Faster quantum simulation by randomization

Andrew M. Childs1,2,3, Aaron Ostrander2,3,4, and Yuan Su1,2,3

1Department of Computer Science, University of Maryland
2Institute for Advanced Computer Studies, University of Maryland
3Joint Center for Quantum Information and Computer Science, University of Maryland
4Department of Physics, University of Maryland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Product formulas can be used to simulate Hamiltonian dynamics on a quantum computer by approximating the exponential of a sum of operators by a product of exponentials of the individual summands. This approach is both straightforward and surprisingly efficient. We show that by simply randomizing how the summands are ordered, one can prove stronger bounds on the quality of approximation for product formulas of any given order, and thereby give more efficient simulations. Indeed, we show that these bounds can be asymptotically better than previous bounds that exploit commutation between the summands, despite using much less information about the structure of the Hamiltonian. Numerical evidence suggests that the randomized approach has better empirical performance as well.

► BibTeX data

► References

[1] Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation and statistical zero knowledge. In Proceedings of the 35th ACM Symposium on Theory of Computing, pages 20–29, 2003. 10.1145/​780542.780546. arXiv:quant-ph/​0301023.

[2] Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, and Nathan Wiebe. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Physical Review A, 91: 022311, 2015. 10.1103/​PhysRevA.91.022311. arXiv:1410.8159.

[3] R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G. Fowler, A Megrant, E Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O'Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, E. Solano, and John M. Martinis. Digital quantum simulation of fermionic models with a superconducting circuit. Nature Communications, 6: 7654, 2015. 10.1038/​ncomms8654. arXiv:1501.07703.

[4] Dominic W. Berry and Andrew M. Childs. Black-box Hamiltonian simulation and unitary implementation. Quantum Information and Computation, 12 (1-2): 29–62, 2012. arXiv:0910.4157. 10.26421/​QIC12.1-2.

[5] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. Efficient quantum algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics, 270 (2): 359–371, 2007. 10.1007/​s00220-006-0150-x. arXiv:quant-ph/​0508139.

[6] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. Exponential improvement in precision for simulating sparse Hamiltonians. In Proceedings of the 46th ACM Symposium on Theory of Computing, pages 283–292, 2014. 10.1145/​2591796.2591854. arXiv:1312.1414.

[7] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. Simulating Hamiltonian dynamics with a truncated Taylor series. Physical Review Letters, 114 (9): 090502, 2015a. 10.1103/​PhysRevLett.114.090502. arXiv:1412.4687.

[8] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamiltonian simulation with nearly optimal dependence on all parameters. In Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, pages 792–809, 2015b. 10.1109/​FOCS.2015.54. arXiv:1501.01715.

[9] Dominic W. Berry, Andrew M. Childs, Aaron Ostrander, and Guoming Wang. Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Communications in Mathematical Physics, 356: 1057–1081, 2017. 10.1007/​s00220-017-3002-y. arXiv:1701.03684.

[10] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan Wiebe. Time-dependent Hamiltonian simulation with $L^1$-norm scaling, 2019. arXiv:1906.07115.

[11] Fernando G. S. L. Brandao and Krysta M. Svore. Quantum speed-ups for solving semidefinite programs. In Proceedings of the 58th IEEE Symposium on Foundations of Computer Science, pages 415–426, 2017. 10.1109/​FOCS.2017.45. arXiv:1609.05537.

[12] Kenneth R. Brown, Robert J. Clark, and Isaac L. Chuang. Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance. Physical Review Letters, 97: 050504, 2006. 10.1103/​PhysRevLett.97.050504. arXiv:quant-ph/​0601021.

[13] Earl Campbell. Shorter gate sequences for quantum computing by mixing unitaries. Physical Review A, 95: 042306, Apr 2017. 10.1103/​PhysRevA.95.042306. arXiv:1612.02689.

[14] Earl Campbell. Random compiler for fast Hamiltonian simulation. Physical Review Letters, 123: 070503, Aug 2019. 10.1103/​PhysRevLett.123.070503. arXiv:1811.08017.

[15] Andrew M. Childs and Yuan Su. Nearly optimal lattice simulation by product formulas. Physical Review Letters, 123: 050503, Aug 2019. 10.1103/​PhysRevLett.123.050503. arXiv:1901.00564.

