed in [37].

5.2 Pulse
states

scattering for single-photon

To study scattering of single pulses, we will
focus on two properties: first on the shape of
the transmitted and reflected pulse and sec-
ond on the excitation probability P, of the
mth atom. We assume that the initial pulse
is situated at = —x (x¢ > 0) far away from
origin with an average momentum ko > 0 and
the atoms are initially in ground state.

To start our discussion, we define two
functions f(z) and f(k)—where f(k) is the
Fourier transform of f(x)—whose standard
deviations Az and Ak satisfy Az <« z¢ and
Ak < kg. Then, the most general form for the
scattering state |S(t)) at time ¢t = 0, with one-
sided excitation from the left, can be written
as

S(0) = [ daf(e -+ a0)e i) [0),
(20)
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where we compute (k[S(0)) f(k — ko)
eilk—ko)zo  Thig state represents a pulse ini-
tially located at © = —x¢ and moving to the
right with an average momentum k.

We assume Jy < (2, and as before, we find
the time evolution of this state by first pro-
jecting it onto energy eigenstates and then
time-evolving each part independently:

[
oo 2T

5.2.1 Shape of Transmitted and Reflected
Pulses

|15(2)) (E4|S(0)) | Ex) ™. (30)

The shape of the photon pulse at time t is

o dk

(| Bx) (By|S(0)) e,
(31)
where S(z < 0,t) represents the reflected
pulse and S(z > 0,t) the transmitted pulse
at time t. We define the functions S(k,0),
S, (k,t) and S_(k,t) as the Fourier transform

of the initial, transmitted and reflected pulses.

In Appendix H, we  show  that
Si(k2w)? = [6S(k0)P  and
|S_(—k,210)|> = |r1S(k,0)]%2. (Here, we

pick t = 2z such that the field no longer
interacts with the qubits.) This suggests
that, each mode of the input pulse inside
the waveguide is modulated independently
via the stationary state transmission and
reflection coefficients found using the Bethe
Ansatz. This property for the specific case
of a single qubit and two qubits inside a
waveguide was pointed out in [59] and [30].
The main advantage of the real-space ap-
proach is that the asymptotic scattering cal-
culations do not assume any information on
the pulse shape or the internal degrees of free-
dom of the system. Any pulse that is local-
ized around zg and has a narrow band in the
frequency space can be shown to modulate ac-
cording to the scattering parameters t3 and ry.
Furthermore, as long as Jy < 2, this finding
can apply to other quantum networks (see [60]
for an example of a different setting) in addi-
tion to the linear chain explored in this paper,
since the derivations performed in Appendix
H only require the overall transmission and



reflection coefficients, t3 and r{. Here, the in-
ternal interactions of the system are only im-
portant for how they affect the output field.

5.2.2 Atom excitation probability

The excitation probability of individual atoms
can be found by using the Born rule for the
time evolved state given in (30) as

2

0= [ Eenth) (Brls©) i

(32)

where we recall that for negative k values we
simply set e_1(—k) = e1(k) from the symme-
try of the system. In Appendix A, we show
the correspondence between this formula and
the results of [59] for a single atom inside a
waveguide.

5.2.3 Example: Gaussian pulse

Here, we consider a specific example of a reso-
nant Gaussian pulse with kg = Q and Ak = Jy
incident from the far left (we consider decay-
ing and rising exponential pulse shapes in Ap-
pendix G). A Gaussian-shaped photon is not
a regular state and the residue theorem can-
not be applied. The integral in (32) can still
be computed analytically for most cases (for
a Gaussian pulse, always) by applying the
convolution theorem for Fourier transforms
as discussed for the single-qubit case in Ap-
pendix A. In summary, the time evolution of
a Gaussian state in (32) comes down to an
integral of a Gaussian function and the scat-
tering parameters. Since the Fourier trans-
form of scattering parameters is a weighted
sum of decaying exponentials, a final analyt-
ical result can always be obtained by taking
the convolution of a Gaussian function with
decaying exponentials. As a comparison, we
note that this analytical result could not be
obtained via the existing methods, where nu-
merical methods were employed [26, 30]. As
our purpose in this section is the illustration
of the pulse scattering, we compute this inte-
gral numerically for simplicity.
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The projection of the input pulse onto a
scattering eigenstate is (see Appendix H)

(E4IS(0)) = VR F(k — ko) R0 (k).
(33)
Then, the excitation probability of the m!"
atom is
dE,

[ =
(34)

as By, = k for kK > 0. For the Gaussian input
with Ak = Jy, we choose f(k — ko) such that
[ dk|f(k — ko)|> = 1 to ensure normaliza-
tion:

2
P, = ko)e—iAk(t—$o)

6m(k)f(k -

)

(8

2
e 4JO

(k= ko) = ———,
Jov/2m

where, for a resonant Gaussian pulse, y = 0.
Then, the integral becomes

(35)

(a2 2
00 e 4J2 At )
P, = / dAge,————e 2RO
-9 \/ 2w Jo/ 2T
(36)

where by e,;, we mean e,,(|k|). Now, setting
A — yJo and assuming Jy < §2, we obtain

2 2
‘/ d\/>emey7

271'

—iyJo(t—zo)

(37)

The excitation probability of each atom for
the Gaussian pulse scattering is shown for dif-
ferent 6 values in Fig. 5. For the most part,
we see similar behavior for the Gaussian pulse
as for the decaying exponential pulse in Ap-
pendix G, where the left atom is excited with
higher probabilities than others (except for
0 = m, then the excitations are the same)
and the excitation probabilities are higher for
6 close to m/2. Our numerical calculations
show that, for a Gaussian pulse with Ak = Jy,
the maximum probability of excitation for the
first atom is achieved for 6 = 7/2, where
the separation between the imaginary parts
of two poles (p; and p9) is zero. For this case,
the maximum probability P™**(t) ~ 0.6266
is achieved at ¢ xo + 0.713/Jy.  Simi-
larly the (maximum) excitation probability is

~
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Figure 5: Singe-photon scattering in a system of three qubits in the Markovian limit. The excitation probability
of each atom during interaction with a single photon pulse shaped as a Gaussian centred at xg = 10/Jy. For
each value of 0, the parameter £ was optimized to maximise the excitation probability for the left atom. In
d), the linearization assumption causes all three excitation probabilities to be the same, which is accurate as

long as L ~ O(Q71) and Jo/Q < 1.

lowest for § = m, with P™n(¢) ~ 0.075 at
t = 29+ 0.289/Jy and the separation between
the imaginary parts of two poles (p; and ps)
are largest with 3Jy.

Fig. 5 reveals a very important property
of this system: the excitation probability for
a chain of atoms can exceed the maximum
excitation probability P™#*(¢) = 0.5 for a sin-
gle atom. To understand this property, let
us consider the excitation of a single qubit by
a one-sided excitation pulse. The excitation
probability of a single qubit upon one-sided
excitation is bounded by 0.5 [30]. This can
be understood by decomposing the incident
pulse to its even and odd modes, where only
even modes can excite the single qubit. For
a one-sided pulse, the decomposition is as fol-
lows

1

1S(k)) 7

(1Se(k)) +[So(K))),  (38)

where all states are unit normalized and
(Se(k)|So(k)) = 0. Then, the excitation prob-
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ability can be given as

Psingle(t) = ‘ <€single|S(k)> |2

1

§| <esingle’Se(k)> ‘27

(39a)
(39b)

where we note that a single qubit does not
couple to odd modes. Here, |egingle) is the
excited state for a single atom. The term
| {esingle|Se(k)) |2 < 1 corresponds to excita-
tion of a qubit via an even pulse, where the
upper-bound is achieved for a rising exponen-
tial in the even basis [61]. This leads to the
bound Piingle(t) < 0.5. Consequently, when
three qubits are present, the collective system
couples to the odd modes as well, leading to
the increased excitation probability of the first
qubit for certain cases.

Numerical optimization of the integral in
(32) for a resonant Gaussian pulse reveals
that the maximum excitation probability of
the first atom is ~ 0.6356 for Ak = 1.175Jp,
0 = /2 and t = 0 + 0.685.J; .



6 Time dynamics of observables in
the non-Markovian regime

In this section, we consider the non-
Markovian regime, where the Markovian ap-
proximation is no longer valid. In this regime,
the propagation time of photons within the
multi-qubit system is no longer neglected,
since the qubits are separated by large dis-
tances L ~ O(Jy'). Consequently, the time
evolution dynamics of single excitation states
can no longer be simplified to a residue cal-
culation. Rather, a single integral must be
calculated to obtain the time evolution. We
show that the simplicity of this approach gives
access to previously unexplored physics.

While it is possible to find fully analytical
solution using the real-space formalism for the
non-Markovian case, it requires a longer dis-
cussion. For the scope of this paper, we focus
on numerical simulations and discussion of the
underlying new physics coming from the non-
Markovian behavior. We plan to introduce
the analytical method in future work.

As in Section 5, we consider a chain of three
qubits. We first study the time dynamics
of atom excitation probabilities and emitted
single-photon pulses, and then study the scat-
tering of a single photon pulse from a system
of multiple qubits.

6.1 Spontaneous emission

As we did in the Markovian case, here we con-
sider spontaneous emissions with the initial
condition where the central qubit (m = 0)
is excited, and begin by defining the relevant
observables.

6.1.1 Observables

The observables of interest are, as in Section
5, the survival probability of the middle qubit
P.(t), the excitation probability of the side
qubits Ps(t), the probability density of emit-
ted photons P(x,t), the probability that pho-
tons are radiated outside of the system P, (t)
and the probability that photons are trapped
inside the system Py(t).
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Using the time evolution operator and the
Born rule, the observables can be computed,
analogously to the Markovian case:

00 ) 2
Py =| [T LleoPe 0w
0o T
> dk Ae|?
Pty = | [ Giler+ecaffe il (aob)
oo ) 2
Pt =| [ S By e a0c)
oo 2T
—L 0o
Pw(t):</ +/ )dxp(x,t), (40d)
—0 L

L

Py(t) = / drP(a.t) (40e)
Here, e, are the excitation coefficients com-
puted for £ > 0 values, i.e. for scattering
eigenstates where the field is initially incident
from far left. It is important to note that the
phase is no longer linearized and we keep the
definition of 8 = Q1L # kL for convenience.

6.1.2 Numerical results

First, let us consider the time evolution of ob-
served quantities as shown in Fig. 6. In this
figure, Q = 100Jy and 6 = 4.017 (correspond-
ingly, L = 4.017Q7! ~ 12.6Q7!). This value
of 0 is chosen specifically so that we can ob-
serve the formation of the quasi-bound states,
where the excitation is trapped inside the sys-
tem for longer times due to highly subradiant
decay modes. (Recall that for 8 = nm, there
are BIC in this system as discussed in Section
3.1.)

