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Entanglement is of paramount importance in quantum information theory. Its suprem-
acy over classical correlations has been demonstrated in a numerous information theoretic
protocols. Here we study possible adequacy of quantum entanglement in Bayesian game
theory, particularly in social welfare solution (SWS), a strategy which the players follow to
maximize sum of their payoffs. Given a multi-partite quantum state as an advice, players
can come up with several correlated strategies by performing local measurements on their
parts of the quantum state. A quantum strategy is called quantum-SWS if it is advantage-
ous over a classical equilibrium (CE) strategy in the sense that none of the players has to
sacrifice their CE-payoff rather some have incentive and at the same time it maximizes sum
of all players’ payoffs over all possible quantum advantageous strategies. Quantum state
yielding such a quantum-SWS is called a quantum social welfare advice (SWA). We show
that any two-qubit pure entangled state, even if it is arbitrarily close to a product state,
can serve as quantum-SWA in some Bayesian game. Our result, thus, gives cognizance to
the fact that every two-qubit pure entanglement is the best resource for some operational
task.

1 Introduction
Game theory is the study of human conflict and cooperation within a competitive situation. It has
been widely used in various social and behavioral sciences, e.g., economics [1], political sciences [2],
biological phenomena [3], as well as logic, computer science, and psychology [4]. More formally, it is
a mathematical study of strategic decision making among interacting decision makers. Each decision
maker is considered as a player with a set of possible actions and each one has preference over certain
actions. Such preference can be modeled mathematically by associating some payoff with each of
the action. First systematic study of preferences over different possible actions was discussed by von
Neumann and Morgenstern [5]. Then J. Nash introduced the seminal concept– the concept of Nash
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equilibrium [6, 7]. He also proved that for any game, with finite number of actions for each player, there
will always be a mixed strategy Nash equilibrium. Later, Harsanyi introduced the notion of Bayesian
games where each player has some private information unknown to other players [8–10]. In such a
Bayesian scenario Aumann proved that the proper notion of equilibrium is not the ordinary mixed
strategy Nash equilibrium but a more general – correlated equilibrium [11]. A correlated equilibrium
can be achieved by some correlated strategy where correlation is given to the players as common advice
by some referee. Later it has been further established that psychology of the participating players is
also an important component in the study of game theory [12]. Psychological evidence shows that
rather than pursuing solely their own payoffs, players may also consider additional social goals. Such
social behavior of the players may result different types of ‘fairness equilibrium’ solution. One such
concept is social welfare solution (SWS) where the players try to maximize sum of their payoffs [13].

In this work, we study this particular notion of SWS, but in the quantum realm. In the quantum
scenario the referee, instead of a classical correlation, provides a multi-partite quantum system to the
players as common advice. The players can come up with correlations generated from the quantum
advice by performing local measurements on their respective parts of quantum system and consequently
can follow a correlated strategy. Such a quantum strategy is advantageous over a classical equilibrium
(CE) strategy if none of the players’ payoff is lower than the corresponding CE-payoff, rather some
players have incentive over the CE-payoff. Among different advantageous quantum strategies those
maximizing the sum of all players’ payoffs will be called quantum-SWS. Furthermore, a quantum state
giving rise to such a strategy is called quantum social welfare advices (quantum-SWA). In this work
we show that any two-qubit pure entangled state, however less entanglement it may have, can produce
quantum-SWS for some Bayesian game. In other words, all such entangled states can act as useful
resource for some game. We establish this claim by constructing a family of two-player Bayesian games.
Rest of the paper is organized as follows. In Sec. [2] we briefly review the framework of game theory.
In Sec. [3] we discuss some important notions regarding the use of quantum correlations as advice in
games. Our main results are presented in Sec. [4], and in Sec. [5] we present a brief discussion.

2 Game theory: Prelude
2.1 Mathematical preliminaries
Game theory starts with a very basis assumption that the players are rational, i.e., they will choose the
best actions to get highest available payoffs 1. We denote a game by the symbol G and for simplicity
we restrict the discussion to two-player games played between (say) Alice and Bob (extension to higher
number of players is straightforward and interested readers may see the classic book by Osborne [4]).
We denote the type of ith player by ti ∈ Ti and denote her/his action by si ∈ Si, for i ∈ {A,B},
calligraphic fonts denoting the type and action profiles. A type can represent many things: it can
be a characteristic of the player or a secret objective of the player, which remain private to the
players in Bayesian scenario. There may be a prior probability distribution P (T ) over the type profile
T := TA × TB. Each player is assigned a payoff over the type and action profile, i.e., vi : T × S 7→ R,
where S := SA×SB. In the absence of any correlation or external advice, players can apply strategies
that are either pure or mixed. For the ith player, a pure strategy is a map gi : Ti 7→ Si, meaning that
the player selects a deterministic action based only on her/his type. A mixed strategy is a probability
distribution over pure ones, i.e. the function gi : Ti 7→ Si becomes a random function described by
a conditional probability distribution on Si given the type ti ∈ Ti and we will denote such mixed
strategies as gi(si|ti) (for a more detailed discussion see [16]). The average payoff for the ith player

1Note that situation where players have bounded rationality is also studied in game theory [14, 15]. However, in this
work we will consider only rational players.
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is given by, 〈vi(g)〉 :=
∑
t,s P (t)vi(t, s)gA(sA|tA)gB(sB|tB). Here g ≡ (gA, gB) ∈ G = GA × GB, with

Gi denoting the strategy profile for the ith party, s ≡ (sA, sB) ∈ S, and t ≡ (tA, tB) ∈ T ; and P (t)
denotes the probability according to which the types are sampled. A solution for a game is a family
of strategies g ≡ (gA, gB), each for Alice and Bob respectively. A solution g∗ is a Nash equilibrium if
no player has an incentive to change the adopted strategy, i.e., 〈vi(g∗)〉 ≥ 〈vi(gi, g∗rest)〉, for i ∈ {A,B},
where 〈vi(gi, g∗rest)〉 denote the average payoff of ith player when all the players, but ith player, follow
the strategy profile from g∗ and ith player follow some other strategy.