[16] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A. Spielman. Exponential algorithmic speedup by quantum walk. In Proceedings of the 35th ACM Symposium on Theory of Computing, pages 59–68, 2003. 10.1145/​780542.780552. arXiv:quant-ph/​0209131.

[17] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115 (38): 9456–9461, 2018. 10.1073/​pnas.1801723115. arXiv:1711.10980.

[18] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum algorithm for the Hamiltonian NAND tree. Theory of Computing, 4 (1): 169–190, 2008. 10.4086/​toc.2008.v004a008.

[19] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21 (6-7): 467–488, 1982. 10.1007/​BF02650179.

[20] Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao Low. Quantum algorithm for simulating real time evolution of lattice Hamiltonians. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 350–360, Oct 2018. 10.1109/​FOCS.2018.00041. arXiv:1801.03922.

[21] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations. Physical Review Letters, 103 (15): 150502, 2009. 10.1103/​PhysRevLett.103.150502. arXiv:0811.3171.

[22] Matthew B. Hastings. Turning gate synthesis errors into incoherent errors. Quantum Information and Computation, 17 (5-6): 488–494, 2017. arXiv:1612.01011.

[23] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum algorithms for quantum field theories. Science, 336 (6085): 1130–1133, 2012. 10.1126/​science.1217069. arXiv:1111.3633.

[24] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, and C. F. Roos. Universal digital quantum simulation with trapped ions. Science, 334 (6052): 57–61, 2011. 10.1126/​science.1208001. arXiv:1109.1512.

[25] Seth Lloyd. Universal quantum simulators. Science, 273 (5278): 1073–1078, 1996. 10.1126/​science.273.5278.1073.

[26] Guang Hao Low and Isaac L. Chuang. Optimal Hamiltonian simulation by quantum signal processing. Physical Review Letters, 118: 010501, 2017. 10.1103/​PhysRevLett.118.010501. arXiv:1606.02685.

[27] Guang Hao Low and Isaac L. Chuang. Hamiltonian Simulation by Qubitization. Quantum, 3: 163, July 2019. 10.22331/​q-2019-07-12-163. arXiv:1610.06546.

[28] Guang Hao Low, Vadym Kliuchnikov, and Nathan Wiebe. Well-conditioned multiproduct Hamiltonian simulation, 2019. arXiv:1907.11679.

[29] David Poulin, Angie Qarry, Rolando D. Somma, and Frank Verstraete. Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. Physical Review Letters, 106 (17): 170501, 2011. 10.1103/​PhysRevLett.106.170501. arXiv:1102.1360.

[30] David Poulin, Matthew B. Hastings, Dave Wecker, Nathan Wiebe, Andrew C. Doherty, and Matthias Troyer. The Trotter step size required for accurate quantum simulation of quantum chemistry. Quantum Information and Computation, 15 (5-6): 361–384, 2015. arXiv:1406.4920.

[31] Sadegh Raeisi, Nathan Wiebe, and Barry C. Sanders. Quantum-circuit design for efficient simulations of many-body quantum dynamics. New Journal of Physics, 14: 103017, 2012. 10.1088/​1367-2630/​14/​10/​103017. arXiv:1108.4318.

[32] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences, 114 (29): 7555–7560, 2017. 10.1073/​pnas.1619152114. arXiv:1605.03590.

[33] Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical physics. Journal of Mathematical Physics, 32 (2): 400–407, 1991. 10.1063/​1.529425.

[34] John Watrous. Simpler semidefinite programs for completely bounded norms. Chicago Journal of Theoretical Computer Science, 2013 (8), 2013. 10.4086/​cjtcs.2013.008.

[35] John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. 10.1017/​9781316848142.

[36] Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer. Gate count estimates for performing quantum chemistry on small quantum computers. Physical Review A, 90: 022305, 2014. 10.1103/​PhysRevA.90.022305. arXiv:1312.1695.

[37] Chi Zhang. Randomized algorithms for Hamiltonian simulation. In Leszek Plaskota and Henryk Woźniakowski, editors, Monte Carlo and Quasi-Monte Carlo Methods 2010, pages 709–719, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-27440-4. 10.1007/​978-3-642-27440-4_42.