Fig. 6(a) illustrates the time evolution of
observable quantities. Since 6 = 4.017 in-
cludes both superradiant and subradiant de-
cay modes, the survival probability P.(t) de-
cays quickly for earlier times. Similarly, Py(t)
increases rapidly until time ¢ = L, where the
kink at ¢ = L implies that the excitation is
transferred to P, (t) as the photon leaves the
system. There is an interesting feature hap-
pening both at P, (t) and Ps(t). They remain
zero until ¢ > L, which is a manifestation of
the causality principle. We plan to discuss
causality in the real-space formalism in de-
tail in future work, for now it is important
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Figure 6: Spontaneous decay of an initially excited middle qubit for § = 4.01w. (a) The survival P.(t)
and side-atom excitation Ps(t) probabilities, as well as the probability that the photon stays bounded within
the interval [—L, L] (P,(t)) and the probability that the photon gets radiated to the waveguide (P, (t)) are
shown for the non-Markovian (exact (NM)) case. The inset figure shows the comparison between the survival
probability in the Markovian limit and the exact non-Markovian probability. (b) The comparison between
the emitted photon probability density in the Markovian limit and the exact non-Markovian counterpart at
t = 2J;'. (c) and (d) illustrate the probability densities of the emitted photon within [~L, L] and the
formation of the quasi-bound state. For all figures, § = QL = 4.017 and Q = 100.Jy.

to note that there has been a long discussion
about whether the rotating-wave approxima-
tion leads to non-causal behavior [62-64]. A
quick recap on the causality behavior of the
single qubit case can be found in Appendix A.

For later times in Fig. 6(a), the survival
probability almost saturate around non-zero
values and decays extremely slowly such that
the excitation stays within the system even
for longer times. This marks the formation of
the quasi-bound state, where the highly sub-
radiant pole, which was also shown in Fig.
2, dictates the collective behavior. Similarly,
Py(t) stays non-zero for longer times, mean-
ing that some portion of light is trapped be-
tween the qubits. The inset figure shows the
inability to describe the system in the Marko-
vian limit, as the survival probability calcu-
lated using the Markovian approximation can
no longer match the exact dynamics.

The inset figure in Fig. 6(a) confirms
our surprising finding about SSR related to
Fig. 2, where the non-Markovian decay rates
can be larger than the sum of the individual
qubit decay rates (which is the maximum for
the Markovian collective decay rates). We
believe that this may be a case of a self-
stimulation process due to time-delayed co-
herent quantum feedback ([37] exploits this
feedback mechanism to excite a BIC through
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multi-photon scattering), where after ¢ = 2L,
the initially emitted photon density travels
back to the middle qubit and stimulates fur-
ther emission. This explanation becomes
more likely when we notice the kink at =z =
tp — 2L ~ 1.75J5 " (t; = 2J;" is the time
of the snap-shot shown in Fig. 6(b)) for the
radiated photon density P(x,ts) as shown in
Fig. 6(b). For 1.75J;" < = < 2J;', the
emitted photon density has a monotonic be-
havior, where the decay in P(z,ty) is less than
the Markovian case. Since the self-stimulation
process can occur only after t = 2L, we ob-
serve a change in the behavior of P(x,ts) at
x =ty — 2L ~ 1.75,]0_l and the decay be-
comes more rapid than the Markovian case.
In any case, the more rapid decay in the non-
Markovian case is linked to the interference
between the emitted photon that has travelled
back to the qubit position and the initially ex-
cited qubit itself.

The Figs. 6(c-d) illustrate the quasi-bound
photon probability density at times ¢t = 3L
and t = 2J; ! The arrows mark the radiated
probability density corresponding to those
times. For t = 2J; ! the quasi-bound state
is formed and the photon probability density
takes the form of an (almost) sinusoidal func-
tion and is nearly zero at the qubit positions.
For t = 3L, the quasi-bound state is not com-



pletely formed but is in superposition with
the portion of light that is to radiate outside
of the waveguide. For ¢t = 2J; ! the quasi-
bound state is formed and leaks to the con-
tinuum with a subradiant decay rate. The two
most subradiant (NM) collective decay rates
for this case are I'; ~ (0.000057 —0.02)~y and
I's =~ (0.001 —i0.05)y9. The nonzero imagi-
nary components of the collective decay rates
corresponds to the slight detuning in the fre-
quency of the quasi-bound state and the real
component corresponds to the actual expo-
nential decay. As 6 — 4m, both collective de-
cay rates tend to zero, where the actual bound
state is formed. To describe the exact case of
bound-state formation, one could either use
the usual time evolution operator for 6 # nmw
given in (8) and take the limit as § — 47 or
use the time evolution operator given in (10)
that includes bound state contributions.

Non-Markovian behavior is usually associ-
ated with oscillatory behavior and beating
effects [33, 46]. This is easily understand-
able for the multi-qubit case that we consider
here. As the time delay introduced by inter-
system propagation becomes more significant,
the survival probability oscillates rapidly and
the oscillation period grows more and more
linearly with L. While the oscillation pe-
riod and the strength of oscillations grow, the
overall decay rate decreases due to the non-
Markovian effects as we have discussed in Sec-
tion 4.2. This leads to a situation depicted in
Fig. 7. For this system, as the qubits are
close to each other such that 8 = 0.2, the
survival probability agrees with the results ob-
tained via the Markovian approximation. For
f# = 10.27 and 6 = 40.27, the Markovian ap-
proximation is no longer valid, although the
survival probabilities would be equivalent in
the Markovian limit. As the distance between
the qubits increases, the survival probability
gains oscillatory behavior and the excitation
is trapped within the system for longer times,
as we have suspected.

In this section, we used the real-space for-
malism to describe non-Markovian behavior
of a spontaneously decaying multi-qubit sys-
tem. While previous work either resorted
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Figure 7: Exact survival probabilities of an initially
excited middle qubit for 6 0.2 + nmw, where
n = 0,10,40. In the Markovian limit, all three
cases are equivalent, whereas only § = 0.27 case
agrees with the Markovian limit. For larger 6, the
survival probabilities show non-Markovian character-
istics more dominantly. Here, 2 = 100.Jy.

to modifications of their Markovian formal-
ism or drawing analogies to/taking limits of
similar physical models, we used only text-
book quantum theory to describe complicated
non-Markovian behaviour. This is only possi-
ble because the real-space formalism we intro-
duce in this work is elementary and requires
little prior knowledge to perform calcula-
tions or generalize to other multi-qubit/multi-
waveguide systems. Next, we consider a scat-
tering problem for completeness.

6.2 Pulse
states

scattering for single-photon

In Section 5.2, we considered scattering prob-
lems where kL ~ QL is a valid assumption.
In this section, we investigate a scattering ex-
periment where the qubit separation is large,
L ~ O(Jy?') instead of L ~ O(Q71), and
therefore the linearization assumption is no
longer valid. Here, we find that the back-and-
forth exchange of the photon between atoms
becomes more apparent and echoes are ob-
served in the transmitted and reflected pulses
with intervals ~ 2L, which can be interpreted
as the delayed feedback time following the ap-
proach of [37], implying that some portion of
light is trapped inside the system. Some frac-
tion of the trapped light is released upon col-
lusion with the side atoms and we observe it



as echoes.

Unlike in the Markovian limit, the descrip-
tion of time evolution in the non-Markovian
regime requires knowledge of BICs, and nu-
merical integration must be employed to de-
scribe time evolution of both regular and ir-
regular states (unless a more complicated re-
summation method is used, which we will in-
troduce in a future work). In such cases,
however, computing the evolution governed
by (10) boils down to a single numerical in-
tegral; just as it does for irregular states in
the Markovian limit. In the past, scattering
of irregular states in both regimes was stud-
ied using complicated numerical methods such
as the finite-difference time-domain (FDTD)
method [26, 30]. The numerical approach pro-
posed here is much simpler.

6.2.1 Observables

The excitation probabilities of individual
atoms can be found using (32). Since the
atomic separation is O(J; '), the interior field
between the atoms can no longer be neglected.
To distinguish between the right-moving and
left-moving modes between the atoms, we
need to identify their respective contributions
to the probability density function, P(z,t).
The transmitted (right moving) and reflected
(left moving) pulse probability density func-
tions are Pg(z,t) = | (0] Cr(x)|S(t))|* and
Pr(z,t) | (0| CL(z)|S®#))|>. The to-
tal probability density function is therefore
P(z,t) = Pr(x,t) + Pr(x,t) + “highly oscil-
lating terms that average to zero”, which is
properly normalized? in the limit Jy < ) .

4To understand how dividing the probability den-
sity P(z,t) into right- and left-moving pulses pre-
serves the normalization, we can write the most gen-
eral waveform for the pulse as ¢ (z,t) = ¥r(z, t)e™* 0”4
Yr(w,t)e” "0 where g, (z) is the waveform for
the right- /left-moving pulse with zero average momen-
tum and ko is the average momentum of the initial
pulse. The probability density function of the general
pulse is P(z,1) = [t:(w,t)|2 = [r(w)? + |bo (@) +
2Re[r(2)Y} (x)e*™0®]. The interference term oscil-
lates rapidly and can be neglected (its integral aver-
ages to 0) as long as koAz > 1. Since Jo < ko and
Az ~ O(J; "), the normalization is preserved.
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6.2.2 Numerical results

Fig. 8 shows the single-photon pulse echoes,
as well as oscillations in atomic excitation
probabilities for resonant and non-resonant
Gaussian pulse scattering with L = 10/Jp.
The echo interval is ~ 2L as expected. For
illustration purposes, we choose xo = 15/Jp,
t = 100/Jy, © = 100Jy and x = Jy for the
non-resonant Gaussian pulse (See Equation
(35)). Since the qubit separation is larger
than the pulse-width in real-space, the exci-
tation of the qubits can be considered as a
local process . As explained in the previous
section, for local interactions between a qubit
and one-sided excitation, the atomic excita-
tion probability is bounded by 0.5 due to odd
modes not coupling to the qubit. This shows
another difference between the Markovian and
non-Markovian regime, as for pulses confined
within Ax < L, the atomic excitation cannot
exceed 0.5 in the non-Markovian regime.

7 Beyond conventional problems

Up to this point, we focused on conven-
tional waveguide QED problems, namely
spontaneous emission and scattering in one-
dimensional chains. In this section, we sketch
out new problems that are easily accessible
only through the machinery of the real-space
approach.

