Quantum correlations for anonymous metrology
1QOLS, Blackett Laboratory, Imperial College London, London SW7 2AZ, UK.
2Department of Atomic and Laser Physics, Clarendon Laboratory, University of Oxford
Published: | 2019-08-26, volume 3, page 178 |
Eprint: | arXiv:1812.04374v3 |
Doi: | https://doi.org/10.22331/q-2019-08-26-178 |
Citation: | Quantum 3, 178 (2019). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We introduce the task of anonymous metrology, in which a physical parameter of an object may be determined without revealing the object's location. Alice and Bob share a correlated quantum state, with which one of them probes the object. Upon receipt of the quantum state, Charlie is then able to estimate the parameter without knowing who possesses the object. We show that quantum correlations are resources for this task when Alice and Bob do not trust the devices in their labs. The anonymous metrology protocol moreover distinguishes different kinds of quantum correlations according to the level of desired security: discord is needed when the source of states is trustworthy, otherwise entanglement is necessary.

► BibTeX data
► References
[1] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70: 1895–1899, 1993. 10.1103/PhysRevLett.70.1895.
https://doi.org/10.1103/PhysRevLett.70.1895
[2] Charles H. Bennett and Stephen J. Wiesner. Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett., 69: 2881–2884, 1992. 10.1103/PhysRevLett.69.2881.
https://doi.org/10.1103/PhysRevLett.69.2881
[3] Artur K. Ekert. Quantum cryptography based on bell's theorem. Phys. Rev. Lett., 67: 661–663, 1991. 10.1103/PhysRevLett.67.661.
https://doi.org/10.1103/PhysRevLett.67.661
[4] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81: 865–942, 2009. 10.1103/RevModPhys.81.865.
https://doi.org/10.1103/RevModPhys.81.865
[5] Kavan Modi, Aharon Brodutch, Hugo Cable, Tomasz Paterek, and Vlatko Vedral. The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys., 84: 1655–1707, 2012. 10.1103/RevModPhys.84.1655.
https://doi.org/10.1103/RevModPhys.84.1655
[6] Gerardo Adesso, Thomas R Bromley, and Marco Cianciaruso. Measures and applications of quantum correlations. J. Phys. A, 49 (47): 473001, 2016. 10.1088/1751-8113/49/47/473001.
https://doi.org/10.1088/1751-8113/49/47/473001
[7] Anindita Bera, Tamoghna Das, Debasis Sadhukhan, Sudipto Singha Roy, Aditi Sen(De), and Ujjwal Sen. Quantum discord and its allies: a review of recent progress. Rep. Prog. Phys., 81 (2): 024001, 2018. 10.1088/1361-6633/aa872f.
https://doi.org/10.1088/1361-6633/aa872f
[8] Richard Jozsa and Noah Linden. On the role of entanglement in quantum-computational speed-up. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459 (2036): 2011–2032, 2003. 10.1098/rspa.2002.1097.
https://doi.org/10.1098/rspa.2002.1097
[9] Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett., 91: 147902, 2003. 10.1103/PhysRevLett.91.147902.
https://doi.org/10.1103/PhysRevLett.91.147902
[10] Animesh Datta, Anil Shaji, and Carlton M. Caves. Quantum discord and the power of one qubit. Phys. Rev. Lett., 100: 050502, 2008. 10.1103/PhysRevLett.100.050502.
https://doi.org/10.1103/PhysRevLett.100.050502
[11] Borivoje Dakić, Vlatko Vedral, and Časlav Brukner. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett., 105: 190502, 2010. 10.1103/PhysRevLett.105.190502.
https://doi.org/10.1103/PhysRevLett.105.190502
[12] Animesh Datta and Anil Shaji. Quantum discord and quantum computing—an appraisal. Int. J. Quant. Inf., 9 (07n08): 1787–1805, 2011. 10.1142/S0219749911008416.
https://doi.org/10.1142/S0219749911008416
[13] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum metrology. Phys. Rev. Lett., 96: 010401, 2006. 10.1103/PhysRevLett.96.010401.
https://doi.org/10.1103/PhysRevLett.96.010401
[14] Zixin Huang, Chiara Macchiavello, and Lorenzo Maccone. Usefulness of entanglement-assisted quantum metrology. Phys. Rev. A, 94: 012101, 2016. 10.1103/PhysRevA.94.012101.
https://doi.org/10.1103/PhysRevA.94.012101
[15] Kavan Modi, Hugo Cable, Mark Williamson, and Vlatko Vedral. Quantum correlations in mixed-state metrology. Phys. Rev. X, 1: 021022, 2011. 10.1103/PhysRevX.1.021022.
https://doi.org/10.1103/PhysRevX.1.021022
[16] Davide Girolami, Tommaso Tufarelli, and Gerardo Adesso. Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett., 110: 240402, 2013. 10.1103/PhysRevLett.110.240402.