Cited by

[1] Daniel Burgarth, Paolo Facchi, Giovanni Gramegna, and Kazuya Yuasa, "One bound to rule them all: from Adiabatic to Zeno", Quantum 6, 737 (2022).

[2] William J. Huggins, Sam McArdle, Thomas E. O’Brien, Joonho Lee, Nicholas C. Rubin, Sergio Boixo, K. Birgitta Whaley, Ryan Babbush, and Jarrod R. McClean, "Virtual Distillation for Quantum Error Mitigation", Physical Review X 11 4, 041036 (2021).

[3] David Layden, "First-Order Trotter Error from a Second-Order Perspective", Physical Review Letters 128 21, 210501 (2022).

[4] Teague Tomesh, Kaiwen Gui, Pranav Gokhale, Yunong Shi, Frederic T. Chong, Margaret Martonosi, and Martin Suchara, 2021 International Conference on Rebooting Computing (ICRC) 1 (2021) ISBN:978-1-6654-2332-8.

[5] Troy J. Sewell and Christopher David White, "Mana and thermalization: Probing the feasibility of near-Clifford Hamiltonian simulation", Physical Review B 106 12, 125130 (2022).

[6] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu, "Theory of Trotter Error with Commutator Scaling", Physical Review X 11 1, 011020 (2021).

[7] Finn Lasse Buessen, Dvira Segal, and Ilia Khait, "Simulating time evolution on distributed quantum computers", Physical Review Research 5 2, L022003 (2023).

[8] Mark Steudtner and Stephanie Wehner, "Estimating exact energies in quantum simulation without Toffoli gates", Physical Review A 101 5, 052329 (2020).

[9] Alexander Miessen, Pauline J. Ollitrault, Francesco Tacchino, and Ivano Tavernelli, "Quantum algorithms for quantum dynamics", Nature Computational Science 3 1, 25 (2022).

[10] Mario Motta and Julia E. Rice, "Emerging quantum computing algorithms for quantum chemistry", WIREs Computational Molecular Science 12 3, e1580 (2022).

[11] Nicolas P. D. Sawaya, Tim Menke, Thi Ha Kyaw, Sonika Johri, Alán Aspuru-Guzik, and Gian Giacomo Guerreschi, "Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians", npj Quantum Information 6 1, 49 (2020).

[12] Natalie Klco, Alessandro Roggero, and Martin J Savage, "Standard model physics and the digital quantum revolution: thoughts about the interface", Reports on Progress in Physics 85 6, 064301 (2022).

[13] Tyson Jones and Simon C. Benjamin, "Robust quantum compilation and circuit optimisation via energy minimisation", Quantum 6, 628 (2022).

[14] Kenneth Choi, Dean Lee, Joey Bonitati, Zhengrong Qian, and Jacob Watkins, "Rodeo Algorithm for Quantum Computing", Physical Review Letters 127 4, 040505 (2021).

[15] Yuta Kikuchi, Conor Mc Keever, Luuk Coopmans, Michael Lubasch, and Marcello Benedetti, "Realization of quantum signal processing on a noisy quantum computer", npj Quantum Information 9 1, 93 (2023).

[16] Tyson Jones and Simon Benjamin, "QuESTlink—Mathematica embiggened by a hardware-optimised quantum emulator* ", Quantum Science and Technology 5 3, 034012 (2020).

[17] Suguru Endo, Jinzhao Sun, Ying Li, Simon C. Benjamin, and Xiao Yuan, "Variational Quantum Simulation of General Processes", Physical Review Letters 125 1, 010501 (2020).

[18] Refik Mansuroglu, Timo Eckstein, Ludwig Nützel, Samuel A Wilkinson, and Michael J Hartmann, "Variational Hamiltonian simulation for translational invariant systems via classical pre-processing", Quantum Science and Technology 8 2, 025006 (2023).

[19] Zhicheng Zhang, Qisheng Wang, and Mingsheng Ying, "Parallel Quantum Algorithm for Hamiltonian Simulation", Quantum 8, 1228 (2024).

[20] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan, "Quantum Algorithms for Quantum Chemistry and Quantum Materials Science", Chemical Reviews 120 22, 12685 (2020).