7.1 Relationship between collective decay
rates and symmetry

In this section, we touch upon a possible
causal relation between the collective decay
rates of a system and its symmetric and anti-
symmetric coherent excitations. Our prelimi-
nary investigations suggest that certain states
cannot have access to the complete decay rate

“While we do not show it here explicitly, each pulse
shape shown in Fig. 8 can be computed by considering
local transmission and reflection of the Gaussian from
each qubit. For example, the pulse localized at xz =
—85J; ! in Fig. 8(a) can be obtained by multiplying
the frequency spectrum of the Gaussian pulse with two
transmission and one reflection coefficients for a single
qubit, thus illustrating the locality of the interactions.
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Figure 8: Scattering of a single-photon Gaussian-shaped pulse by a three qubit system with a large atomic
separation L = 10/Jy, where the atoms are either on or off resonance with the photon. In (a) and (c), we
show emitted photon probability densities for reflected Pr(x,t) and transmitted Pr(x,t) modes. The vertical
dotted lines indicate the positions of the qubits. Note that there are periodic photon emissions (echoes)
with intervals ~ 10/Jy due to the trapped light inside the system. Moreover, the first peak of reflected light
and the excitation probability of the first atom are identical to the ones in the single-atom system explored
in Appendix A, hinting that the atomic separation is large enough such that the pulse can completely pass
through the first atom before reaching another. For both cases, ¢t = 100J; ' and 29 = 15.J; . The insets
are zoomed-in portions of the larger plots. Note that while the transmitted and reflected parts of the field
are discontinuous at x = 0, the entire field is actually continuous. In (b) and (d) we show the corresponding
excitation probabilities of the individual atoms as a function of time.
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spectrum. First, we will discuss what we
mean by (anti-) symmetry for a linear chain
of N qubits. As a motivation for this complex
problem, we will then discuss the case of two
qubits and set up the big picture for future
work.

It is important to note that the symmet-
ric and anti-symmetry coherent excitations of
qubits form a basis for the qubit subspace.

For even N, the basis states can be given as

|Bj) = ;5 (lej) +lens1-),  (41a)
0) = ¢1§ (lej) = lens1g)),  (41b)

where |E;) and |O;) (each with dimension
N/2 for even N and (N — 1)/2 for odd N)
correspond to symmetric and anti-symmetric
basis states. For odd N, there is an additional
even state ’e(N+1)/2> that completes the ba-
sis. As we argue in this section, these ba-
sis states are more physical than we first re-
alize, where we conjecture that they divide
the collective decay rates into two subsets:
symmetric and anti-symmetric collective de-
cay rates. The symmetric (anti-symmetric)
states have access only to symmetric (anti-
symmetric) collective decay rates.

To motivate this, let us consider two identi-
cal qubits coupled to a 1D waveguide, where
the qubits are situated at x = {—L/2, L/2}.
The symmetric and anti-symmetric qubit
states for the N = 2 are

IE) = ¢1§ (lex) +les)) . (420)
0) = ¢1§ (lex) — [e).  (42b)

Moreover, the collective decay rates of the
two-qubit system (calculated in (87) for two
non-identical qubits) become

'y =7 (1 + eie) .

Let us consider the time evolution of |1(0)) =
|E). Recall from (12c¢), where we take p =
—iI'/2, its time evolution is

(43)

2

Res
Ap=—il;/2

[(#) [lg(k)) e7i25t] - (44)

j=1
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where [g(k)) = 5 (ef +¢5) (|1Bx) + |E_p))
with ej/, corresponding to excitation coeffi-
cients for the first and second qubits. Af-
ter straightforward algebra, we find the time

evolved state:

(1)) = e~ (FiR)Y

V2
,/t d.%'l—‘l
—1 e

0 2v/2Jy

le1) +le2))

(B +in) (t—x+§)c;r{(x) 0)

0 I L
_i[t Q%Q—HHQ)(HHQ)CE(@ 0),
(45)
where we note Jp/Q2 < 1 implies that I'; L <«
1. Moreover, the position (x) and time ()
have units J; 1 It is important to note that
Plip(t)) = |4(t)) such that the state stays
symmetric for later times ¢. This is expected,
as the parity is a conserved quantity since it
commutes with the Hamiltonian. We show
that [1(t)) satisfies the Schrédinger equation
in the Markovian limit in Appendix 1. As
can be seen from this expression, the sym-
metric coherent excitation of the qubits decay
through only one of the decay modes, corre-
sponding to the decay rate I'1, whereas it does
not have access to the anti-symmetric decay
mode I'y. A similar calculation shows that |O)
does not have access to I'; either. This obser-
vation agrees with our findings for N = 3 in
Section 5 and the findings of [35], where for
N = 5, the survival probability of the initially
excited middle qubit depends only on 3 de-
cay rates and not 5 of them®. Consequently,
we conclude this discussion with the following
conjecture

Conjecture (Symmetric and Anti-Symmet-
ric Collective Decay Rates). The space of col-
lective decay rates is divided into two sub-
spaces called symmetric and anti-symmetric
collective decay rates. The symmetric (anti-
symmetric) states, that have +1 eigenval-
ues under the general parity transformation

%Note that number of symmetric collective decay
rates is N/2 for n even and (N + 1)/2 for odd n,
inline with the dimensionality of symmetric states.
Similarly, the number of anti-symmetric decay rates
is also consistent with the dimensionality of the anti-
symmetric subspace



P, have access to only symmetric (anti-
symmetric) collective decay rates.

We leave the proof of this conjecture as
an open problem. We believe the alternative
method of finding collective decay rates, that
we discuss in Appendix F, can be beneficial
for proving this conjecture. Further evidence
for the conjecture can be found by computing
the eigenvectors of the coupling matrix dis-
cussed in this appendix and checking that for
any eigenvector |£), P& = £¢ holds.

7.2 Towards pulse-shaping with quantum
emitters: exploiting collective decay rates

In Section 5.2 (and Appendix A) we saw that
the shape of the single photon strongly affects
the excitation probability of a given system.
To ensure high-efficiency coupling to different
systems, it is therefore important to prepare
pulses with different shapes.

To explore this possibility, we first write
down the most general form for the symmetric
emitted pulse probability density of a black
box system, that is coupled to a 1D waveg-
uide, by generalizing (24) for a general trans-
mission and reflection coefficients ¢, and ry
(and symmetric excitation coefficient e; for a
coherent single excitation of qubits)

Res

P(x,t) = Res

) 2
[(tb + m)eZe‘“A’““"f"} ‘

(46)
where we realize that (z|Ey) = t,e**0(k) +
(reih® 4 e=k¥)Q(~k) for x > 0. Terms con-
taining e*** vanishes due to causality argu-
ments. Considering (46), we can clearly see
that the shape of the emitted pulse is dictated
by the poles (hence, collective decay rates) of
the system. Therefore, the decaying exponen-
tial shape emitted from the single qubit can
be traced back to the single pole of —iJy of
the scattering parameters.

This opens up the possibility for pulse-
shaping using quantum emitters. By adjust-
ing the collective decay rates of the complete
system, one can prepare pulses that might be
beneficial for various applications in quantum
information processing. This adjustment can
be made through any of the following:

24

e Increasing the number of qubits in the
system

e Introducing qubits with different energy
separation §2; and coupling energies J;

e Using multiple waveguides and d > 1 di-
mensional topologies of waveguide/qubit
systems

To see the effects of changing the qubit num-
ber on the emitted photon probability density,
see Fig. 9. For larger N, the initial decay
is faster, whereas the tail of the exponential
remains finite for longer times. We plan to
discuss this further in future work.
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Figure 9: The emitted photon probability density
P(x,t) (normalized w.rt. Jy) for N = 1,5,7,21
identical qubits in a linear chain, where § = /2 and
t=10J;"

7.3 Breaking bounds: near-perfect coher-
ent excitation with a one-sided pulse

In this section, we demonstrate the power and
efficiency of the real-space formalism by con-
sidering pulse scattering from a system of up
to 500 identical qubits coupled to a 1D waveg-
uide. For comparison, [26] considered time
evolution in the presence of N = 5 identical
qubits and [42] considered the case of N = 10
qubits in the subradiant regime. We pick the
qubits to be identical for simplicity, but mod-
elling non-identical qubits is equally computa-
tionally efficient. The results obtained in this
section are computed via a standard personal
computer and not using a cluster.

Similar to Section 5.2, let us consider a
pulse that is incident from far left (see Fig.



10). The initial state can be given as in (29),
where kg = () for a resonant pulse. We con-
sider two types of pulses: Gaussian and Rising
Exponential.

2

—xq 0 L

Figure 10: A Gaussian pulse, initially located at x =
—Zg, is incident upon a linear chain of N qubits.
The qubits are initially in the ground state and are
separated by quarter (resonance) wavelength (6 =

w/2).

7.3.1 Example: Gaussian pulse

Since the Gaussian pulse is an irregular state,
the observables can be expressed by a simple
integral, which can be computed via numeri-
cal integration methods.

For the Gaussian pulse,

fay =YV (47a)
I
Fky = = (47b)

where we call o the pulse width (or frequency
deviation) in units of Jy. Then, the exci-
tation probability of the mth qubit, where

m=1,...,N, becomes
a2 2
oo T 402 .
P, (t) = / dAkemeie_’Ak(t_xO) ,
-0

2o/ 2m
(48)
where e, is the excitation coefficient of the
mth qubit obtained with the initial conditions
t1 =0 and x4 =0 in (77).
The excitation of the first and second qubit

upon pulse incidence is shown in Fig. 11
for 0 = Jy, g = 10J§1, 0 = /2 and
N = 5,10,15,20 total qubits. For N = 5,

this reproduces the results of [26]. As appar-
ent from the figure, the excitation probability
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Figure 11: Excitation probabilities of first and second
qubits in a linear chain of N = 5,10, 15,20 qubits
upon a resonant Gaussian pulse incidence. The pulse
is situated at zp = 10.J; and has pulse width (fre-
quency deviation) o = Jy. Note that quantities are
normalized with respect to Jy.

of the first qubit does not change significantly
for various N values, whereas the maximum
excitation probability is somewhat saturated
around ~ 0.60. The excitation probability of
the second qubit oscillates within time inter-
vals ~ O(Jy '), which is caused by photon ex-
change between the many qubits inside the
waveguide. Note that similar oscillations can
be observed for the first qubit, although they
are not as visible due to the large initial exci-
tation probability.

As another observable, we consider the to-
tal excitation inside the multi-qubit system,
which is defined as

N
Piot(t) = > Pult).

m=1

(49)

In Fig. 12, we maximize both Pj(¢) and
Pyt (t) for increasing qubit number N. We
denote the maximum quantities as P"** and
P, respectively. Since both quantities are
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Figure 12: The optimum excitation probability and
corresponding o for the first qubit and the complete
system (all qubits). Note that quantities are normal-
ized with respect to Jj.

given by simple integrals, the numerical max-
imization can be carried out in Mathemat-
ica by using the NMaximize function. The
saturation of P around 0.60 is clear for
N > 10, which has also been observed in Fig.
11. Moreover, the total excitation probability
increases monotonically and is Plog* ~ 0.9445

for N = 30.

