Semi-device-independent certification of indefinite causal order

Jessica Bavaresco1, Mateus Araújo2, Časlav Brukner1,3, and Marco Túlio Quintino4

1Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
2Institute for Theoretical Physics, University of Cologne, Zülpicher Strasse 77, 50937 Cologne, Germany
3Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
4Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Updated version: The authors have uploaded version v6 of this work to the arXiv which may contain updates or corrections not contained in the published version v3. The authors left the following comment on the arXiv:
17 + 22 pages. Code available at this https URL. v5: Correction to the proof of Lemma 3. v6: Equation numbering amended in order to update the published version


When transforming pairs of independent quantum operations according to the fundamental rules of quantum theory, an intriguing phenomenon emerges: some such higher-order operations may act on the input operations in an indefinite causal order. Recently, the formalism of process matrices has been developed to investigate these noncausal properties of higher-order operations. This formalism predicts, in principle, statistics that ensure indefinite causal order even in a device-independent scenario, where the involved operations are not characterised. Nevertheless, all physical implementations of process matrices proposed so far require full characterisation of the involved operations in order to certify such phenomena. Here we consider a semi-device-independent scenario, which does not require all operations to be characterised. We introduce a framework for certifying noncausal properties of process matrices in this intermediate regime and use it to analyse the quantum switch, a well-known higher-order operation, to show that, although it can only lead to causal statistics in a device-independent scenario, it can exhibit noncausal properties in semi-device-independent scenarios. This proves that the quantum switch generates stronger noncausal correlations than it was previously known.

► BibTeX data

► References

[1] M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996). [arXiv: quant-ph/​9605038].

[2] G. M. D'Ariano, Martina de Laurentis, M. G. A. Paris, A. Porzio, and S. Solimeno. Quantum tomography as a tool for the characterization of optical devices. Journal of Optics B: Quantum and Semiclassical Optics 4, S127 (2002). [arXiv: quant-ph/​0110110].

[3] J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964).

[4] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and Stephanie Wehner. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).

[5] M. M. Wolf, D. Perez-Garcia, and C. Fernandez. Measurements incompatible in quantum theory cannot be measured jointly in any other no-signaling theory. Phys. Rev. Lett. 103, 230402 (2009). [arXiv: 0905.2998].

[6] D. Mayers and A. Yao. Self testing quantum apparatus. Quantum Information and Computation 4, 273–286 (2004). [arXiv: quant-ph/​0307205].

[7] C.-E. Bardyn, T. C. H. Liew, S. Massar, M. McKague, and V. Scarani. Device-independent state estimation based on bell's inequalities. Phys. Rev. A 80, 062327 (2009). [arXiv: 0907.2170].

[8] A. Aspect, P. Grangier, and G. Roger. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities. Phys. Rev. Lett. 49, 91–94 (1982).

[9] B. Hensen, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015). [arXiv: 1508.05949].

[10] Marissa Giustina, et al. Significant-loophole-free test of Bell's theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015). [arXiv: 1511.03190].

[11] L. K. Shalm, et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015). [arXiv: 1511.03189].

[12] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007). [arXiv: quant-ph/​0702152].

[13] A. Acín, S. Massar, and S. Pironio. Randomness versus nonlocality and entanglement. Phys. Rev. Lett. 108, 100402 (2012). [arXiv: 1107.2754].

[14] H. M. Wiseman, S. J. Jones, and A. C. Doherty. Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007). [arXiv: quant-ph/​0612147].

[15] M. T. Quintino, T. Vértesi, and N. Brunner. Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell Nonlocality. Phys. Rev. Lett. 113, 160402 (2014). [arXiv: 1406.6976].

[16] R. Uola, T. Moroder, and O. Gühne. Joint measurability of generalized measurements implies classicality. Phys. Rev. Lett. 113, 160403 (2014). [arXiv: 1407.2224].

[17] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012). [arXiv: 1109.1435].

[18] O. Oreshkov, F. Costa, and Č. Brukner. Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012). [arXiv: 1105.4464].

[19] G. Chiribella, G. M. D'Ariano, and P. Perinotti. Transforming quantum operations: Quantum supermaps. Europhysics Letters 83, 30004 (2008). [arXiv: 0804.0180].

[20] G. Chiribella, G. M. D'Ariano, and P. Perinotti. Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009). [arXiv: 0904.4483].

[21] M. Araújo, A. Feix, M. Navascués, and Č. Brukner. A purification postulate for quantum mechanics with indefinite causal order. Quantum 1, 10 (2017). [arXiv: 1611.08535].