[21] Kaoru Mizuta, Yuya O. Nakagawa, Kosuke Mitarai, and Keisuke Fujii, "Local Variational Quantum Compilation of Large-Scale Hamiltonian Dynamics", PRX Quantum 3 4, 040302 (2022).

[22] Mekena Metcalf, Emma Stone, Katherine Klymko, Alexander F Kemper, Mohan Sarovar, and Wibe A de Jong, "Quantum Markov chain Monte Carlo with digital dissipative dynamics on quantum computers", Quantum Science and Technology 7 2, 025017 (2022).

[23] Matthew Hagan and Nathan Wiebe, "Composite Quantum Simulations", Quantum 7, 1181 (2023).

[24] Zi-Jian Zhang, Jinzhao Sun, Xiao Yuan, and Man-Hong Yung, "Low-Depth Hamiltonian Simulation by an Adaptive Product Formula", Physical Review Letters 130 4, 040601 (2023).

[25] Jacob Bringewatt and Zohreh Davoudi, "Parallelization techniques for quantum simulation of fermionic systems", Quantum 7, 975 (2023).

[26] Oriel Kiss, Michele Grossi, and Alessandro Roggero, "Importance sampling for stochastic quantum simulations", Quantum 7, 977 (2023).

[27] Manuel G. Algaba, Mario Ponce-Martinez, Carlos Munuera-Javaloy, Vicente Pina-Canelles, Manish J. Thapa, Bruno G. Taketani, Martin Leib, Inés de Vega, Jorge Casanova, and Hermanni Heimonen, "Co-Design quantum simulation of nanoscale NMR", Physical Review Research 4 4, 043089 (2022).

[28] Chi-Fang Chen, Hsin-Yuan Huang, Richard Kueng, and Joel A. Tropp, "Concentration for Random Product Formulas", PRX Quantum 2 4, 040305 (2021).

[29] Simon V. Mathis, Guglielmo Mazzola, and Ivano Tavernelli, "Toward scalable simulations of lattice gauge theories on quantum computers", Physical Review D 102 9, 094501 (2020).

[30] Xiantao Li, "Some error analysis for the quantum phase estimation algorithms", Journal of Physics A: Mathematical and Theoretical 55 32, 325303 (2022).

[31] Chenfeng Cao, Zheng An, Shi-Yao Hou, D. L. Zhou, and Bei Zeng, "Quantum imaginary time evolution steered by reinforcement learning", Communications Physics 5 1, 57 (2022).

[32] Johann Ostmeyer, "Optimised Trotter decompositions for classical and quantum computing", Journal of Physics A: Mathematical and Theoretical 56 28, 285303 (2023).

[33] Sergey Bravyi, Oliver Dial, Jay M. Gambetta, Darío Gil, and Zaira Nazario, "The future of quantum computing with superconducting qubits", Journal of Applied Physics 132 16, 160902 (2022).

[34] Paul K. Faehrmann, Mark Steudtner, Richard Kueng, Maria Kieferova, and Jens Eisert, "Randomizing multi-product formulas for Hamiltonian simulation", Quantum 6, 806 (2022).

[35] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan, "Quantum computational chemistry", Reviews of Modern Physics 92 1, 015003 (2020).

[36] Lingling Lao and Dan E. Browne, Proceedings of the 49th Annual International Symposium on Computer Architecture 351 (2022) ISBN:9781450386104.

[37] Valentina Amitrano, Alessandro Roggero, Piero Luchi, Francesco Turro, Luca Vespucci, and Francesco Pederiva, "Trapped-ion quantum simulation of collective neutrino oscillations", Physical Review D 107 2, 023007 (2023).

[38] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan Wiebe, "Time-dependent Hamiltonian simulation withL1-norm scaling", Quantum 4, 254 (2020).

[39] Mingxia Huo and Ying Li, "Error-resilient Monte Carlo quantum simulation of imaginary time", Quantum 7, 916 (2023).

[40] Woo-Ram Lee, Zhangjie Qin, Robert Raussendorf, Eran Sela, and V. W. Scarola, "Measurement-based time evolution for quantum simulation of fermionic systems", Physical Review Research 4 3, L032013 (2022).

[41] Lindsay Bassman Oftelie, Miroslav Urbanek, Mekena Metcalf, Jonathan Carter, Alexander F Kemper, and Wibe A de Jong, "Simulating quantum materials with digital quantum computers", Quantum Science and Technology 6 4, 043002 (2021).