7.3.2 Example: rising exponential

For the rising exponential, we can obtain fully
analytical expressions since the state is reg-
ular. Consequently, we can compute observ-
ables much more efficiently than the Gaussian
case. For example, Py (t) can be computed
for N = 500 qubits using a personal computer
within 24 hours.
For a rising exponential,

f(z) = V20e 70 (x), (50a)

9= 2

Using these, the excitation probability for the

(50b)

mth qubit is

% dAy V20e Ar(t=0)
Py (t) = m

2

(51)
We note that the integrand of this expres-
sion has only one pole in the upper half plane
(UHP) and N poles (corresponding to e,,) in
the LHP. The contour is closed from the UHP
for ¢t < xp and LHP vice versa. P.(t) is con-
tinuous at ¢ = 0 by construction. So, if we are
clever about it, we can maximize this quantity
by simply considering only the single UHP
pole. First, let us realize that for ¢t < xg,
P,,(t) is described by a rising exponential,
whereas for t > xg, it is described by a decay-
ing exponential due to the residue theorem.
Then, P,,(t) is maximized for t = x( regard-
less of 0. Then, we can calculate P,,(t) for
t < xg by using the only pole at Ay, = io, take
the limit ¢+ — z¢ and maximize >2_, Pp,(0)
over all possible o values. The result gives the
maximum total (coherent) excitation proba-
bility P2,

In Fig. 13(a), we plot PZ&* that is ob-
tained through maximizing over ¢ values for
each N. As N increases, the total coher-
ent excitation increases monotonically, where
PiEe* ~0.99996 for N = 500. This shows that
using a rising-exponential, one can achieve ef-
fectively a unity collective excitation proba-
bility using only a one-sided pulse, which is
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Figure 13: (a) The maximum total excitation prob-
ability, Pio2*, upon incidence of a rising exponential
pulse for § = 7/2. The gray line marks the unity
excitation probability. (b) The individual excitation
probabilities of each qubit for N = 500. Note that
for N = 500, P2¢* ~ 0.99996.



impossible for a single qubit as we show in
Section 5.2. Moreover, the excitation proba-
bilities of each qubit follow an exponential fit
as shown in Fig. 13(b). We note that this
exponential decay of excitation probability is
not unique for N = 500. In fact, we observe
that the qubit excitations follow an exponen-
tial fit even for N = 10, while the exponential
fit becomes more fitting as N increases. The
reason behind this phenomenon is currently
not known to us and is a subject for future
work.

While previous sections focused mainly on
generalizing the theory and observing new
physical phenomena, this section has shown
the advantages of the real-space approach
for modelling time evolution of single-photon
states, where one can obtain fully analytical
expressions for time dynamics in the presence
of even 500 qubits.

First, we reproduced some results from
the literature and then considered multi-qubit
systems that are two orders of magnitude
larger than the ones considered so far in
the literature. In doing so, we also showed
that nearly-perfect coherent excitation can be
achieved for a linear chain of qubits via a one-
sided rising-exponential pulse. Similar ef-
fects have been observed in the literature for
cascaded setups [65, 66]

8 Discussion

The virtue of the real-space approach lies in
its elementary” nature. In developing the for-
malism in this work, we just had to find the
energy eigenbasis, use the spectral theorem
to construct the time evolution operator, and
apply the Born rule to find observable quan-
tities. We did not introduce any approxima-
tions beyond those already established in the
literature. This is precisely the abstraction
level taught in elementary quantum theory
[49].

"Following the definition by Richard Feynman, el-
ementary does not mean easy to understand. Elemen-
tary means that very little knowledge is required ahead
of the time to understand something except to have an
infinite amount of intelligence.
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So, why can’t we achieve the same with
the momentum space approach? Because we
can’t diagonalize the Hamiltonian exactly in
the momentum basis. To see why, consider
the Heaviside function O(z) and its Fourier

transform O (k) ﬁ&(k)%— \/21?1@
we see discontinuities, we can identify the ex-
istence of ©(z) and thus it is easier to con-
struct superpositions of ©(x) multiplied with
complex superpositions. This is precisely how
the Bethe Ansatz for the energy eigenstates
are constructed for the real-space Hamilto-
nian. The same approach is not as trivial for
the momentum space Hamiltonian, as there
is not a clear physical intuition behind why

O(k) would emerge in the scattering problem.

Whenever

One might be cautious about working with
photon densities in position space, due to po-
tential causality issues associated with pho-
ton wavefunctions. We have not encountered
these yet. We see no violation of causality,
nor have we seen it appear in previous work
on the real-space approach. Furthermore, our
results that overlap with those predicted us-
ing other methods match exactly. We plan,
however, to explore this in future work.

The real-space approach is popular for solv-
ing steady-state waveguide QED problems.
But it might be dismissed (see for example
[59]) because it requires calculating the sta-
tionary eigenstates, which might be consid-
ered too arduous if one’s goal is “only” steady-
state solutions. In this paper, we argued that
finding the stationary eigenstates is a worth-
while pursuit, since they reveal much more
than the steady-state behaviour of a waveg-
uide QED system.

We demonstrated this approach for N = 3
identical qubits in a linear waveguide, and
later showed that it can be generalized to
quantum networks with multiple emitters and
multiple waveguides, as well as non-identical
systems. We then used this approach to study
some interesting physics. In particular, we
studied spontaneous emission and scattering
from multi-qubit systems. We also studied
subradiance, superradiance and bound states
in continuum. We discussed new phenom-
ena such as subdivision of collective decay



rates into symmetric and anti-symmetric sub-
sets and non-Markovian superradiance effects
that can lead to collective decay stronger than
Dicke superradiance. And we discussed pos-
sible applications such as pulse-shaping and
coherent absorption.

Our analyses led to several new insights
about these systems: (1) the specific way in
which collective decay rates dictate the col-
lective behaviour of the system, (2) that exact
causality emerges for the real-space approach,
(3) that the non-Markovian behavior of multi-
qubit systems is extremely easy to obtain us-
ing the real-space approach, where we simply
omit the linearization of kL, (4) that the real-
space approach explains the black box behav-
ior we see in waveguide QED systems, and (5)
that the real-space approach makes it possible
to calculate exact non-Markovian dynamics.
These insights are discussed in Appendix J.

We also showed that this approach can
be used to study time dynamics, of a pho-
ton interacting with up to 500 qubits, us-
ing a personal computer. We therefore ex-
pect the formalism presented in this paper
to enable the study of complicated quantum
networks such as multi-dimensional waveg-
uide arrays [67]. Furthermore, we expect
that applications such as quantum logic [1],
quantum memory [68], quantum photon rout-
ing [69, 70], as well as quantum sensing [71]
and communication [2, 3] will also benefit
from analysis using the real-space approach
for scattering phenomena.
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A A single qubit inside a waveguide

In this appendix, we shall investigate photon emission from a single qubit inside a waveguide.
The scattering energy-eigenstates for a single qubit have been found in [50] and the scattering
parameters ¢, r and e are given as follows

t = cosbe®®, (52a)
7 = isin be', (52b)

sin be® (52c)

e = —

where b = arctan(—Jp/Ay) is the phase shift. We first find the survival probability of the atom
upon excitation:

< dk gl —2Jot
Py (t) = —|eg|ce TR = e 20N, (53)
oo 2T
Here, we find that vy = 2Jy is indeed the single emitter decay rate. Moreover, we can find
the probability density function of the emitted photon with respect to = by using (23) and the
scattering parameters given in (52):

< dk v —ingt]? —2Jo (t—z])
P(z,t) = Py (z|Eg) epe = Joe Ot — |z|). (54)
oo 27
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Figure 14: The excitation probability for the Gaussian pulse with kg = 2 and Ak = Jy, where 2y = 10/T
and T' = 2.Jy. Our formalism reproduces the excitation probability found in Fig. 2b of [59].

Here, we can realize that the probability density function for photon emission taking place
between time ¢ and ¢ + dt can be found as by simply changing P(t) = 2P (2, T)|(r—|2|)=t, S &
photon at distance |z| from the center is emitted at a time ¢ = 7 — |z|, where 7 is the current
time and 2 comes from the symmetry. To probe this, we can find the probability that a photon
is emitted until time ¢ as

t t ,
/ dt'P(t') dt’ = / dt'2Jge 270" = (1 — e7200h), (55)
0 0

which is indeed equal to 1 — Py.(t) as expected. This suggests that for a single atom inside
a waveguide, the probability of photon emission is linearly proportional to the probability of
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atomic excitation. Assuming that a photo-detection device is situated at a distance z = L,,, we
can find the detection probability density function as

Py(t) = Joe 20t=L0)Q(t — L), (56)

which is consistent with the literature [72] (See Complement 5.B).

Now, we can focus on the excitation probability of the two-level system upon incidence of a
decaying pulse as in (97). The excitation probability is

2 2

= 2J3r%e 2,

(57)
where we set £ = Jy and 7 = t — xo to allow comparison with [31]. Now that we have the
analytical expression for P,.(t), we can find its maximum value and corresponding ¢pax:

2 e*iAk(tfmo)
Pe(t) = |RGSAk:—iJo [ﬁ 6’1@]

§ — iy

\/ﬁjoefiAk(tho)
= |Resa, =—iJ,

(Jo — iAg)?

2
tmax = T0 + Jy 'y Po(tmax) = 5 0.27. (58)

Note that this is half of the value found in [31], since we consider a waveguide with left and
right moving modes. Similar computation for a single-direction waveguide results in Pe(tmax) =

4 ~0.54 as found in [31]. A similar calculation with the rising exponential yields 0.5 for 7 = 0,

5~
tBhe theoretical maximum for a one-side excitation of a single qubit [30]. Moreover, we can also
reproduce Fig. 2(a) of [46] by using a non-resonant decaying exponential as shown in Fig. 15.
In this figure, we define I' = 2Jy and d;, = Qp — 2, where Qp is the average momentum of
the pulse. This figure clearly shows that the real-space approach can be used to capture single

qubit non-Markovianity quite easily.
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Figure 15: The excitation probability of the single qubit upon incidence of a decaying exponential. §r, is given
in terms of I' = 2.Jy and £ = 0.05T" to reproduce Fig. 2(a) of [46].

Finally, we show that using (32), we can find the excitation probability of the atom inside
the waveguide for an incident pulse. For a Gaussian pulse with kg = 2 and Ak = Jy, we can
find the excitation probability of the two-level atom as shown in Fig. 14 through numerical
integration, reproducing Fig. 2b of [59]. Since ey, is Lorentzian for the single qubit case, we can
even find an analytical solution. In fact, for a more general Gaussian with Ak = Jyo, we can
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find the excitation probability analytically as

2 2

Yy

00 exp(——2 — in)
/m dy ;:-z

1
2mo/ 21

V2 1 1—202
— VT exp( - 2J07')erfc2 <W> . (59b)

4o 202 20

Poaus(T) = (59a)

This is consistent with the findings of [59] in the limit 2y — —oo such that the pulse does not
interact with the qubit initially (See Eq. B3 from [59], which becomes the same integral as in
our (59b)). Note that the excitation probability depends on 7, and not on ¢ or zy independently.
This is again a manifestation of the causality principle: the pulse has to travel a distance ~ zq
before it can have an effect on the excitation probability. Increasing x( increases this distance,
hence the overall excitation probability depends only on t — xg. We stress that this is true
for asymptotically free pulses, where, initially, the qubit is in the ground state and the field
amplitude is effectively zero at the qubit position.