In practical scenario, achievability of Nash equilibrium is an important question. As pointed out
by Aumann it can be achieved only when each of the players know other players’ strategy exactly.
So, he proposed a more general notion of equilibrium – correlated Nash equilibrium [17]. While in
a mixed strategy players can choose pure strategies with probability P (gA, gB) = P (gA)P (gB), with
P (gi) denoting the probability distribution over the ith player’s pure strategy, Aumann pointed out
that some adviser can provide a more general probability distribution (advice) which not necessarily is
in the product form. A correlated strategy is defined as the map g(λ) chosen with some probability λ
from the probability space Λ over G = GA×GB. The referee chooses an element λ from Λ and suggests
to each player i to follow the strategy gi(λ). With such an advice from the referee, the average payoff
for the ith player is denoted as, 〈vi(g(λ))〉 :=

∑
t,s,λ P (t)P (λ)vi(t, s)gA(sA|tA, λ)gB(sB|tB, λ).

A correlated strategy g∗ chosen with some advice λ ∈ Λ is called a correlated Nash equilibrium if
no player has an incentive while deviating from the adopted strategy. Note that, every pure/mixed
Nash equilibrium is also a correlated equilibrium, however the set of correlation equilibria is strictly
larger that the set of mixed strategy Nash equilibria (see Appendix-A). It has also been shown that
correlated equilibria are easier to compute [18].

2.2 Quantum game theory
Though von Neumann is the founder father of game theory and is also a great contributor to the then
nascent field of quantum mechanics, the connection between these two apparently independent fields
was elusive till eighties of the last century. Blaquiere initiated the study of game theory in the domain
of quantum mechanics [19, 20]. However, the important development in quantum game theory occur
much later after the advent of quantum information theory [21, 22]. Strategies in classical game theory
are either pure (deterministic) or mixed (probabilistic) and no player can achieve a better payoff while
shifting from the equilibrium strategy. However, Meyer in his seminal work showed that a player who
implements a quantum strategy can increase the expected payoff [21]. The resource that is used in
Meyer’s formulation of quantum strategies is actually the non-classical phenomena of superposition
between states. This strategy helps gaining greater payoffs than that is achievable using only classical
strategies. Meyer introduced some specially designed zero-sum game. Later Eisert et al. proposed
some non-zero-sum game (Prisoner’s dilemma) where the two players of the game are not in sharp
opposition. But their mutual cooperation may help them gaining higher payoffs. The results of Meyer
[21] and Eisert et al. [22] initiated a plethora of studies on quantum game theory (see the reviews
[23–25] and references therein).

Recently, Brunner and Linden have initiated the study of quantum game theory in Bayesian
scenario, where correlated equilibrium strategy is the relevant notion of interest [26] (see also [27–30]
for other related works on quantum game theory in Bayesian scenario). They have studied a cooperative
Bayesian game and shown that the classical fair Nash equilibrium can be surpassed if quantum nonlocal
correlation is provided as advice. The authors in [31] have extended this study for conflicting Bayesian
games. The nonlocal correlations providing advantage over the classical strategies in the games studied
in [26, 31] is obtained from the two qubit maximally entangled state. More recently, some authors of
the present manuscript have shown that such nonlocal correlation turns out to be advantageous even
over the unfair correlated Nash equilibrium [32]. But surprisingly, the two-qubit maximally entangled
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state is not helpful here, rather, some non-maximally entangled states serve the purpose there. Here it
is noteworthy that universal usefulness of quantum entanglement has been established is several tasks
– Bell game [33] or its generalization [34], information processing task [35], channel discrimination [36],
quantum teleportation [37] etc. Naturally one may ask the question which quantum states exhibit the
advantage over the classical resources and achieves an game theoretic equilibrium (Nash equilibrium
or social welfare solution etc.) in quantum scenario. The articles [26, 31] exhibit such advantage only
for the maximally entangled state and the article by Roy et al. [32] establishes the same for some
specific non-maximally pure entangled states. In this present article we will show that all two qubit
pure entangled states are indeed useful resource in Bayesian game theoretic scenario. To show this
we will consider the concept of ‘social welfare solution’ in quantum scenario and precisely define the
concept of ‘quantum social welfare advice’ in the following.