[42] Richard Meister, Simon C. Benjamin, and Earl T. Campbell, "Tailoring Term Truncations for Electronic Structure Calculations Using a Linear Combination of Unitaries", Quantum 6, 637 (2022).

[43] Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, and Ryan Babbush, "Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization", Quantum 4, 296 (2020).

[44] Changhao Yi and Elizabeth Crosson, "Spectral analysis of product formulas for quantum simulation", npj Quantum Information 8 1, 37 (2022).

[45] Dong An, Di Fang, and Lin Lin, "Time-dependent unbounded Hamiltonian simulation with vector norm scaling", Quantum 5, 459 (2021).

[46] Yulong Dong, K. Birgitta Whaley, and Lin Lin, "A quantum hamiltonian simulation benchmark", npj Quantum Information 8 1, 131 (2022).

[47] Dong An, Di Fang, and Lin Lin, "Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and Superconvergence for Schrödinger Equation", Quantum 6, 690 (2022).

[48] Takuya Hatomura, "State-dependent error bound for digital quantum simulation of driven systems", Physical Review A 105 5, L050601 (2022).

[49] Hongzheng Zhao, Johannes Knolle, Roderich Moessner, and Florian Mintert, "Suppression of Interband Heating for Random Driving", Physical Review Letters 129 12, 120605 (2022).

[50] Matthew Pocrnic, Matthew Hagan, Juan Carrasquilla, Dvira Segal, and Nathan Wiebe, "Composite Qdrift-product formulas for quantum and classical simulations in real and imaginary time", Physical Review Research 6 1, 013224 (2024).

[51] Leonardo Novo, "Bridging gaps between random approaches to quantum simulation", Quantum Views 4, 33 (2020).

[52] Nicolas PD Sawaya, Albert T Schmitz, and Stuart Hadfield, "Encoding trade-offs and design toolkits in quantum algorithms for discrete optimization: coloring, routing, scheduling, and other problems", Quantum 7, 1111 (2023).

[53] Thais L. Silva, Márcio M. Taddei, Stefano Carrazza, and Leandro Aolita, "Fragmented imaginary-time evolution for early-stage quantum signal processors", Scientific Reports 13 1, 18258 (2023).

[54] Vincent E. Elfving, Marta Millaruelo, José A. Gámez, and Christian Gogolin, "Simulating quantum chemistry in the seniority-zero space on qubit-based quantum computers", Physical Review A 103 3, 032605 (2021).

[55] Yutaka Shikano, Hiroshi C. Watanabe, Ken M. Nakanishi, and Yu-ya Ohnishi, "Post-Hartree–Fock method in quantum chemistry for quantum computer", The European Physical Journal Special Topics 230 4, 1037 (2021).

[56] Lane G. Gunderman, "Transforming collections of Pauli operators into equivalent collections of Pauli operators over minimal registers", Physical Review A 107 6, 062416 (2023).

[57] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan, "Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation", Journal of the Physical Society of Japan 90 3, 032001 (2021).

[58] Jakob S Kottmann, Mario Krenn, Thi Ha Kyaw, Sumner Alperin-Lea, and Alán Aspuru-Guzik, "Quantum computer-aided design of quantum optics hardware", Quantum Science and Technology 6 3, 035010 (2021).

[59] Nicholas H. Stair, Cristian L. Cortes, Robert M. Parrish, Jeffrey Cohn, and Mario Motta, "Stochastic quantum Krylov protocol with double-factorized Hamiltonians", Physical Review A 107 3, 032414 (2023).

[60] Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins, Ying Li, Jarrod R. McClean, and Thomas E. O’Brien, "Quantum error mitigation", Reviews of Modern Physics 95 4, 045005 (2023).

[61] Yifan Sun, Jun-Yi Zhang, Mark S Byrd, and Lian-Ao Wu, "Trotterized adiabatic quantum simulation and its application to a simple all-optical system", New Journal of Physics 22 5, 053012 (2020).

[62] Yuan Su, Hsin-Yuan Huang, and Earl T. Campbell, "Nearly tight Trotterization of interacting electrons", Quantum 5, 495 (2021).