For a more general Gaussian pulse with width Ak, we can use numerical maximization to
find that the maximum excitation probability of the atom is ~ 0.40, for Ak = 1.46Jp and
t=x0+ (2Jo)"" (7 = 0.5, "), which is in agreement with the literature [73] (Up to a factor
of two, which comes from the fact that we consider waveguides that are non-chiral, hence the
excitation probability from one-sided pulses are divided by two). Hence, we have shown that
our approach agrees perfectly with the existing literature on single qubit excitation.

Before we finish this discussion, we write down the time-evolved state for the case where the
qubit decays spontaneously to the waveguide, which is calculated using the time-evolution in
(9b). The time-evolved state |1(t)), that describes the spontaneous emission of the single qubit
to the 1D waveguide can be written as

[V(8) = [q(t)) + |[¥r(2)) + [¢r(r)) (60)
where each component is
qu( )) = e orte) (61a)
Vr(t) = ~iv/To [ dae”HED () — O(x ~ ]Ch(x) 0] (61D)
() = —iv/To / dae= N[O (g 4+ ) — O(a)|C) () [0) (61c)
—t
Now, we show that the time evolved state satisfies the Schrodinger equation
0
iy [0(t) = (Ho+ Hp) [¥(t)) , (62)
where the free and interaction Hamiltonian are
=Qle) (e H—z/ dz (CT( )ac (z) — C (z)ﬁc (x)) (63a)
N oz~ R\ g B ’
Hy = VT (o1[C1(0) + Cr(0)] +0{CL0) + CH(0)]) (63b)
Let us start with the time derivatives
i0; [q(t)) = —i(Jo + i) [1hg(t)) , (64a)
i0h [WR() = —i(Jo + i) [UR() + VIeCh(t) (64b)
iy i (b)) = —i(Jo +iQ) [¥r(t) + VIoCl (- (64c)
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Next, let us find the action of the free Hamiltonian (Hp) on each part of [i(t))

Ho [9q(t)) = Qg (1)) , (65a)

Ho r()) = =i(Jo +i9) [wa(t)) — v/ Joe™ P HMCE(0) [0) + ViR Ch(H) (65b)

Ho [r,(t)) = —i(Jo + ) [¢r(t)) — V/Joe™ PHDECT (0) |0) + /ToCh (- (65¢)
Finally, we consider the action of the interaction Hamiltonian (Hj) on each part of [¢(t))

Hi g 1)) = v/ Joe™ P CR(0) + CL(0)] [0), (662)

Hi [0r(t)) = —iJo®(0)e e ), (66D)

H | () = —idoe™ P (1 — ©(0)) Je) - (66¢)

From our calculations, we see that i0; |4(t)) = Ho |q(t)) + Hr |¢pr(t)) + Hr |¢r(t)). Similarly,
10 (|Yr(r)) + |¥L(t))) = Hr|e(t)) + Ho(|vr(t)) + |¥r(t))). Consequently, the time evolved
state given in (60-61) satisfies the Schrédinger equation for ¢ > 0 and describes the spontaneous
decay of an initially excited qubit. As can be seen from this expression, the excited qubit
component of the state decays with a decay rate Jy and the position component consists of
a superposition of two decaying exponentials travelling away from the qubit, as we argued at
the beginning of this section. This state has an interesting feature: it is exactly a solution to
the Schrodinger equation, whereas in evaluation of (9b), approximations are performed. This
is due to the fact that all these approximations are exact in the limit Jy/Q — 0, and the time
evolution of single qubit states has similar behavior, i.e. follows a similar physical pattern, for
all Jy/€Q values within the accuracy of the rotating-wave approximation. This property will be
discussed further in future work, where we plan to show that the cure of causality violations in
the RWA by the extension of energy integrals to negative energies (as explained in [64] and had
been employed by Fermi [62]) is not a trick, but rather has a physical basis.

B Waveguide QED with networks of quantum emitters

In this appendix, we extend the analysis beyond three qubits in a 1D waveguide. We re-derive
the results for quantum networks with various emitters that can be modelled as identical two-
level systems. We show that, in the end, the generalization comes down to simply summing
over all possible stationary states, in analogy to the case of three qubits. This demonstrates
the power of the real-space approach. At the end of this section, we argue that this approach
can also be used for non-identical quantum emitters.

For the general network, the Hamiltonian can be written as H = Hy + H;, where Hy contains
the self energies and H; is the interaction Hamiltonian that includes point-like interactions. In
real space, the Ansatz for such a system can be written as

= > [T adwcemn s Y @k, (67)

=e{WG} se{qubits}

where, = represents all possible modes of all 1D waveguides inside the network, qﬁg) (z) includes
the field amplitudes with the initial condition i, C;(:c) is the creation operator corresponding to
the mode = and egi) is the excitation coefficient for the qubit denoted by s. If the interactions
are point interactions, then the field amplitudes gﬁg) (z) change only at the atomic positions
while behaving as free fields inside the waveguide.

Without loss of generality, we assume that the energy eigenstates are normalized as

<E,Ef)]E£j )) = 27d(k — p)di;. Here, there is one aspect that requires further attention. When
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finding the energy eigenbasis, we usually consider the scattering of light that is initially inci-
dent from one side of the system. It is not always clear whether the (degenerate) eigenstates
corresponding to the same momentum value found via this method are orthogonal. [35] doesn’t
mention this for the linear chain of qubits, but one can prove this using the transfer matrix
properties. For the general case, we keep in mind that this normalization is only valid in the
limit Jy/Q — 0 such that the left and right moving particle subspace does not mix. This en-
sures the orthogonality condition for the degenerate eigenstates found by considering one-sided
excitations.

B.1 Number of Markovian collective decay rates

In a network with N qubits, the maximum number of Markovian collective decay rates can be
at most N. To illustrate this fact, we first consider a generalization of Equation (6¢) from [35]:

> Vzds(ws) - Apel) =0, (68)

where x4 is the position of the qubit denoted by s and Jz is the coupling energy of the = mode
to the qubits. This equation needs to be satisfied at each atomic position, such that ]E,(;)) is
an energy eigenstate.

Now, let us construct a coefficient matrix A, such that Az = b, with x including the scattering
parameters and b including the initial conditions. The coefficient matrix A includes the coeffi-
cient of the scattering parameters in the generalized versions of the equations (6a-c) from [35].
The scattering parameters, x, diverge for Ay values, for which A is singular. As a result, the
characteristic equation for the poles of scattering parameters can be given as det(A(Ay)) =
Since A has only N distinct Ay values, each at different rows according to (68), and the phase
is linearized in the Markovian limit; the characteristic polynomial for the poles is of Nth order
for Ay and can have only NN distinct solutions p’. Then, let us define p equal to p’ if p’ is in the
lower-half plane or on the real axis; or as p* if p’ is in the higher-half plane. In analogy with
the three qubits case, these solutions relate to the decay rates via a I' = 2ip. In a future work,
we will prove that the poles p’ of the scattering parameters are indeed in the LHP or on the real
axis, consequently p = p’. This theorem requires a long discussion of the causality principle in
waveguide QED and is therefore left as a future work.

B.2 Time evolution
As before, we start by assuming that there are no BICs present in the system. Then, the time
evolution operator is
Z / ’E(Z ](CZ) |e—iEkt_ (69)
ie{I.C.}

Here, i represents the initial conditions (I.C.), two for each 1D waveguide present in the system.
Then, the time evolution of any regular state is

- ¥ / B (B w0, (70a)

1e{I.C. }

_ / k) exp{—iAxt), (70D)

/ dA’f k) exp{—iAt}, (70¢)
Z e: )) exp{—iAxt}], (70d)
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where in the second line, we substitute k¥ — Ay and define |g(k)) = Zie{l.c_}<E](:)|1/J(O)>|E’(;)>.
The rest is analogous to the case of three qubits considered earlier, with the final step being
meaningful only in the Markovian limit as we have discussed in Section 3. Here, p are the lower
half plane poles of \E,g”} and <E,8) |, and consequently of scattering parameters. As in the case of
three qubits, the poles contain complete information of the collective decay rates of the system.

As a result, the collective decay rates in a quantum network consisting of 1D waveguides can
be read-off from the scattering parameters. The collective decay rates govern the time evolution
of the overall system in the Markovian limit. This intuitive approach to the time evolution in
waveguide QED can be employed as long as the coupling energy between the qubits and light
is smaller than the resonance frequency and the distance between the emitters is L ~ O(Q™1)
such that any exponential in the characteristic equation can be linearized:

where L;; is the distance between the two emitter and 6;; is the corresponding phase acquired
by light.

Networks with non-identical emitters and/or with non-radiative decay can also be described
in the Markovian limit, as long as the resonance energies of the emitters differ only ~ O(Jy),
with Jp = min{.J=}, so that the phase linearization is valid. We will do this for a linear chain in
Appendix C. The non-Markovian limit is trivial to describe by calculating the final step of time
evolution as a numerical integral. Overall, adding more qubits or waveguides to the system
changes only the scattering eigenstates |E](;)> and not the theory itself. Since the scattering
parameters can be found via solving a linear set of equations, the real space approach is easily

scale-able to large systems.

B.3 Single-photon pulse scattering

In section 5.2, we discussed pulse scattering in the Markovian limit for a linear chain of three
qubits and found that the transmission and reflection amplitudes are determined by the k-
mode scattering eigenstates, inline with the findings of [30]. The calculations in Appendix H
present a direct proof that this property is more general than the specific example of a linear
quantum emitter chain and are not specific to the Markovian limit. The scattering by any “black
box” system can be described by the external degrees of freedom, such that the scattered light
amplitudes vary via the scattering parameters of the stationary states. In such a case, the
asymptotic field amplitudes for each k-mode can be written as

’ws(kJ — OO)‘Q = ‘w(k7 O)tS(k)’27 (72)

where |s(k,t — 00)|? is the output field amplitude corresponding to the (normalized) scattering
parameter ¢s(k) and |(k, 0)|? is the input field amplitude.

We thus see that the real-space approach can be used to find collective decay rates in com-
plicated systems with multiple quantum emitters and multiple waveguides. In doing so, the
approach can be used to study subradiance and superradiance, BICs, single-photon pulse scat-
tering and time evolution of system observable such as excitation probabilities.

C Waveguide QED with non-identical emitters: a general theory

In this appendix, we set up the theory for studying non-identical emitters. We do this for a
single waveguide coupled to N qubits, but the derivations are more general and can be employed
for multi-waveguide systems.
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Figure 16: The Bethe ansatz for a linear chain of non-identical qubits with various energy separation €2; and
coupling energies J;.