3 Quantum correlations as advice
In quantum scenario, the referee, instead of some classical correlation, provides a bi-partite quantum
state ρAB ∈ D(CdA ⊗ CdB) as advice; D(CdA

A ⊗ CdB
B ) denotes the set of hermitian, positive, and trace-1

operators (i.e. density operator) acting on the composite Hilbert space CdA
A ⊗ CdB

B . The players per-
form positive-operator-valued-measurements (POVM) {Exi

oi
| Exi

oi
≥ 0 ∀ oi, xi,

∑
oi
Exi
oi

= 1i ∀ xi, i ∈
{A,B}}, with 1i being the identity operator on Cdi

i , and generate an input-output probability distribu-
tion P (OA,OB|XA,XB) ≡ {P (oA, oB|xA, xB) | oi ∈ Oi, xi ∈ Xi} in accordance with the Born rule, i.e.,
P (oA, oB|xA, xB) = Tr[ρAB(ExB

oB
⊗ ExB

oB
)]. The players follow some randomized strategy according to

this probability distribution. Thus a quantum strategy is specified by the triplet
(
ρAB, {ExA

oA
}, {ExB

oB
}
)
.

Note that, to demonstrate an advantage over the classical correlated strategies the correlation gen-
erated from a quantum strategy need to be stronger than classical (or in other word local realistic
(LR)) correlations ΛLR (see Appendix B). If the given quantum advice ρAB is an entangled state
[38, 39] then it may provide correlations which are not local-realistic, and such correlations are com-
monly known as nonlocal correlations [40–42]. In Bayesian game theoretic scenario usefulness of such
nonlocal correlations over the classical correlated strategies has been demonstrated in various recent
results [26, 31, 32].

From the aforesaid discussion it is evident that to achieve a better quantum strategy (than the
optimal classical strategies) the players must share entangled quantum state. More precisely, an
entangled quantum advice ρentAB will be called advantageous over a classical equilibrium strategy g∗ if the
players can come up with a quantum strategy

(
ρentAB, {ExA

oA
}, {ExB

oB
}
)

such that 〈vi(ρentAB)〉 ≥ 〈vi(g∗)〉, ∀ i,
and strict inequality holds for some (at least one) i; 〈vi(ρentAB)〉 denotes the payoff for the ith player
while following the quantum strategy

(
ρentAB, {ExA

oA
}, {ExB

oB
}
)
.

Definition 1 Given a quantum advice ρentAB, a strategy
(
ρentAB, {ExA

oA
}∗, {ExB

oB
}∗
)

is optimal if no player
has an incentive while deviating from the adopted strategy.

The following definition will be useful to compare among different quantum advices.

Definition 2 A quantum advice ρ∗entAB is called the optimal advice if there is a strategy
(
ρ∗entAB , {ExA

oA
}∗, {ExB

oB
}∗
)

such that no player has an incentive while deviating from the adopted strategy even with some other
quantum advice. Such a strategy is called quantum equilibrium strategy.

The authors in [31] have studied quantum equilibrium strategy in a conflicting Bayesian game. How-
ever, the equilibrium studied there is a fair one where players have equal payoffs. The notion of classical
unfair equilibrium where different players have different payoffs, is well defined. But as noted in [32],
such a notion in quantum scenario is not pertinent, in general. This is because, given a quantum
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advice ρentAB, there may exist more than one quantum strategies, say
(
ρentAB, {ExA

oA
}1st

, {ExB
oB
}1st)

and(
ρentAB, {ExA

oA
}2nd

, {ExB
oB
}2nd)

, such that both are advantageous over the classical strategy g∗ but Alice
gets optimal payoff for 1st strategy while Bob’s payoff is optimal for 2nd one and hence results to a
conflict between the players in choosing their strategies for the given advice. In such a scenario, a
relevant figure of merit for the unfair quantum strategies is social optimality solution or social welfare
solution (SWS). The expected social welfare SW(g) of a classical solution g is the sum of the expected
payoffs of all the players, i.e., SW (g) =

∑
i〈vi(g)〉 [13]. Importantly, this particular notion is also

relevant in social choice theory [43, 44].

Definition 3 Consider an classical unfair equilibrium solution g∗, with payoffs 〈vA(g∗)〉 6= 〈vB(g∗)〉.
Among the different quantum advantageous strategies over g∗, a quantum strategy will be called quantum-
SWS if it maximizes the sum of the payoffs. The corresponding quantum entangled state ρent−swAB

producing the quantum-SWS is called quantum-social welfare advice (SWA).

To say mathematically, ρSWA
AB is a quantum-SWA if there exists some quantum strategy such that,

〈vi(ρSWA
AB )〉 ≥ 〈vi(g∗)〉, ∀ i (with strict inequality for some i), and the strategy maximize

∑
i〈vi(ρSWA

AB )〉.
In the following we will establish that all the two-qubit pure entangled states are quantum-SWA in
some Bayesian game.

4 Result
Consider a game G(ζ, η) played between two rational players, Alice and Bob. Each of the players has
two types, i.e., ti ∈ Ti ≡ {0, 1} and two actions si ∈ Si ≡ {0, 1}; i ∈ {A,B}. The payoffs assigned to
the players depend on the respective types and actions. An utility table for the game G(ζ, η) is given
in Table-1.

tB = 0 tB = 1

sB = 0 sB = 1 sB = 0 sB = 1

tA = 0
sA = 0

(
ηζ+1

4 , ηζ−1
4

) (
−2η+ηζ+1

4 , −2η+ηζ−1
4

) (
2η+3

4 , 3η
4

) (
3
4 ,

η
4

)
sA = 1 (0, 0) (0, 0)

(
3
4 ,

η
4

) (
3
4 ,

η
4

)

tA = 1
sA = 0

(
−1
4 ,

1
4

)
(0, 0)