[63] Yifei Huang, Yuguo Shao, Weiluo Ren, Jinzhao Sun, and Dingshun Lv, "Efficient Quantum Imaginary Time Evolution by Drifting Real-Time Evolution: An Approach with Low Gate and Measurement Complexity", Journal of Chemical Theory and Computation 19 13, 3868 (2023).

[64] Benedikt Fauseweh and Jian-Xin Zhu, "Quantum computing Floquet energy spectra", Quantum 7, 1063 (2023).

[65] Dean Lee, "Quantum techniques for eigenvalue problems", The European Physical Journal A 59 11, 275 (2023).

[66] Minh C. Tran, Yuan Su, Daniel Carney, and Jacob M. Taylor, "Faster Digital Quantum Simulation by Symmetry Protection", PRX Quantum 2 1, 010323 (2021).

[67] Pablo A. M. Casares, Roberto Campos, and M. A. Martin-Delgado, "TFermion: A non-Clifford gate cost assessment library of quantum phase estimation algorithms for quantum chemistry", Quantum 6, 768 (2022).

[68] Yingkai Ouyang, David R. White, and Earl T. Campbell, "Compilation by stochastic Hamiltonian sparsification", Quantum 4, 235 (2020).

[69] Qi Zhao and Xiao Yuan, "Exploiting anticommutation in Hamiltonian simulation", Quantum 5, 534 (2021).

[70] Ryan Shaffer, Hang Ren, Emiliia Dyrenkova, Christopher G. Yale, Daniel S. Lobser, Ashlyn D. Burch, Matthew N. H. Chow, Melissa C. Revelle, Susan M. Clark, and Hartmut Häffner, "Sample-efficient verification of continuously-parameterized quantum gates for small quantum processors", Quantum 7, 997 (2023).

[71] Thi Ha Kyaw, Tim Menke, Sukin Sim, Abhinav Anand, Nicolas P.D. Sawaya, William D. Oliver, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik, "Quantum Computer-Aided Design: Digital Quantum Simulation of Quantum Processors", Physical Review Applied 16 4, 044042 (2021).

[72] Shi Jin and Xiantao Li, "A Partially Random Trotter Algorithm for Quantum Hamiltonian Simulations", Communications on Applied Mathematics and Computation (2023).

[73] Yi-Tong Zou, Yu-Jiao Bo, and Ji-Chong Yang, "Optimize quantum simulation using a force-gradient integrator", EPL (Europhysics Letters) 135 1, 10004 (2021).

[74] I. J. David, I. Sinayskiy, and F. Petruccione, "Digital simulation of convex mixtures of Markovian and non-Markovian single qubit Pauli channels on NISQ devices", EPJ Quantum Technology 11 1, 14 (2024).

[75] Yi-Xiang Liu, Jordan Hines, Zhi Li, Ashok Ajoy, and Paola Cappellaro, "High-fidelity Trotter formulas for digital quantum simulation", Physical Review A 102 1, 010601 (2020).

[76] Alexander J. Buser, Tanmoy Bhattacharya, Lukasz Cincio, and Rajan Gupta, "State preparation and measurement in a quantum simulation of the O(3) sigma model", Physical Review D 102 11, 114514 (2020).

[77] Di Fang, Lin Lin, and Yu Tong, "Time-marching based quantum solvers for time-dependent linear differential equations", Quantum 7, 955 (2023).

[78] Andrea Agazzi, Jonathan C. Mattingly, and Omar Melikechi, "Random Splitting of Fluid Models: Unique Ergodicity and Convergence", Communications in Mathematical Physics 401 1, 497 (2023).

[79] Feng Xu, Fan Yang, Chao Wei, Xinyu Chen, Shijie Wei, Hefeng Wang, Jun Li, and Tao Xin, "Quantum simulation of water-molecule bond angles using an NMR quantum computer", Physical Review A 109 4, 042618 (2024).

[80] Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, and Fernando G. S. L. Brandão, "Quantum algorithms: A survey of applications and end-to-end complexities", arXiv:2310.03011, (2023).

[81] Earl Campbell, "Random Compiler for Fast Hamiltonian Simulation", Physical Review Letters 123 7, 070503 (2019).

[82] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402, (2018).