An illustration of the linear chain consisting of N non-identical qubits is given in Fig. 16.
The real-space Hamiltonian for this system is H = Hy + Hy + H;, where

N
Ho =Y Qjlej) (ejl (73)
=1

is the free Hamiltonian of the qubits, where |e;) is the excited state of the j* qubit and ; is
the energy separation for qubit j,

Hy = itw, /_ o:o dz (c;(x)gmcL(x) - c;(x)aaxcR(x)) (74)

is the free Hamiltonian of the field, where v, is the group velocity of photons inside the waveguide
and Cg/r(z) are annihilation operators for right/left moving photons, and

N [e.e]
o= 30 [ dwse = (G- 1)1) ((Chia) + € @) + e | (75)
i=1 —o

is the interaction Hamiltonian between the systems, where J; is the coupling energy between
qubit j and light. From now on, we set h = vy, = 1 for algebraic simplicity, as usual.
Similar to the identical qubit case, we start by writing a Bethe Ansatz for a general eigenstate

0o N
B)= Y [ desz@Cl@)]0)+ 3 e e, (76)
oo j=1

Ec{WG}"

where e; is the excitation coefficient for the jth qubit and ¢r/r(v) are field amplitudes for
left /right moving photons. Note that e; and ¢/ (7) depend on 6§ implicitly. Owing to delta-
function interactions, the field becomes free for x # (j — 1)L. Hence, we can write an Ansatz
for the field amplitudes ¢ g/, () as:

tleikw x <0,

or(z) = tjpele=i (G 1)L <z < jL, (77a)
typreFlE=NLL g S (N — 1)L,
rie” ke x <0,

or(x) = rjpe”Fe=Il (j — 1)L <z < jL, (77b)

rypre” Rle=NI g s (N — 1)L,
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where t1, 1, ty4+1 and ry4q are picked for different initial conditions. For a photon incident
from the far left (|E%)): t1 = 0, ry41 = 0 and for non-radiating conditions (for BIC, |D;)):
t1 =r = tny1 = ry41 = 0. For |E_j), one can mirror the state |Eg) w.r.t. the center of
the linear chain, as in Section 3. For now, we suppress the implicit k-dependence for brevity
and discuss the Markovian limit and corresponding additional conditions. The non-Markovian
regime calculations can be performed analogous to Section 6.

Having set an Ansatz for the energy eigenstates, we apply the condition H |Ey) = Ey |Ey),
with Fjy = |k[, to obtain the equation of motion for the scattering parameters:

tj+167i0 —t; + i\/jjej =0, (78a)
’I“j+16i9 — T = i\/jjej = 0, (78b)
VGRQ-%W)—(Ak+5ﬂQj=0, (78¢)

where we linearize the propagation phase as usual 8 ~ QiL, and define A, = E — Q1 and
j=1,...,N. Moreover, for j # 1, we define §; = Q; — §; such that Ey — Q; = Ay + §;. For
the case of non-identical emitters, the Markovian limit has an additional constraint, apart from
J; /2 < 1. So that the interacting frequencies are confined within |Ag| < O(J;), the detuning
of the qubit separation frequencies should satisfy |§;| ~ O(.Jy). Consequently, the linearization
of 0 around (; are all equivalent. If this is not satisfied, the linearization assumption of the
phase is no longer valid.
There are two possible methods that could be used to solve (78):

1. By writing the equations as a matrix equation with 3N unknowns and solving this linear
system. We used this method in Section 3, and it is reasonable to do so here as long
as the system is small. But for large systems, this method requires unnecessarily high
computation and is therefore inefficient.

2. By using the transfer matrix method and obtaining a recursive algorithm to find each
scattering parameter. This method preserves the polynomial shape of the scattering pa-
rameters and leads to the fully analytical results that we desire. We will use this method
to find the scattering parameters.

There is also an additional method considered in [35]. We could use the transfer matrix method
and draw parallels to one-dimensional photonic crystals [74]. But apart from the fact that this
method can only be used for identical emitters, even in the identical qubit case, the numerator
and denominator of scattering parameters are no longer polynomial in A, hence the poles of
the system cannot be obtained easily. As we have seen so far, the complex analysis plays an
important role in time evolution of single-photon states. Therefore, this method is also not
preferred for obtaining fully analytical results.

To use the transfer matrix method, we shall first reshape (78) and eliminate the e; degree of
freedom:

. J; J;
tivre V=1 —i L |t; —i—r; 79
gH1e ( ZAk+5j> J ZAk-i-(sjrj? (792)
] J .
0 . J ; J
; =i——t; 1+i———— | t5. 79b
Tj+1€ lAk—f‘CSj]—i_( +1Ak+5j>3 ( )
Writing this in matrix form and re-arranging terms, we obtain the matrix equation
. J; . .
t] — 1 + ZAki(sj ZAk‘]HS' 6_19 0 tj+1 80
rs - o J]- 1—34 Jg 0 e’i@ Tii1 . ( )
J ZAkJr(sj ZAkJréj I+
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Then, we find the transfer matrix for a unit cell, which contains the scattering from the qubit
j and a propagation phase 0, as

. J; . J; .
r_ (Mistn it ) (0 0) _ (5) g (b0 s1)
i=| 0 o =T )

Ak+5j Ak-‘r(Sj J -7+

By recursively relating them, we can eliminate the internal scattering parameters and obtain
the relation between the external fields for the initial condition, where the photon is incident

from far left, as
Iy IN+1

where T'=T15.. Ty = Hj-vzl T;. From this equation, we can find the external transmission and
reflection coefficients as

tnt1=1/(T)n, r1=(T)ar/(T)11- (83)

Here, (A);; represents the ijth element of the matrix A. Then, the rest of the transmission and

reflection coefficients can be found via
) o (1

where we define S; = Tj__ll...TQ_ '771. Finally, the excitation coefficients can be obtained from
(78) as

(tj +15)
Ak + 5j '

As an example, let us consider the two qubit case and find the collective decay rates. A
perturbative result for the decay rates has been obtained in [53], here we find the complete
expressions. Since the collective decay rates can be read-off from any scattering parameter, let
us find the reflection coefficient r1 by employing the transfer matrix approach:

e =/ Jj (85)

1 (Jl (52 + Ag + iJQ) + J262i9<Ak — iJl))

= — - 86
E (Ak + iJ1)((52 + A+ iJQ) + J1J2€219 ( )

Then, the two collective decay rates are
Lijp=(J1+J2—ida £ A), (87)

where A = \/(Jl + 10y — Jo)2 + 4J1J2e2%. For J; = Jo and 6 = 7, expanding around small
) leads to the perturbative results obtained in [53]. Furthermore, we emphasize that for a
photon incident from far right, exchanging J; <= Jo, setting do — —do results in the same
expressions for the collective decay rates up to a global imaginary shift of i, which is simply
due to the redefinition of A; and is just a re-normalization of energy levels. This shows clearly
that collective decay rates are indeed independent of initial conditions, as expected.

Moreover, the two-qubit system with identical emitters becomes transparent for a Fano min-
imum ([75]) such that 71 = 0, where the transmission becomes unity [35]. By the same logic,
for the general two-qubit system, we can find the A value corresponding to the zero reflection
as

J1 (52 — Z'Jgezie + iJQ)

A = . . 88
K J1 + Joe2i® ( )
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Figure 17: The transmission and reflection intensities, |t2|? and |r;|? respectively, for a photon incident from
far left to a two qubit system with Jy/J; = 2, 3 = 0.3J; and § = 0.857. The intensities show Fano type
line-shapes and the system no longer becomes completely transparent for the Fano minimum.

However, this frequency detuning, for which 1 = 0, is complex, whereas only real Ay values
are physical. This means that the expression in (88) is not the Fano dip and the reflected pulse
intensity may not be zero for the general case. Consequently, the two-qubit system is only
transparent if the qubits are identical. In fact, the minimum value of the reflection intensity
takes a very complicated form, which is different than the real part of (88). The transmission
and reflection intensities are illustrated in Fig. 17 for a specific example. As apparent from the
figure, the intensities show Fano type line-shapes and the system no longer becomes completely
transparent for the Fano minimum. We emphasize that (88) reduces to the result found in
[35] for J; = Ja = Jy and 62 = 0, which is Ax = —Jptan(f). The two-qubit system becomes
completely transparent for this special case.

We note that while we have not considered the non-radiative decay, the non-radiative modes
can be modelled as waveguides (as long as the dispersion relation can be linearized) and inter-
actions between the qubits can be described via this formalism by using multiple waveguides,
whose only effect is to increase the dimensions of the transfer matrices.

D Parity (mirror) symmetry

We define the general parity operator, P, that acts on the combined Hilbert space of the single-
excitation states. This operator simply mirrors the state w.r.t. the center of the multi-qubit
system. When the multi-qubit system is centered at x = 0, its action on creation operators is
defined as

]50;]51‘ - U}L\f*jﬂ = p‘€j> = len—j+1) (89a)
PCl (2)P1 = C} p(—2) = Plz) =|-x). (89b)

Then, the symmetry states are defined as the eigenvectors of P that have +1 eigenvalues,
whereas anti-symmetric states correspond to —1 eigenvalues. For example, for odd N, the state
€(N+1)/2> = ‘6(N+1)/2>. Note
that the general parity operator leads to the natural definition of even (symmetric) and odd

where the initial qubit is excited is a symmetric state since P
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(anti-symmetric) basis operators, as discussed in the literature (for example [6])

Cll@) = — (Chi) + Ch(=)) (90a)
Cifa) = 5 (Chiw) = Ci(-a). (90D)

such that PCZ /O(x)pT = iC’Z /O(:c). Since a single qubit couples to light symmetrically, odd (e.g.
anti-symmetric) states cannot excite single qubits, which will be discussed in details in Section
5.2.

Let us now use the parity operator to find the energy eigenstates. First, it is straightforward
to show that the parity operator commutes with the Hamiltonian [H, P] = 0. Then, let |E},) be
an eigenstate of the Hamiltonian but not an eigenstate of the parity operator. (Any scattering
state, where the photon is initially incident from one side, fits this definition.) Then, P |E}) is
also an eigenstate of the Hamiltonian since:

H(P|Ey)) = PH |Ey) = PEy|Ey) = E(P|Ey)). (91)

Consequently, |F_x) = P |Ex). Throughout the paper, we refer to this procedure simply by
stating that |E_) can be found via symmetry considerations.

E An example for how residues contain information on BIC

For the bright state |B), the system completely couples with the light and the residues corre-
sponding to subradiant poles are zero. The reason why the subradiant residues are non-zero for
cases, where the initial state has non-zero overlap with subradiant states, can be explained as
follows. Consider |# — n7| ~ §. In this case, the subradiant state couples to the light slightly
and decay is described solely by scattering eigenstates, since there are no BICs. Any regular
state |1) can be written as

) = Zai |Di) + B|B) . (92)

For any § > 0, no matter how small, the residue has a finite value for t = 0, which is the complex
coefficients corresponding to states |D;) and |B) (which is, for example, a; for the coefficient of
|D1)). Taking the limit 6 — 0 then results in «; for |D;), since «; is obtained for each value of
0 > 0. The exponential term corresponding to dark states become unity, since the subradiant
poles become zero.

To illustrate how a state approaches the dark state as 8§ — 7, let us compute the overlap
| (D2|(t)) |, where |1(0)) = |ep). This overlap is important, because it is a continuous function
of § # m for any t for the time evolution operator presented in (8), whereas it becomes discon-
tinuous when 6 # m. In this case, the time evolution given in (10) should be used. Now, of
course, the immediate question is whether this discontinuity is a physical one, that is whether
we can remove it by using (8) asymptotically at § — 7 and omit the definition of (10). The
overlap is discontinuous at # = pi, since the scattering part, which constitutes (8), does not
contribute to this overlap exactly at § = 7, whereas they do for any other value 6 # .