[22] G. Chiribella. Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301 (2012). [arXiv: 1109.5154].

[23] A. Feix, M. Araújo, and Č. Brukner. Quantum superposition of the order of parties as a communication resource. Phys. Rev. A 92, 052326 (2015). [arXiv: 1508.07840].

[24] P. A. Guérin, A. Feix, M. Araújo, and Č. Brukner. Exponential communication complexity advantage from quantum superposition of the direction of communication. Phys. Rev. Lett. 117, 100502 (2016). [arXiv: 1605.07372].

[25] M. Araújo, F. Costa, and Č. Brukner. Computational advantage from quantum-controlled ordering of gates. Phys. Rev. Lett. 113, 250402 (2014). [arXiv: 1401.8127].

[26] M. T. Quintino, Q. Dong, A. Soeda A. Shimbo, and Mio Murao. Reversing unknown quantum transformations: A universal protocol for inverting general unitary operations. arXiv e-prints, (2018). [arXiv: 1810.06944].

[27] M. Araújo, C. Branciard, F. Costa, A. Feix, Christina Giarmatzi, and Č. Brukner. Witnessing causal nonseparability. New J. Phys. 17, 102001 (2015). [arXiv: 1506.03776].

[28] C. Branciard. Witnesses of causal nonseparability: an introduction and a few case studies. Scientific Reports 6, 26018 (2016). [arXiv: 1603.00043].

[29] Giulia Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. Procopio, Č. Brukner, and P. Walther. Experimental verification of an indefinite causal order. Science Advances 3, 3 (2017). [arXiv: 1608.01683].

[30] K. Goswami, Christina Giarmatzi, M. Kewming, F. Costa, C. Branciard, Jacquiline Romero, and A. G. White. Indefinite causal order in a quantum switch. Phys. Rev. Lett. 121, 090503 (2018). [arXiv: 1803.04302].

[31] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, Irati Alonso Calafell, Emma G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner, and P. Walther. Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015). [arXiv: 1412.4006].

[32] Giulia Rubino, L. A. Rozema, F. Massa, M. Araújo, Magdalena Zych, Č. Brukner, and P. Walther. Experimental entanglement of temporal orders. arXiv e-prints, (2017). [arXiv: 1712.06884].

[33] K. Goswami, Jacquiline Romero, and A.G. White. Communicating via ignorance. arXiv e-prints, (2018). [arXiv: 1807.07383].

[34] C. Branciard, M. Araújo, A. Feix, F. Costa, and Č. Brukner. The simplest causal inequalities and their violation. New J. Phys. 18, 013008 (2016). [arXiv: 1508.01704].

[35] G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron. Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013). [arXiv: 0912.0195].

[36] K. Kraus, A. Böhm, J. D. Dollard, and W. H. Wootters. States, Effects, and Operations: Fundamental Notions of Quantum Theory. Lectures in Mathematical Physics at the University of Texas at Austin. Cambridge University Press (1983).

[37] J. de Pillis. Linear transformations which preserve hermitian and positive semidefinite operators. Pacific Journal of Mathematics 23, 129–137 (1967).

[38] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3, 275–278 (1972).

[39] M.-D. Choi. Completely positive linear maps on complex matrices. Linear Algebra and its Applications 10, 285–290 (1975).

[40] F. Riesz. Sur une espèce de géométrie analytique des systèmes de fonctions sommables. C. R. Acad. Sci. Paris 144, 1409–1411 (1907).

[41] E. Prugovečki. Information-theoretical aspects of quantum measurement. International Journal of Theoretical Physics 16, 321–331 (1977).

[42] C. M. Caves, C. A. Fuchs, and R. Schack. Unknown quantum states: The quantum de finetti representation. Journal of Mathematical Physics 43, 4537-4559 (2002). [arXiv: quant-ph/​0104088].

[43] Costantino Budroni, et al. (in preparation).

[44] L. A. Khalfin and B. S. Tsirelson. Quantum and quasi-classical analogs of Bell inequalities. Symposium on the Foundations of Modern Physics, 441–460 (1985).

[45] P. Rastall. Locality, Bell's theorem, and quantum mechanics. Foundations of Physics 15, 963–972 (1985).

[46] S. Popescu and D. Rohrlich. Quantum nonlocality as an axiom. Foundations of Physics 24, 379–385 (1994).