(
−η
4 ,
−2η+9

4

) (
η
4 ,

9
4

)
sA = 1

(
−2η−1

4 , −2η+1
4

)
(0, 0)

(
η
4 ,

9
4

) (
η
4 ,

9
4

)
Table 1: (Color online) Utility table for the game G(ζ, η) with ζ ∈ [0, 2) and η > 0. Depending on the parameters
ζ, η, the colored cells denotes different equilibria. When 1/(2− ζ) < η < 1/ζ, there are two conflicting equilibrium
strategies for the type (tA = 0, tB = 0), that are (sA = 0, sB = 0) and (sA = 1, sB = 1) (blue cells). For η > 1/2
also, there are two conflicting strategies, i.e., (sA = 0, sB = 0) and (sA = 1, sB = 1) (yellow cells) for the type
(tA = 1, tB = 0).

From Table-1 one can see that following are the only possible pure Nash equilibrium strategies:

(i) Type (tA = 0, tB = 0): in this case (sA = 0, sB = 0) is an equilibrium strategy with payoff
((ηζ + 1)/4, (ηζ − 1)/4), and whenever η > 1/(2 − ζ) the strategy (sA = 1, sB = 1) is also an
equilibrium with payoff (0, 0). Furthermore, if the values of the parameter ζ and η be such that
1/(2− ζ) < η < 1/ζ, then there is conflict between Alice’s and Bob’s preferences: Alice prefers
the strategy (sA = 0, sB = 0) while Bob prefers (sA = 1, sB = 1).
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(ii) Type (tA = 0, tB = 1): here (sA = 0, sB = 0) and (sA = 1, sB = 1) are two equilibria with
payoffs ((2η + 3)/4, 3η/4) and (3/4, η/4), respectively.

(iii) Type (tA = 1, tB = 0): in this case (sA = 0, sB = 0) is an equilibrium with payoff (−1/4, 1/4),
and whenever η > 1/2 there is another equilibrium, that is (sA = 1, sB = 1) with payoff (0, 0).
Here also the equilibrium strategies are conflicting

(iv) Type (tA = 1, tB = 1): in this case there are three equilibria (sA = 0, sB = 1), (sA = 1, sB = 0)
and (sA = 1, sB = 1) each of them having the payoff (η/4, 9/4).

Consider that the types of the players are private, i.e., unknown to other player and hence the game
is Bayesian in nature. Each player can choose the following four pure strategies: g1

i (ti) = 0, g2
i (ti) =

1, g3
i (ti) = ti, g

4
i (ti) = ti ⊕ 1. Here g1

i (ti) = 0 means that ith player follows the action si = 0
whatever her/his type ti be, and other gi’s are defined analogously where ⊕ denotes addition modulo
2 operation. Altogether the players have 16 different pure strategies (glA, gmB ), with l,m = 1, 2, 3, 4.
Straightforward calculation gives the average payoffs for these 16 pure strategies and it turns out that
classical equilibrium strategies have payoffs 〈vA(g∗)〉 = (3 +η+ηζ)/16 and 〈vB(g∗)〉 = (9 +η+ηζ)/16,
respectively (see Appendix C).

To establish our result, i.e, superlative behavior of all 2-qubit pure entangled states in the above
described games, first we consider the set of most general 2-party–2-input–2-output no-signaling (NS)
correlations that constitutes a polytope, say PNS . The correlations resided in PNS have been ex-
tensively studied [45–49]. Any such correlation P (OA,OB|XA,XB) ≡ {P (oA, oB|xA, xB)} ∈ PNS ,
with oi ∈ Oi ≡ {+1,−1} and xi ∈ Xi ≡ {0, 1} can be represented in a canonical form where
(P (+ + |00), P (+ − |00), P (− + |00), P (− − |00)) ≡ (c00,m0 − c00, n0 − c00, 1 −m0 − n0 + c00) and
the rests can be defined analogously (see Appendix B). When advised by such a correlation P ∈ PNS ,
Alice’s and Bob’s payoffs read as:

〈vi(P )〉 = 1
16

[
3κ + η

2 (BCHSH + 2ζm0)− (−1)κ(m0 − n0)
]
,

with κ = 1 (κ = 2) for i = A (i = B). Here, BCHSH denotes the Bell-Clauser-Horne-Shimony-Holt
(Bell-CHSH) expression,

BCHSH :=
1∑

k,j=0
(−1)kj

〈
〈xA = k, xB = j〉

〉
= 4

 1∑
k,j=0

(−1)kjckj −m0 − n0 + 1/2

 ,
where,

〈
〈xA, xB〉

〉
:=
∑−1
oA,oB=+1 oAoBP (oA, oB|xA, xB). Correlations that are obtainable from quantum

strategies form a convex set, say Q, which is a strict subset of the polytope PNS . As discussed earlier, a
quantum strategy

(
ρentAB, {ExA

oA
}, {ExB

oB
}
)

will be a quantum social welfare solution for the game G(ζ, η),
if 〈vA(P )〉 ≥ 〈vA(g∗)〉 = (3 + η + ηζ)/16 and 〈vB(P )〉 ≥ 〈vB(g∗)〉 = (9 + η + ηζ)/16 (with at least
one the inequalities strict) and 〈vA(P )〉+ 〈vB(P )〉 takes the maximum value over the set of quantum
correlations. Using the expression from Eq.(1), we have,