https://doi.org/10.1103/PhysRevLett.110.240402
[17] Davide Girolami, Alexandre M. Souza, Vittorio Giovannetti, Tommaso Tufarelli, Jefferson G. Filgueiras, Roberto S. Sarthour, Diogo O. Soares-Pinto, Ivan S. Oliveira, and Gerardo Adesso. Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett., 112: 210401, 2014. 10.1103/PhysRevLett.112.210401.
https://doi.org/10.1103/PhysRevLett.112.210401
[18] Michał Horodecki, Jonathan Oppenheim, and Andreas Winter. Partial quantum information. Nature, 436 (7051): 673–676, aug 2005. ISSN 00280836. 10.1038/nature03909.
https://doi.org/10.1038/nature03909
[19] D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter. Operational interpretations of quantum discord. Phys. Rev. A, 83: 032324, 2011. 10.1103/PhysRevA.83.032324.
https://doi.org/10.1103/PhysRevA.83.032324
[20] Vaibhav Madhok and Animesh Datta. Interpreting quantum discord through quantum state merging. Phys. Rev. A, 83: 032323, 2011. 10.1103/PhysRevA.83.032323.
https://doi.org/10.1103/PhysRevA.83.032323
[21] David P. DiVincenzo, Debbie W. Leung, and Barbara M. Terhal. Quantum data hiding. IEEE Trans. Info. Theor., 48: 580–598, 2002. 10.1109/18.985948.
https://doi.org/10.1109/18.985948
[22] David P. DiVincenzo, Patrick Hayden, and Barbara M. Terhal. Hiding quantum data. IEEE Trans. Info. Theor., 33: 1629–1647, 2003. 10.1023/A:1026013201376.
https://doi.org/10.1023/A:1026013201376
[23] Matthias Christandl and Stephanie Wehner. Quantum anonymous transmissions. In International Conference on the Theory and Application of Cryptology and Information Security, pages 217–235, 2005. 10.1007/11593447_12.
https://doi.org/10.1007/11593447_12
[24] Jan Bouda and Josef Sprojcar. Anonymous transmission of quantum information. In Quantum, Nano, and Micro Technologies, 2007. ICQNM'07. First International Conference on, page 12. IEEE, 2007. 10.1109/ICQNM.2007.2.
https://doi.org/10.1109/ICQNM.2007.2
[25] Gilles Brassard, Anne Broadbent, Joseph Fitzsimons, Sébastien Gambs, and Alain Tapp. Anonymous quantum communication. In International Conference on the Theory and Application of Cryptology and Information Security, pages 460–473. Springer, 2007. 10.1007/978-3-540-76900-2_28.
https://doi.org/10.1007/978-3-540-76900-2_28
[26] Farid Shahandeh, Austin P Lund, and Timothy C Ralph. Quantum Correlations and Global Coherence in Distributed Quantum Computing. URL http://arxiv.org/abs/1706.00478. 10.1103/PhysRevA.99.052303.
https://doi.org/10.1103/PhysRevA.99.052303
arXiv:1706.00478
[27] Kavan Modi, Arun Kumar Pati, Aditi Sen(De), and Ujjwal Sen. Masking quantum information is impossible. Phys. Rev. Lett., 120: 230501, 2018. 10.1103/PhysRevLett.120.230501.
https://doi.org/10.1103/PhysRevLett.120.230501
[28] Iman Marvian and Robert W. Spekkens. How to quantify coherence: Distinguishing speakable and unspeakable notions. Phys. Rev. A, 94: 052324, 2016. 10.1103/PhysRevA.94.052324.
https://doi.org/10.1103/PhysRevA.94.052324
[29] Iman Marvian and Robert W. Spekkens. Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A, 90: 062110, 2014. 10.1103/PhysRevA.90.062110.
https://doi.org/10.1103/PhysRevA.90.062110
[30] E. M. Rains. Bound on distillable entanglement. Phys. Rev. A, 60: 179–184, 1999. 10.1103/PhysRevA.60.179.
https://doi.org/10.1103/PhysRevA.60.179
[31] Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie Wehner. Bell nonlocality. Rev. Mod. Phys., 86: 419–478, 2014. 10.1103/RevModPhys.86.419.
https://doi.org/10.1103/RevModPhys.86.419
[32] Christian Weedbrook, Stefano Pirandola, Jayne Thompson, Vlatko Vedral, and Mile Gu. How discord underlies the noise resilience of quantum illumination. N. Jour. Phys., 18 (4): 043027, 2016. ISSN 1367-2630. 10.1088/1367-2630/18/4/043027.
https://doi.org/10.1088/1367-2630/18/4/043027
[33] Alexander Streltsov, Gerardo Adesso, and Martin B. Plenio. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys., 89: 041003, 2017. 10.1103/RevModPhys.89.041003.
https://doi.org/10.1103/RevModPhys.89.041003
[34] Tristan Kraft and Marco Piani. Genuine correlated coherence. J. Phys. A, 51 (41): 414013, 2018. 10.1088/1751-8121/aab8ad.
https://doi.org/10.1088/1751-8121/aab8ad
[35] Kok Chuan Tan, Hyukjoon Kwon, Chae-Yeun Park, and Hyunseok Jeong. Unified view of quantum correlations and quantum coherence. Phys. Rev. A, 94: 022329, 2016. 10.1103/PhysRevA.94.022329.