[47] O. Oreshkov and Christina Giarmatzi. Causal and causally separable processes. New J. Phys. 18, 093020 (2016). [arXiv: 1506.05449].

[48] A. Feix, M. Araújo, and Č. Brukner. Causally nonseparable processes admitting a causal model. New J. Phys. 18, 083040 (2016). [arXiv: 1604.03391].

[49] M. F. Pusey. Negativity and steering: A stronger Peres conjecture. Phys. Rev. A 88, 032313 (2013). [arXiv: 1305.1767].

[50] E. Schrödinger. Discussion of probability relations between separated systems. Proceedings of the Cambridge Philosophical Society 31, 555 (1935).

[51] N. Gisin. Stochastic quantum dynamics and relativity. Helvetica Physica Acta 62, 363–371 (1989).

[52] L. P. Hughston, R. Jozsa, and W. K. Wootters. A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183, 14–18 (1993).

[53] https:/​/​​jessicabavaresco/​sdi-causality.

[54] J. Wechs, A. A. Abbott, and C. Branciard. On the definition and characterisation of multipartite causal (non)separability. New J. Phys. 21, 013027 (2019). [arXiv: 1807.10557].

[55] A. A. Abbott, J. Wechs, F. Costa, and C. Branciard. Genuinely multipartite noncausality. Quantum 1, 39 (2017). [arXiv: 1708.07663].

Cited by

[1] Huan-Yu Ku, Hao-Cheng Weng, Yen-An Shih, Po-Chen Kuo, Neill Lambert, Franco Nori, Chih-Sung Chuu, and Yueh-Nan Chen, "Hidden nonmacrorealism: Reviving the Leggett-Garg inequality with stochastic operations", Physical Review Research 3 4, 043083 (2021).

[2] Huan Cao, Ning-Ning Wang, Zhian Jia, Chao Zhang, Yu Guo, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo, "Quantum simulation of indefinite causal order induced quantum refrigeration", Physical Review Research 4 3, L032029 (2022).

[3] Hippolyte Dourdent, Alastair A. Abbott, Nicolas Brunner, Ivan Šupić, and Cyril Branciard, "Semi-Device-Independent Certification of Causal Nonseparability with Trusted Quantum Inputs", Physical Review Letters 129 9, 090402 (2022).

[4] Wataru Yokojima, Marco Túlio Quintino, Akihito Soeda, and Mio Murao, "Consequences of preserving reversibility in quantum superchannels", arXiv:2003.05682, Quantum 5, 441 (2021).

[5] Simon Milz, Jessica Bavaresco, and Giulio Chiribella, "Resource theory of causal connection", Quantum 6, 788 (2022).

[6] Germain Tobar and Fabio Costa, "Reversible dynamics with closed time-like curves and freedom of choice", Classical and Quantum Gravity 37 20, 205011 (2020).

[7] Shashank Gupta, Debarshi Das, Chellasamy Jebarathinam, Arup Roy, Shounak Datta, and A. S. Majumdar, "“All-versus-nothing” proof of genuine tripartite steering and entanglement certification in the two-sided device-independent scenario", Quantum Studies: Mathematics and Foundations 9 2, 175 (2022).

[8] Nikola Paunković and Marko Vojinović, "Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders", Quantum 4, 275 (2020).

[9] Jessica Bavaresco, Mio Murao, and Marco Túlio Quintino, "Unitary channel discrimination beyond group structures: Advantages of sequential and indefinite-causal-order strategies", Journal of Mathematical Physics 63 4, 042203 (2022).

[10] Teodor Strömberg, Peter Schiansky, Marco Túlio Quintino, Michael Antesberger, Lee Rozema, Iris Agresti, Časlav Brukner, and Philip Walther, "Experimental superposition of time directions", arXiv:2211.01283.

[11] Huan Cao, Jessica Bavaresco, Ning-Ning Wang, Lee A. Rozema, Chao Zhang, Yun-Feng Huang, Bi-Heng Liu, Chuan-Feng Li, Guang-Can Guo, and Philip Walther, "Experimental semi-device-independent certification of indefinite causal order", arXiv:2202.05346.

[12] Ricardo Faleiro, Nikola Paunkovic, and Marko Vojinovic, "Operational interpretation of the vacuum and process matrices for identical particles", arXiv:2010.16042.

The above citations are from Crossref's cited-by service (last updated successfully 2022-11-30 03:44:52) and SAO/NASA ADS (last updated successfully 2022-11-30 03:44:53). The list may be incomplete as not all publishers provide suitable and complete citation data.