〈vA(P )〉+ 〈vB(P )〉 = 1
16 [12 + η (BCHSH + 2ζm0)] . (1)

Note that, the factor within the round brackets on the right hand side of the Eq.(1), i.e., the expression
BCHSH + 2ζm0, is actually the expression of tilted-CHSH operator studied in Ref.[50]. It has been
shown in [51, 52] that within Q the tilted-CHSH operator takes maximum value by a probability dis-
tribution P (OA,OB|XA,XB) ∈ Q obtained form the quantum state |ψ〉AB = cos θ|00〉AB + sin θ|11〉AB
with the local projective measurement E(xA=0) = σz, E

(xA=1) = σx and E(xB=0) = cosβσz + sin βσx,
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Figure 1: (Color online) δVi vs θ plot. Solid curves are for η = 16, while dashed are for η = 256. Red for δVA and
blue for δVB. For eta = 16, δVB is positive if θ is greater than ≈ 0.12 and for η = 256 it is positive if θ is greater
than ≈ 0.03 (shown in the inset). δVA is positive always.

E(xB=1) = cosβσz − sin βσx; where tan β = sin 2θ and ζ = 2/
√

1 + 2 tan2 2θ ∈ [0, 2). The same
choice of state and measurements also maximize the right hand side of Eq.(1). This is because, if
B :=

∑
oA,oB ,xA,xB

CoAoBxAxBP (oA, oB|xA, xB) ≤ BL is an arbitrary Bell operator with BL being the
local bound, then the Bell operator FK1,K2(B) := K1B+K2, with K1 ∈ R+ and K2 ∈ R, has the local
realistic bound FK1,K2(BL). Moreover the points on the boundary of the set of quantum correlations
that achieve the quantum maximum for B and FK1,K2(B) are going to be the same. This fact also
ensures that for the games where ith player’s average payoff is of the form 〈vi(P 〉) = FKi

1,K
i
2
(B), with

some Bell operator B but different Ki
j ’s for different players’, the concept of unfair equilibrium fits

even in the quantum regime. However this is not the case always with the game G(ζ, η) considered in
this work, and for this game the above mentioned optimal tilted-CHSH yields,

〈vi(P )〉 = 1
16

[
3κ + η

2
3− cos 4θ√
1 + sin2 2θ

+ 2η cos2 θ√
1 + 2 tan2 2θ

− (−1)κ 1
2 cos 2θ

(
1− 1√

1 + sin2 2θ

)]
.

As already discussed, a quantum strategy will be advantageous when the players have incentive
over the classical equilibrium payoff, i.e., δVi := 〈vi(P )〉 − 〈vi(g∗)〉 ≥ 0 for i ∈ {A,B}, with strict
inequality holding for at least one case. Taking the value of η = 16, we find that δVA > 0 for the
full range of the parameter θ ∈ (0, π/4], however δVB remain positive if θ is not too small, if θ
takes value greater than ≈ 0.12 (see Fig.1). Therefore the quantum states |ψAB〉 = cos θ|00〉+sin θ|11〉
corresponding to the said range of θ act as the quantum social welfare advice for the game G(ζ, η = 16),
where ζ = 2/

√
1 + 2 tan2 θ. If we increase the value of η then δVA remains always positive and δVB

becomes positive for even smaller values of θ (see Fig.1). Moreover, taking arbitrarily large value for
η one can make θ arbitrarily close to zero and can have quantum advantage (see Appendix C). It is
also noteworthy that with increasing values for η the quantum advantage over classical payoff also
increases. Therefore even when the given quantum entangled state is arbitrarily close to a product
state still it suffices to be a quantum-SWA.

5 Discussions
Study of entanglement, its quantification, classifications as well as its applications in different inform-
ation theoretic protocols [53–56], is one of the core research topics of quantum information theory.
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Quantum entanglement also draws research attention from a foundational perspective since it lies at
the core of some of the most puzzling features of quantum mechanics: the Einstein-Podolski-Rosen
argument [57], the Schrödinger’s steering concept [58–60], and most importantly the nonlocal beha-
vior of quantum mechanics [40–42]. Here, we have studied an application of this quantum information
theoretic resource in another vastly important area of research, Bayesian game theory. Our result
establishes all two-qubit pure entangled states as the ’gold coin’ in a certain Bayesian game theoretic
scenario. From our analysis it is evident that the nonlocal behavior of the correlations obtained from
those entangled states plays the key role in the Bayesian scenario we have considered. This observation
leads us to make some interesting comments based on some already known facts. In [61], the authors
have shown that in the N -party–2-input–2-output scenario the quantum maximum of any linear Bell
type expression, β :=

∑
oi,xi,i∈{1,..,N}Co1,x1,...,oN ,xNP (o1, ..., oN |x1, ..., xN ), is achievable by measuring

N -qubit pure states with projective observables. Therefore quantum strategies formed from these
states and observables have the potential to be quantum-SWS for suitably chosen N -player Bayesian
game where each player is given two types and two actions and where sum of the payoffs of the players
turns out to be FK1,K2(β). However, explicit construction of such games require extensive effort and
promises to be an interesting topic for future research. Also note that the quantum-SWS studied in
the 2 − 2 − 2 scenario lie on the nonlocal boundary of the quantum set Q. We leave the converse of
the statement as a conjecture. We make the conjecture in a broader sense that any nonlocal boundary
point of the set Q for general N −M −K scenario is a quantum-SWS for some Bayesian game.