https://doi.org/10.1103/PhysRevA.94.022329
[36] Teng Ma, Ming-Jing Zhao, Shao-Ming Fei, and Man-Hong Yung. Quantum Correlated Coherence and Classical Correlation are Essential in Energy Transport. URL https://arxiv.org/abs/1802.08821. 10.1103/PhysRevA.99.062303.
https://doi.org/10.1103/PhysRevA.99.062303
arXiv:1802.08821
[37] Yuan Sun, Yuanyuan Mao, and Shunlong Luo. From quantum coherence to quantum correlations. Eur. Phys. Lett., 118 (6): 60007, 2017. ISSN 0295-5075. 10.1209/0295-5075/118/60007.
https://doi.org/10.1209/0295-5075/118/60007
[38] Reinhard F Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40 (8): 4277–4281, 1989. ISSN 10502947. 10.1103/PhysRevA.40.4277.
https://doi.org/10.1103/PhysRevA.40.4277
[39] Asher Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77: 1413–1415, 1996. 10.1103/PhysRevLett.77.1413.
https://doi.org/10.1103/PhysRevLett.77.1413
[40] Paweł Horodecki. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A, 232 (5): 333–339, 1997. ISSN 03759601. 10.1016/S0375-9601(97)00416-7.
https://doi.org/10.1016/S0375-9601(97)00416-7
[41] H. M. Wiseman, S. J. Jones, and A. C. Doherty. Steering, entanglement, nonlocality, and the einstein-podolsky-rosen paradox. Phys. Rev. Lett., 98: 140402, 2007. 10.1103/PhysRevLett.98.140402.
https://doi.org/10.1103/PhysRevLett.98.140402
[42] R. Horodecki, P. Horodecki, and M. Horodecki. Violating Bell inequality by mixed spin- 1 2 states: necessary and sufficient condition. Phys. Lett. A, 200 (5): 340–344, 1995. ISSN 03759601. 10.1016/0375-9601(95)00214-N.
https://doi.org/10.1016/0375-9601(95)00214-N
[43] Michael A. Nielsen and Isaac L. Chuang. Distance measures for quantum information. In Quantum Computation and Quantum Information, chapter 9. Cambridge University Press, Cambridge, 2010. ISBN 9780511976667. 10.1017/CBO9780511976667.
https://doi.org/10.1017/CBO9780511976667
[44] Christopher A. Fuchs and Jeroen De Van Graaf. Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory, 45 (4): 1216–1227, 1999. ISSN 00189448. 10.1109/18.761271.
https://doi.org/10.1109/18.761271
[45] Dénes Petz and Catalin Ghinea. Introduction to quantum fisher information. In Quantum probability and related topics, pages 261–281. World Scientific, 2011. 10.1142/9789814338745_0015.
https://doi.org/10.1142/9789814338745_0015
[46] Stefano Pirandola. Quantum discord as a resource for quantum cryptography. Sci. Rep., 4: 6956, 2014. 10.1038/srep06956.
https://doi.org/10.1038/srep06956
[47] T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas. Robustness of quantum discord to sudden death. Phys. Rev. A, 80: 024103, 2009. 10.1103/PhysRevA.80.024103.
https://doi.org/10.1103/PhysRevA.80.024103
[48] T. Baumgratz, M. Cramer, and M. B. Plenio. Quantifying coherence. Phys. Rev. Lett., 113: 140401, 2014. 10.1103/PhysRevLett.113.140401.
https://doi.org/10.1103/PhysRevLett.113.140401
[49] Eric Chitambar and Gilad Gour. Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett., 117: 030401, 2016. 10.1103/PhysRevLett.117.030401.
https://doi.org/10.1103/PhysRevLett.117.030401
[50] Andreas Winter and Dong Yang. Operational resource theory of coherence. Phys. Rev. Lett., 116: 120404, 2016. 10.1103/PhysRevLett.116.120404.
https://doi.org/10.1103/PhysRevLett.116.120404
[51] Benjamin Yadin, Jiajun Ma, Davide Girolami, Mile Gu, and Vlatko Vedral. Quantum processes which do not use coherence. Phys. Rev. X, 6: 041028, 2016. 10.1103/PhysRevX.6.041028.
https://doi.org/10.1103/PhysRevX.6.041028
[52] Stephen D. Bartlett, Terry Rudolph, and Robert W. Spekkens. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys., 79: 555–609, 2007. 10.1103/RevModPhys.79.555.
https://doi.org/10.1103/RevModPhys.79.555
Cited by
[1] Mao-Sheng Li and Kavan Modi, "Probabilistic and approximate masking of quantum information", Physical Review A 102 2, 022418 (2020).
[2] A. J. Paige, Hyukjoon Kwon, Selwyn Simsek, Chris N. Self, Johnnie Gray, and M. S. Kim, "Quantum Delocalized Interactions", Physical Review Letters 125 24, 240406 (2020).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-22 14:57:58) and SAO/NASA ADS (last updated successfully 2023-09-22 14:57:59). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.