[83] Andrew M. Childs and Yuan Su, "Nearly Optimal Lattice Simulation by Product Formulas", Physical Review Letters 123 5, 050503 (2019).

[84] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu, "A Theory of Trotter Error", arXiv:1912.08854, (2019).

[85] Bryan O'Gorman, William J. Huggins, Eleanor G. Rieffel, and K. Birgitta Whaley, "Generalized swap networks for near-term quantum computing", arXiv:1905.05118, (2019).

[86] Mark Steudtner and Stephanie Wehner, "Quantum codes for quantum simulation of fermions on a square lattice of qubits", Physical Review A 99 2, 022308 (2019).

[87] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in a Hamiltonian simulation", Physical Review A 99 1, 012334 (2019).

[88] Dong An, Jin-Peng Liu, Daochen Wang, and Qi Zhao, "A theory of quantum differential equation solvers: limitations and fast-forwarding", arXiv:2211.05246, (2022).

[89] Hrant Gharibyan, Masanori Hanada, Masazumi Honda, and Junyu Liu, "Toward simulating superstring/M-theory on a quantum computer", Journal of High Energy Physics 2021 7, 140 (2021).

[90] Kunal Sharma and Minh C. Tran, "Hamiltonian Simulation in the Interaction Picture Using the Magnus Expansion", arXiv:2404.02966, (2024).

[91] Dong An, Andrew M. Childs, and Lin Lin, "Quantum algorithm for linear non-unitary dynamics with near-optimal dependence on all parameters", arXiv:2312.03916, (2023).

[92] Cahit Kargi, Juan Pablo Dehollain, Lukas M. Sieberer, Fabio Henriques, Tobias Olsacher, Philipp Hauke, Markus Heyl, Peter Zoller, and Nathan K. Langford, "Quantum Chaos and Universal Trotterisation Behaviours in Digital Quantum Simulations", arXiv:2110.11113, (2021).

[93] Seth Lloyd, Bobak T. Kiani, David R. M. Arvidsson-Shukur, Samuel Bosch, Giacomo De Palma, William M. Kaminsky, Zi-Wen Liu, and Milad Marvian, "Hamiltonian singular value transformation and inverse block encoding", arXiv:2104.01410, (2021).

[94] Ian D. Kivlichan, Christopher E. Granade, and Nathan Wiebe, "Phase estimation with randomized Hamiltonians", arXiv:1907.10070, (2019).

[95] Minh C. Tran, Yuan Su, Daniel Carney, and Jacob M. Taylor, "Faster Digital Quantum Simulation by Symmetry Protection", arXiv:2006.16248, (2020).

[96] Mingxia Huo and Ying Li, "Error-resilient Monte Carlo quantum simulation of imaginary time", arXiv:2109.07807, (2021).

[97] Jin-Peng Liu and Lin Lin, "Dense outputs from quantum simulations", arXiv:2307.14441, (2023).

[98] Seth Lloyd and Reevu Maity, "Efficient implementation of unitary transformations", arXiv:1901.03431, (2019).

[99] Oriel Kiss, Michele Grossi, and Alessandro Roggero, "Quantum error mitigation for Fourier moment computation", arXiv:2401.13048, (2024).

[100] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in Hamiltonian simulation", arXiv:1808.03623, (2018).

[101] Weiyuan Gong, Shuo Zhou, and Tongyang Li, "A Theory of Digital Quantum Simulations in the Low-Energy Subspace", arXiv:2312.08867, (2023).

[102] Benjamin D. M. Jones, George O. O'Brien, David R. White, Earl T. Campbell, and John A. Clark, "Optimising Trotter-Suzuki Decompositions for Quantum Simulation Using Evolutionary Strategies", arXiv:1904.01336, (2019).

[103] Sam McArdle, "Learning from Physics Experiments with Quantum Computers: Applications in Muon Spectroscopy", PRX Quantum 2 2, 020349 (2021).

[104] Junaid Aftab, Dong An, and Konstantina Trivisa, "Multi-product Hamiltonian simulation with explicit commutator scaling", arXiv:2403.08922, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-19 05:03:25) and SAO/NASA ADS (last updated successfully 2024-04-19 05:03:26). The list may be incomplete as not all publishers provide suitable and complete citation data.