Defining § = m—#0, we compare the overlap as a function of time ¢ (with units J; 1) for various
d. As ¢ smaller, this illustrates taking the limit § — 7. Since |D3) does not decay as § — 0,
the coefficient | (D2|(t)) | is also expected to be non-zero and non-decaying in this limit. For
d = 0, this term can only be obtained from the BIC contribution in (10), where the residue
obtained from the scattering states would not contribute to this coefficient since |Ds) is a dark
state. Fig. 18 shows that the residue obtained from the scattering parameter is non-zero in the
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limit 6 — 0. Thus, the time evolution in the limit § — 0 can be described by taking the limit
of the residues found using only the scattering eigenstates.

0.8164"

0.8162F

0.8160-

[(D2[3(t))]

0.8158"

0.8156= . . . . o
0.0 0.2 0.4 0.6 0.8 1.0
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Figure 18: The overlap | (D3] (t)) | where [1(0)) = |eg) for various § = m — 6. As § gets smaller, the system
approaches the regime where BICs appear. Taking the limit 6 — 0, the information on BIC is stored in the
residues of the poles.

This shows that the proposed strategy yields the correct results, because the limit of the
residue converges to the coefficient that would have been obtained via the complete time evo-
lution operator with the BIC contribution.

F An alternative method for finding collective decay rates

In this appendix, we show an alternative method for finding collective decay rates for the
special case of a linear chain of N qubits. This method is less efficient than simply finding
the poles of the scattering parameters, but it provides further insight into the physics of the
system. Specifically, this method shows that each collective decay rate corresponds to a specific
coherent excitation of the system. This means that one can always prepare initial states that
excited only one of the N collective decay rates.

Let us start with the following Ansatz for an initially excited system following the approach
by [26]

N

() =D aj(t)e™ " [eg) + Ix(2)) (93)

=1

where |x(t)) includes the photon contribution with the initial condition |x(0)) = 0. Then, the
relation between «;(t) is found in [26] and can be given in terms of the variables defined in this
paper as

N
a(t) = =Y JoeFlay (t — L|j — k), (94)
k=1

where ¢;(t) denotes the time derivative of o(t). [26] uses a more general form of this equation
to calculate observables (upon pulse incidence). Here, we will take another approach and show
that this equation can yield the collective decay rates. We also note that here we are not
interested in the time evolution of |x(t)).

Since we are interested in the collective decay rates, we take the Markovian limit such that
ap(t — L|j — k|) =~ ay(t) since L ~ O(Q71) and t ~ O(Jy!). Consequently, (94) can be written
as a matrix equation

() = —Ja(t), (95)
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where 2(t) = [a1(t),...,axn(t)] includes the qubit excitation coefficients and (.J) 5 = Joe?l ¥
is the collective coupling matrix. The solution to this equation is trivial (as long as J is non-
singular, which it is for 6 # n; for # = nm, the existence of BIC changes the time evolution as
discussed in Section 3.2) and can be given as

N
a(t) =Y pe g, (96)
I=1
where & and I';/2 are eigenvectors and eigenvalues of the matrix J, and f5; are some complex
constants that can be determined by the initial conditions ®. This expression ties back to (12c),
where I'; are indeed the collective decay rates.

This derivation reveals an important property of collective decay rates: they have one-to-one
correspondence with states (|£;)) in the qubit subspace. It is important to note that these states
are not guaranteed to be orthogonal, although they are distinct and span the qubit subspace.
While [26] discusses the eigenvalues and eigenvectors of the coupling matrix and associates, in
passing, eigenvalues with collective decay rates when considering a pulse scattering problem,
here we proved this relationship, which is only accurate for the Markovian limit.

The eigenstates of the matrix are the basis states of the N distinct decay modes. Conse-
quently, each collective decay rate corresponds to a physical decay mode. This leads to the
following phase space picture: the initial coherent excitation of the qubits can be written in
terms of a linear combination of decay mode basis states. Consequently, a decay mode can
only be accessed if the overlap is nonzero”. Hence, there is always a specific coherent excitation
(i.e. one that overlaps perfectly with the corresponding eigenvector) of qubits that can excite
a single decay mode only. We discuss this property in the next section in the context of pulse
shaping by engineering collective decay rates. Moreover, this property also explains how decay
rates can signal the existence of BIC and why the dimensionality (N — 1) of BIC is linked to
the number (N — 1) of zero collective decay rates. Since for § = nr, the J matrix has N — 1
zero eigenvalues, the corresponding subspace has dimensionality N — 1 and can be constructed
with orthogonal basis states. We also infer that subradiant states become BIC in a continuous
manner as # approaches nm.

On another note, combining the one-to-one correspondence of decay modes and |¢) with
the symmetric and anti-symmetric collective decay rates conjecture, we realize that the states
|&) have either even or odd parity such that P|§) = ). The even (odd) parity states
correspond to symmetric (anti-symmetric) states. The implication is easy to prove via proof
by contradiction. Assume |£1) has both symmetric and anti-symmetric parts. Then, it can
be decomposed into both parts and hence can excite certain symmetric and anti-symmetric
modes (that have non-zero overlap with the symmetric/anti-symmetric part of |£;)), which
contradicts the conjecture. The fact that the decay mode states, ), are either symmetric or
anti-symmetric, and not a mixture of two, is intriguing. For now, we do not have a conclusive
proof for this, although we believe that the highly special shape of the J matrix might be the
first step towards understanding this phenomenon.

We emphasize that finding the collective decay rates via this method is inefficient, since it
requires diagonalization of a N x N matrix. Using the transfer matrix method is efficient,
since it eliminates the internal degrees of freedom and deals with only 2 x 2 matrices, as shown
in Appendix B. For example, using the transfer matrix method, the collective decay rates for
N = 30 can be found almost instantly, whereas it is nearly impossible to diagonalize the coupling

SHere, we assumed, for simplicity, that J has a non-degenerate spectrum, which does not affect any of the
arguments that follows.

Tt is important to clarify that the eigenstates are not necessarily orthogonal, so the overlap is not taken as
orthogonal projections, but according to the angles between eigenstates. This leads to the fact that a system
prepared in a certain eigenmode has non-zero probability to be observed at another mode. Nonetheless, this is
not an interference effect of different modes, since any ZT(b)served quantity decays only with the decay rate of the
initially prepared mode.



matrix. This phenomenon illustrates clearly why real-space approach outperforms the existing
methods [26] by a large margin. We also emphasize that this approach works only in the
Markovian limit. To find non-Markovian collective decay rates, one needs to use the machinery
of the real-space approach.

G Pulse scattering examples for the Markovian regime

Here we consider two more distinct pulse shapes: 1) Decaying Exponential, i.e. the shape of
a photon emitted from a two-level quantum emitter [72] and 2) Rising Exponential, which is
known to give maximum excitation for a single qubit [31] (see Appendix A).

G.0.1 Decaying exponential

A decaying exponential pulse corresponds to a regular state, therefore we can obtain analytical
expressions for each atomic excitation probability, as well as the transmitted and reflected pulse
shapes. For a (resonant) decaying exponential incident from the left, f(x) in (29) takes the
form

fl@) = V265 0(~x). (97)

Then, the state of the pulse at time ¢ is

0o —iAg(t—xgo —iAg(t—xo
1S(¢)) =/ dQAk Ve . ( )|Ek> =) Res Ve . ( )|Ek> : (98)

oo 2T f — lAk ” Ar=p’ f L 7AV?
where p’ includes, in addition to three poles of the system, an additional pole (—i) introduced
by the decaying exponential. It is important to note that this expression has no UHP poles,
hence the interaction between the photon and the system occurs only for ¢ < zy, which is a
consequence that photons travel with a speed v, = 1. Consequently, the causality principle
manifests itself in this scattering problem by the absence of poles in the upper-half plane. The
derivation for the single photon case ([31]) can be found in Appendix A. The emitted photon
probability density P(x,t) can also be found analytically, but we don’t show it here as it doesn’t
offer any more insight into the formalism.

We do, however, study the atom excitation probabilities. In particular, we optimize the
decaying exponential and ¢ to maximize or minimize the (maximum) excitation probabilities.

The maximum excitation probability for the left atom is P™*(¢) ~ 0.454, and occurs when
the system is parameterized by § = 7/2, and the pulse is parameterized by £ = 0.73.Jy and
t=ux9+ 1.43/Jp.

The fact that the maximum excitation is obtained for §# = 7/2 can be explained as follows.
The imaginary parts of the poles correspond to decaying exponential. If the decay is large,
then the coupling between the light and the atom is strong and the atom can be excited by the
incoming pulse more easily. Nonetheless, an excited atom can decay faster through high decay
rate modes, leading to a trade-off. Therefore, from an heuristic point of view, it is expected that
the highest probability of excitation is achieved for the case where the relevant decay modes
have similar decay rates, which is when 6 = 7/2.

In the other extreme, the minimum (maximum) excitation probability is P™"(¢) = % ~ 0.09,
and occurs when the system is parameterized by 8§ = m, and the pulse is parameterized by
€ =3Jpand t = xg + (3Jy)~!. This can be understood as follows. When 6 = 7, out of three
decay rates, two of them become zero, leading to dark states that do not couple to the incoming
pulse. Therefore, the collective system behaves as a two-level system between the ground state
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Figure 19: Single-photon scattering in a system of three qubits in the Markovian limit. The excitation
probability of each atom during interaction with a single photon pulse shaped as a decaying exponential
centred at xyp = 10/Jy. For each value of 0, the parameter £ was optimized to maximise the excitation
probability for the left atom; the optimal values are a) £ = 0.94Jp, b) £ = 1.12Jy, ¢) £ = 0.73Jy and d)
& =3Jy. In d), the linearization assumption causes all three excitation probabilities to be the same, which is
accurate as long as L ~ O(Q71) and Jp/Q < 1.
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and the bright state |B). This explains the excitation probability % of individual atoms, since
the overall qubit excitation of e% (See Appendix A) is divided equally between them.

We can also optimize the system when a subset of the parameters are fixed. Fig. 19, show
excitation probabilities for which P_; () is maximized for different 6.

G.0.2 Rising exponential

A rising exponential photon corresponds to a regular state. Therefore, the discussion on rising
exponential pulse is identical to the decaying exponential. For brevity, we report directly the
result. The rising exponential pulse results in a maximum excitation of ~ 0.6808 for the first
atom for £ = 0.97Jp, 7 = 0 (with 9 — o0) and § = 7/2. This shows that the rising exponential
is a more suitable one-sided pulse to achieve a maximum excitation probability in comparison
to decaying exponential and Gaussian pulses.