Another interesting question related to the present work arises from the recent interesting study of
[30]. The proof of Nash’s theorem for the existence of an equilibrium in mixed strategies in conventional
games depends on Kakutani’s fixed-point theorem [62]. For quantum games, Meyer’s study of Nash
equilibrium in mixed strategies can be viewed as Glicksberg’s [63] extension of Kakutani’s fixed point
theorem which does not apply directly to quantum games played with pure quantum strategies. At
this point, the authors in [30] made an important contribution. They have invoked Nash’s famous
embedding theorem [64] (a more familiar result in mathematics community) and, under appropriate
conditions, indirectly apply the Kakutani fixed-point theorem to guarantee Nash equilibrium in pure
quantum strategies. The pure (strategy) quantum game considered in [30] consists of unitary function
on complex projective Hilbert space of pure quantum states. In our work we have considered correlated
Nash equilibrium in the quantum scenario. It will be really interesting to make an analogous study of
Ref.[30] in the context of our work.
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Appendix

A Nash equilibrium
To illustrate the idea of uncorrelated and correlated Nash equilibrium, here we discuss two examples.

Example-1: Our first example is the famous two-party game called ’battle of sexes’ (BoS) where
the pay-offs of the players are given as in the Table-2. The Nash equilibria are the action profile (same

Table 2: (Color Online) Utility table for the game of battle of sexes. Colored cells (sA = sB) are the two pure strategy
Nash equilibria.

sB = 0 sB = 1

sA = 0 (2, 1) (0, 0)

sA = 1 (0, 0) (1, 2)

as strategy profile, since the players do not have multiple types) (sA = 0, sB = 0) with pay-offs (2, 1)
and the action profile (sA = 1, sB = 1) with pay-offs (1, 2). Now in a practical scenario, Alice and Bob
can follow an equilibrium strategy if each of them deterministically know the action of other party.
But if the players have ignorance about others’ strategy then the achievability of equilibrium strategies
are in question. In such case, a referee can advice them to reach their goal. Let the referee tosses
a coin and announces the outcome (head/tail) to both Alice and Bob. Upon receiving the outcome
head (tail) each party follow the strategy si = 0 (si = 1) and accordingly follow one of the equilibrium
strategies. This example establishes clear practical usefulness of the idea of correlated equilibrium
over the uncorrelated ones.

Example-2: To point out more drastic difference between uncorrelated and correlated Nash
equilibrium, let us consider another game known as the ’game of chickens’, specified by the pay-
off Table-3. Here the Nash equilibria (uncorrelated) are (sA = 0, sB = 1) with pay-offs (2, 7) and
(sA = 1, sB = 0) with pay-offs (7, 2). Also in this game there exists a uncorrelated mixed equilibrium
strategy. If each player chooses the strategies si = 0 and si = 1 with probability 2/3 and 1/3,
respectively then they have the equilibrium pay-off (14/3, 14/3). To see this, suppose player A (B)
assigns probability p (q) to their respective pure action 0. The expected payoff for A (B) to sA = 0
(sB = 0) and sA = 1 (sB = 1) are respectively 4q + 2 (4p + 2) and 7q (7p). From the definition of
mixed strategy equilibrium it is evident that it will be attained when each will yield the same expected
payoff for both si = 0 and si = 1 for i = A,B. This restricts both p and q to be 2/3 to attain the
expected payoff (14/3, 14/3) for the mixed strategy equilibrium.

However like in the BoS game here also a referee can help the player to follow some particular
correlated strategy. If the referee provides the players a correlation advice according to which they
choose any one of pure strategies (sA = 0, sB = 0), (sA = 0, sB = 1), and (sA = 1, sB = 0) randomly,
then the average pay-off will be (5, 5) which is a correlated Nash equilibrium.

Note that, this correlated equilibrium can not be reached by convex mixing of the uncorrelated
Nash equilibria. Clearly this shows that the notion of correlated equilibrium is more general than the
original notion of equilibrium as introduced by Nash– correlated equilibrium can be in the outside of
convex hull formed by the (uncorrelated) Nash equilibrium strategies. But it is important to point
out that every Nash equilibrium is a correlated equilibrium though the converse is not true. Another
fundamental aspect of game theory is the degree of complexity of finding the equilibria. It was shown
that correlated equilibrium are easier to be computed [18].
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Table 3: (Color Online) Utility table for the game of chicken. Colored cells (sA 6= sB) are the two pure strategy Nash
equilibria.

sB = 0 sB = 1

sA = 0 (6, 6) (2, 7)

sA = 1 (7, 2) (0, 0)

B Correlations (as Advice)– Local vs Nonlocal
Correlation obtained from the referee as advice helps the players to achieve the correlated equilibrium
strategy. Based on different restrictions on the shared correlations, various notions of equilibrium can
be defined, such as shared randomness equilibrium, no-signaling correlation equilibrium etc [16]. On
the other hand, study of correlations, in particular local vs nonlocal as inspired by the seminal result
of Bell [40, 41], is one of the fundamental aspect of quantum foundations [42]. Very recently, Brunner
and Linden have explored the connection between Bell nonlocality and Bayesian game theory [26]. In a
Bayesian game each player may have some private information unknown to other players; on the other
hand, the players may have a common piece of advice and thus can follow correlated strategies. As
pointed out by Brunner and Linden, the concept of private information in Bayesian games is analogous
to the notion of locality in Bell inequalities (BIs), and the fact that common advice in Bayesian games
does not reveal the private information mimics the concept of no-signaling resources in case of BIs.

Correlations among spatially separated parties are relevant for our purpose. Any such correlations
can be represented as input-output conditional probability distribution. Here, for our purpose, we
restrict ourselves into two parties, Alice and Bob. Denoting the inputs of Alice and Bob by xA ∈ XA
and xB ∈ XB and their outcomes by oA ∈ OA and oB ∈ OB, the input-output probability can
be represented as a conditional probability P (OA,OB|XA,XB) := {P (oAoB|xAxB) | oA ∈ OA, oB ∈
OB, xA ∈ XA, xB ∈ XB} which must satisfy,

positivity: P (oA, oB|xA, xB) ≥ 0, ∀ oA, oB, xA, xB, and

normalization:
∑

oA,oB

P (oA, oB|xA, xB) = 1 ∀ xA, xB.

Correlations compatible with the principle of ‘relativistic causality’ principle or more generally ‘no sig-
naling’(NS) principle which prevents instantaneous communication between two space-like separated
locations need to satisfy further constraints:

P (oB|xA, xB) :=
∑
oA

P (oA, oB|xA, xB) = P (oB|xB),∀oB, xA, xB; (2)

P (oA|xA, xB) :=
∑
oB

P (oA, oB|xA, xB) = P (oA|xA),∀oA, xA, xB. (3)

Any such physical correlations obtained in classical world satisfy two further conditions called locality
and reality (LR) and are of the following form [42]:

P (oA, oB|xA, xB) =
∫
ρ(λLR)P (oA|xA, λ)P (oB|xB, λ)dλ, (4)

where λ ∈ Λ is some common shared variable sampled according to the probability distribution ρ(λ).
Correlations of the form of Eq.(4) are also compatible with Reichenbach’s principle according to
which if two physical variables are found to be statistically dependent, then there should be a causal
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Table 4: (Color Online) Average pay-offs for 16 different pure strategies for the game G(ζ, η).

g1
B g2

B g3
B g4

B

g1
A

(
3+η+ηζ

16 , 9+η+ηζ
16

) (
4−η+ηζ

16 , 8−η+ηζ
16

) (
3+η+ηζ

16 , 9+η+ηζ
16

) (
4−η+ηζ

16 , 8−η+ηζ
16

)
g2
A

(
2−η
16 ,

10−η
16

) (
3+η
16 ,

9+η
16

) (
2−η
16 ,

10−η
16

) (
3+η
16 ,

9+η
16

)
g3
A

(
3+η+ηζ

16 , 9+η+ηζ
16

) (
4−η+ηζ

16 , 8−η+ηζ
16

) (
3−η+ηζ

16 , 9−η+ηζ
16

) (
4+η+ηζ

16 , 8+η+ηζ
16

)
g4
A

(
2−η
16 ,

10−η
16

) (
3+η
16 ,

9+η
16

) (
2+η
16 ,

10+η
16

) (
3−η
16 ,

9−η
16

)

explanation of this fact 2 [65, 66]. However, in 1966, in the seminal paper J.S. Bell came up with
an inequality [40, 41] which is satisfied by any local-realistic correlation of Eq.(4). Interestingly, in
his paper Bell also pointed out that in quantum world correlations can arise among the outcomes
of measurements performed on the entangled states of space like separated particles that violate his
inequality and such are called nonlocal.

2-party–2-input–2-output NS correlations
Here we consider a more specific scenario with two inputs for each party with two outputs for each of
the input, i.e., oi ∈ Oi = {0, 1} and xi ∈ Xi = {0, 1} for i ∈ {A,B}. We also consider that Ti = Xi
and Oi = Si, that is ith player’s types and actions correspond, respectively, to the inputs and outputs
of the NS correlation. The positivity and normalization constraints for 2-input 2-output scenario lead
the probability vector to lie in a 8 dimensional polytope PNS [67]. Probability distributions satisfying
the local-realistic constraint (4) forms another polytope L which is a strict subset of PNS . L has both
trivial and nontrivial facets– trivial facets correspond to the positivity constraints and the nontrivial
ones to Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality [68]. The polytope PNS consists
of 24 extremal points (vertices), where 16 of them are local deterministic points being the extremal
points of L and the rests 8 are nonlocal extremal points. The local boxes can be written as,

Pα,β,γ,δ(oA, oB|xA, xB) =


1, if oA = αxA ⊕ β and oB = γxB ⊕ δ,

0, otherwise,

(5)

with α, β, γ, δ ∈ {0, 1}. The 16 pure strategies (glA, gmB ), with l,m = 1, 2, 3, 4 described in the ma-
nuscript, actually correspond to these 16 local extremal points, i.e., the strategies are chosen accord-
ing to these local deterministic extremal probability distributions. The average payoffs for these 16
pure strategies are calculated in Table-4. There are three pure strategy Nash equilibria (g1

A, g
1
B),

(g3
A, g

1
B), and (g1

A, g
3
B) each average payoff 〈vA〉 = (3 + η + ηζ)/16 for Alice and average payoff

〈vB〉 = (3 + η + ηζ)/16 for Bob. Since pure/mixed strategy Nash equilibrium are also correlated
equilibrium hence these are also the correlated equilibria. Moreover any convex mixture of these equi-
libria are again a correlated equilibria but the average payoffs for both Alice and Bob takes the same
values as in the pure cases.