H Derivation of scattering pulse shape

In this appendix, we carry out the derivations of S(z < 0,2z0) and S(z > 0,2z¢) from the
general formula of S(z,t) given in (31). Here, the time is chosen as ¢t = 2z so that the qubits
are practically in the ground state. We shall start by dividing the integral into two parts

SGe.0) = 5 ([ b (el B (B P4+ [~ ab (el ) (BalSO0) e ), (99)

where by F_j; we mean the scattering energy-eigenstate for a photon far from right. For the
next step, we find

(Ex|S(0)) ~ / " Fo -+ mo)em R dy = /27 (K — hg)ei(hHo)eo, (100a)

—0o0

(E_1|S(0)) ~ 0, (100b)

where we make use of the fact that f(z + z¢) ~ 0 for x > 0 and [C’L(x), Cr(z)] =0.
Now, we set t = 229 and assume z > 0 to find the transmitted signal, then

1 00 X ~ . )
S(z,2x0) = m/o dk (t361m> F(k — ko)l k—ko)zo o —2iExzo (101a)
e~ thoro oo " 5 "
_ ikx _ —ikxg
=5 )k (tae™™) F(k — ko)e k. (101b)

Here, we recall that Ey = k for k > 0 and f(k — ko) ~ 0 for k < 0. Then, we have

efzkoxo

V21

where we realize that S (k, 2xg) = e_i(k0+k)x0~t3f(k — ko). Now, as |S(k,0)|? = | f(k— ko)|2, we
have that ’S_:,_(k, 2%0)’2 = ’tgf(k - k’o)|2 = |t35(k, 0)‘2
For the reflected signal, we assume x < 0. Then, we find

S(:Ua 21‘0) =

/ dk t3f(k — ko)e®@=20), (102)

1 [ : N A :
S(z,2x0) = \/%/0 dk (e”“E + rle_m) F(k — ko)elk—ko)zo o =2iExzo (103a)

—ikozo oo , - ,
T |k (rie=™) F(k = ko)e~™ee, (103b)
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as the first term of the integral (which includes e?*(=%0)) corresponds to a function localized at
x =z and is therefore ~ 0 for z < 0 and Fy = k for k > 0. We first realize that f(k — ko) ~ 0
for k£ < 0 and expand the order of integration to —oco. Then, we change k — —k

—ikoxo 00 5 )
S(a, 220) = QV%/ dk r1 f(—k — ko)elk@to), (104)

where we realize that S_(k,2x¢) = e'k=ko)zop) f(—k — kg). Then, |S_(—k,2x0)|? = |rif(k —
ko)|? = |r1S(k,0)|?. The narrow band pulses scatter indeed corresponding to the stationary
eigenstate scattering coefficients t3 and ry.

| The time-evolved state |¢)(t)) satisfies the Schrodinger equation (N = 2
Qubits)

In this appendix, we show that the time evolved state given in (45) satisfies the Schrédinger
equation

(D) = (Ho + Hi) [9(0) (105)

where the Hamiltonian for the 2 qubit system is

Ho=0 3 Jedlel+i [ de(Clw)s o) - Chi)g-Cals) ) (1064)
j:{—l,l} -
Hi =V Y. (olCL(iL/2) + Cr(iL/2)] + o5[CL(GL/2) + CR(GL/2)]),  (106b)
j:{_lvl}

where we pick z = 0 as the center of the 2 qubit system.
We re-write (45) once more while scaling I'j — 2I'; for convenience:

1 .
W)(t» _ <6F1tz9t(|e ‘62 . Z/ dr—1 Iy —(T1+iQ) (t—a+L/2) CT( ) |0>

V2
(107)
—z/ da: Dy (4 (t4a+L/2) C’T( )|O>>
Our calculations are performed in the Markovian limit, where QL = 60, JyL ~ 0 and
CL/L(iL/Q) o~ eﬂ@/QC};/L(O). The latter can be proven using the definition of CR/L( x) as

T

a Fourier Transform of momentum mode creation operator ap (k). This is consistent with the
time evolution in (9b), where the Markovian limit is assumed implicitly to obtain a polynomial
characteristic equation for the collective decay rates.

First, we divide |¢(t)) = |¢4(t)) + [¥r(t)) + [11(t)) into three parts as

(1) = 75 1) + o)), (108a)

Yn(0) = ‘Z/ da— e Ot 20 (0) — O — NICh@) 0, (108)
0

0u0) = % [ e e MO0 4 0) — O@IC) @) 10). (108
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Let us start with the time derivatives

10 [1hq(t)) = —i(T'1 +i€2) [Yh4(2)) (109a)
0 |hr(t)) = —i(Dy + i) [Yr(t)) + J?Toe—“mmﬂ/?o;(t) 0), (109b)
0, [p(8)) = —i(T1 +iQ) [bn()) + \/%ei@l“ﬂwcz(—t) 10). (109¢)

Now, let us find the action of the free Hamiltonian (Hy) on each part of |4 (t))

Ho [9q(t)) = Qg (), (110a)

Ho ldn(t)) = — i(Ty +i9) [n(t)) — \/1;70 ~(Oi+t-i0/2¢, () 0)
L I' (F1+zQ)L/2CT( £)|0) (1106)
\/2J ’
) . Iy SN —i
Holn(8) = — i(Ty +iQ) [$p (1)) — —= e~ Cri0e=0/26 (0) o)
2k ’ (110c)

r
n 2} — (D1 +Q)L/2 i (—t

(C1+iQ)L/2 ~, o—iQL/2 _ ,—i0/2

~—

0),

where we define e~
Finally, we consider the action of the interaction Hamiltonian (H;) on each part of |¢)(t))

Vv Jo e—Flt—iQt

Hi [g() = 75 [CH(L/2) + CL(L/2) + CR(~L/2) + C}(=L/2))]|0),  (111a)
1 ln(0) = —Tre 0 eg), (111b)
G (111¢)

From our calculations, we see that i0; |14(t)) = Ho |¥q(t))+Hr |¢r(t))+H |61 (t)). Eliminating
other components in a similar fashion, we obtain

\/2%06(1“1+i9)t6i9/2 {CE(O) + CE(O)} |0) (112a)
= \/ge—w—mt[c;@p) +CH(L/2) + Ch(—L/2) + C} (~L/2))]0). (112b)

Now, we use the condition C;r{(j:L/2) ~ e¢i9/2C’L(O), Cz(iL/Q) ~ eiw/QCz(O) (which are
consequences of the Markovian approximation) and I'y = Jy(1 4 ¢*) (with the re-scaling T’y —
2I'; at the beginning taken into account) to obtain

2.Jy cos(6) [CH(0) + CL(0)] [0) = 2 cos(6)[C};(0) + C}(0))] [0} , (113)

which shows that (45) is a solution to the Schrédinger equation in the Markovian limit.

J New insights gained

In this Appendix, we discuss various areas where we developed new insights as a result of
applying the real-space formalism to the problems considered here.
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J.1 Collective decay rates

The most important intuition that we gained is the idea of collective decay rates and how
they dictate the collective behavior. When there is an effective coupling between two or more
isolated systems, the coupling shifts the energy levels as well as the individual decay rates. In
waveguide QED, this effective coupling is mediated by bosonic fields (photons). The real part
of the collective decay rate corresponds to the coupling energy of the corresponding interaction
basis state, whereas the imaginary part (divided by 2) corresponds to the shift in energies.
Here, the interaction basis states, let’s call them |S;), are coherent excitations of single qubit
excitation states such that [S;) = >, ozg-l) lej), where agz) can be found by diagonalizing the
coupling matrix as described in Appendix F. Consequently, by finding poles of the scattering
parameters (i.e. highly mathematical objects), we gain information about the shifts in energy
levels and individual decay rates.

J.2 Causality

Another important aspect we saw is how the causality principle is related to the position of
scattering parameter poles (and correspondingly the collective decay rates) in the complex plane.
As we saw in the example of the decaying exponential, the causality principle dictates that the
poles should be in the LHP for the linear chain of N = 3 qubits. In fact, this is a more general
phenomenon and the scattering parameter poles should be in the LHP for any waveguide QED
system. We plan to prove this in future work. Here, we emphasize another important feature
of this mathematical connection. The imaginary part of the poles gives the decay rates, and
so the poles should be in the LHP for the decay rate of the multi-qubit system to be positive.
If the system had a pole in the UHP, then one of the decay rates would be negative, that
is the system would get excited with more than unity probability after some time. This is
clearly not physical. What is striking is the fact that both this unphysical behavior and the
causality principle are linked by the same mathematical identity, which can be found simply
by considering the steady-state solution without any time dynamics calculations. We have not
seen this intuition discussed in the literature.

J.3  The Markovian limit

In [35], the authors linearize the phase of photons propagating between two adjacent qubits as
kL ~ QL. A similar substitution is later referred to as a Markovian approximation in [33]. In
the Markovian limit, the inter-system propagation time of photons is neglected and only the
phase acquired by the propagating photon is accounted for. The latter is trivial to see in the
linearization process e’ ~ e a5 the acquired phase can be approximated by the phase of
the resonant photon. Neglecting the time delay portion, however, is not as straightforward to
see in this linearization. As we have seen in Section 3, the k- dependence of the phase e?*l
shifts the time ¢ by ¢ — L (See, for example, Eq. (9b)). To see this clearly, let us calculate the
excitation probability of a qubit upon pulse scattering;:

o dk 2

Po(t) = ‘ / 8 Sk, 0) exp(—iAgt)| . (114)

oo 2T
Here, let us assume that the qubit is situated at position & = L instead of x = 0. Then, e,,
would gain a phase of e?*, which would later be picked up by exp(—iAyt) term to shift the time
t — t — L. This leads to a delay of L in time. If, however, e’** was to be linearized by replacing
k ~ Q, the time delay would not be accessible since e*** does not depend on k and can be taken
out of the integral. By linearizing kL ~ QL, we effectively disregard any time delay that is of

52



order L. Consequently, the real-space approach shows how this linearization is equivalent to
applying the Markovian approximation. Consequently, the non-Markovian behavior of multi-
qubit systems is extremely easy to obtain using the real-space approach, where we simply omit
the linearization.

J.4 Black-box behaviour

The real-space approach also explains the black box behavior we see in waveguide QED systems.
When a pulse is incident on a system, the modulation of the transmitted /reflected pulse depends
only on the external scattering parameters. Each momentum mode of the initial pulse gets
modulated via the external parameters and the asymptotic shape of the pulse at t — oo can be
found without any time dynamics consideration. We proved this using the real-space approach
in Appendix H for a specific case, however the general proof is analogous.

J.5 Non-Markovian dynamics

Finally, the real-space approach makes it possible to calculate exact and fully analytical non-
Markovian dynamics. The fact that non-Markovian behavior for a single qubit system was
explored only recently [32, 46], means that probing fully analytical multi-qubit non-Markovian
dynamics would be a big step forward. We will discuss an approach to this problem in upcoming
work. For now, we note that this process is analogous to scattering from a finite well in
introductory quantum mechanics. The elementary nature of the real-space approach guides our
intuition about simple problems toward solving more complicated ones.
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