2Reichenbach gave his principle a formal statement in Ref [65]. In the light of Bell’s theorem it’s modification [66] tells
that, if two physical variables A and B are found to be statistically dependent the either: (i) A and B are directly causally
connected, i.e. either A causes B or B causes A, or (ii) A and B share a common cause that explains the correlation.

Accepted in Quantum 2019-08-29, click title to verify 11



The advice can also be the nonlocal extremal points given by,

Pα,β,γ(oA, oB|xA, xB) =


1/2, if oA ⊕ ob = xAxB ⊕ αxA ⊕ βxB ⊕ γ

0, otherwise.

(6)

with α, β, γ ∈ {0, 1}, or more generally any correlation within PNS , that can be expressed as a 4× 4
matrix in the following canonical form:

P (OA,OB|XA,XB) :=


c00 m0 − c00 n0 − c00 1−m0 − n0 + c00
c01 m0 − c01 n1 − c01 1−m0 − n1 + c01
c10 m1 − c10 n0 − c10 1−m1 − n0 + c10
c11 m1 − c11 n1 − c11 1−m1 − n1 + c11

 ,
where (P (00|00), P (01|00), P (10|00), P (11|00)) ≡ (c00,m0 − c00, n0 − c00, 1−m0 − n0 + c00) and so on.
Positivity constraint implies each element of the 4× 4 matrix lies in between 0 and 1.

A correlation is known to be quantum one if it has a quantum realization, i.e., P (oA, oB|xA, xB) =
Tr[ρAB(ExA

oA
⊗ ExB

oB
)], where ρAB ∈ D(CdA ⊗ CdB) and {ExA

oA
}, {ExB

oB
} represents some local POVM

on Alice’s and Bob’s side respectively. Collection of all quantum correlations Q forms a convex set
lying strictly in between PNS and L, i.e., L ⊂ Q ⊂ PNS . Our main interest is to study social welfare
solution within the set Q for the the game G(ζ, η).

C Pure entanglement as quantum-sw solution
If the two players are advised by a correlation from PNS the average payoff of each player turns out
to be

〈vA(P )〉 = 1
16

[
3 + η

2 (BCHSH + 2ζm0) + (m0 − n0)
]
,

〈vB(P )〉 = 1
16

[
9 + η

2 (BCHSH + 2ζm0)−m0 + n0

]
. (7)

A quantum strategy will serve as a quantum social welfare solution if δVi := 〈vi(P )〉− 〈vi(g∗)〉 ≥ 0
for i = {A,B} and 〈vA(P )〉+ 〈vB(P )〉 = 1

16 [12 + η (BCHSH + 2ζm0)] yields the maximum value over
Q.

The maximum value within Q of the term 〈vA(P )〉 + 〈vB(P )〉 will be obtained when value of
(BCHSH + 2ζm0) i.e. the tilted Bell-CHSH inequality, is maximum over Q. The above expression will
reach maximum for the quantum state |ψ〉AB = cos θ|00〉AB + sin θ|11〉AB with the local projective
measurement E(xA=0) = σz, E

(xA=1) = σx and E(xB=0) = cosβσz + sin βσx, E(xB=1) = cosβσz −
sin βσx; where tan β = sin 2θ and ζ = 2/

√
1 + 2 tan2 2θ ∈ [0, 2). As a result m0 = cos2 θ, n0 =

1
2

(
1 + cos(2θ)√

1+sin2(2θ)

)
and BCHSH = (3− cos 4θ)/

√
1 + sin2 2θ, which further imply,

〈vA(P )〉 = 1
16

[
3 + η

2
3− cos 4θ√
1 + sin2 2θ

+ 2η cos2 θ√
1 + 2 tan2 2θ

+ 1
2 cos 2θ

(
1− 1√

1 + sin2 2θ

)]
,

〈vB(P )〉 = 1
16

[
9 + η

2
3− cos 4θ√
1 + sin2 2θ

+ 2η cos2 θ√
1 + 2 tan2 2θ

− 1
2 cos 2θ

(
1− 1√

1 + sin2 2θ

)]
.
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Figure 2: (Color online) θ0 vs η plot. The graph shows that with increasing values of η the values of θ0 gets decreased.
The blue solid line is drawn for η taking values upto 20 and in the inset we plot it for η upto 5000.

For the classical pure equilibrium strategies g∗ ≡ {(g1
A, g

1
B), (g1

A, g
3
B), (g3

A, g
1
B)}, the corresponding

pay-offs are,

〈vA(g∗)〉 = 3 + η + ηζ

16 = 1
16

(
3 + η + 2η√

1 + 2 tan2 2θ

)
, (8a)

〈vB(g∗)〉 = 9 + η + ηζ

16 = 1
16

(
9 + η + 2η√

1 + 2 tan2 2θ

)
. (8b)

For a given η, let θ0 denotes the value of θ ∈ (0, π/4] beyond which δVB takes positive value. In Fig.2
we show how the value of θ0 tends towards zero with increasing values of η.
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nonlocal box is universal. Journal of Mathematical Physics, 48(8):082107, 2007. URL https:
//doi.org/10.1063/1.2767538.
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