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Producing and certifying entanglement
between distant qubits is a highly desirable
skill for quantum information technologies.
Here we propose a new strategy to moni-
tor and characterize entanglement genesis
in a half parity measurement setup, that
relies on the continuous readout of an en-
ergetic observable which is the half-parity
observable itself. Based on a quantum-
trajectory approach, we theoretically an-
alyze the statistics of energetic fluctua-
tions for a pair of continuously monitored
qubits. We quantitatively relate these en-
ergetic fluctuations to the rate of entan-
glement produced between the qubits, and
build an energetic-based estimator to as-
sess the presence of entanglement in the
circuit. Remarkably, this estimator is valid
at the single-trajectory level and shows
to be robust against finite detection effi-
ciency. Our work paves the road towards a
fundamental understanding of the stochas-
tic energetic processes associated with en-
tanglement genesis, and opens new per-
spectives for witnessing quantum correla-
tions thanks to quantum thermodynamic
quantities.

1 Introduction

Entanglement is a cornerstone of quantum infor-
mation technologies: Entangled pairs of qubits
have for long been a resource for secure quan-
tum key distribution [11], quantum teleportation
[22], quantum repeaters for long distance quantum
communication [33], while large scale entangle-
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ment can be exploited through cluster states to
perform measurement-based quantum computing
[44].

From a practical point of view, entangled pairs
of qubits can be produced, e.g. by using quan-
tum gates based on non-linear interactions [55], or
performing measurement-based protocols of the
parity observable. The latter is known to induce
entanglement between two qubits initially in a
separable state and has been extensively inves-
tigated in the last decade within various physi-
cal systems. Proposals have been made consider-
ing superconducting qubits jointly measured by
a cavity mode [66–99] and semiconductor quantum
dots jointly measured by a quantum point con-
tact [1010, 1111] or by an electronic Mach-Zehnder in-
terferometer in quantum transport experiments
[1212, 1313]. All these works have derived the spe-
cific conditions under which these setups can be
operated as parity meters. Those conditions in-
clude having a fine tuning of the coupling pa-
rameters between the qubits and the detector
such that only the parity degree of freedom of
the qubits is measured. In addition, having
each of the two qubits initially in a maximal co-
herent superposition state is required to gener-
ate maximally entangled states. In particular,
Ref. [1111] investigated the stochastic generation
of entanglement from a weak continuous mea-
surement of the parity operator, putting forward
the measurement-induced entanglement genesis.
Since then, measurement-induced entanglement
has eventually been implemented within circuit
QED experiments [88, 1414, 1515]. Interestingly, these
platforms also provide the technological know-
how to access the quantum trajectories of indi-
vidual quantum systems both subject to local
measurements [1616–1818] or to joint-measurements
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[88, 1515]. Hence, Refs. [88, 1515] not only implemented
a parity-measurement based protocol onto two
qubits, but could also access the stochastic tra-
jectories followed by the joint state of the qubits
along the entanglement generation process.

Recently, it was shown that the measurements
allowing to reconstruct the pure state trajecto-
ries of the monitored systems are associated with
energetic fluctuations of genuinely quantum ori-
gin called quantum heat. These energetic fluc-
tuations can be turned into work in various pro-
tocols [1919–2222] and have been related to entropy
production of quantum origin [2323, 2424] and pro-
vide new merit criteria to assess the performances
of a feedback loop [1818, 2525]. So far, a thermody-
namic analysis of entanglement genesis based on
stochastic trajectories has remained elusive.

In this work, we theoretically analyze the
statistics of energetic fluctuations for a pair of
continuously monitored half spins subject to a
half-parity measurement. This is achieved within
the framework of stochastic quantum thermody-
namics presented in [2323, 2626] and it allows us to
derive and highlight for the first time energetic
signatures associated with measurement-induced
entanglement genesis. We quantitatively relate
these energetic quantum fluctuations to the rate
of entanglement produced between the qubits.
We then exploit our results to propose a new
practical application of these energetic fluctua-
tions by building an energetic-based estimator to
attest the presence of entanglement in the cir-
cuit. Remarkably, this latter quantity holds at
the single trajectory level and does not rely on
the measurement record itself.

The paper is organized as follows. In Sec. 22,
we present our system and recall the basics of a
half-parity measurement protocol. In Sec. 33, we
relate parity measurement and energy measure-
ment, and we introduce the quantum energetic
fluctuations associated with the quantum heat.
We define and compute the stochastic energetic
quantities involved in the continuous measure-
ment case. In Sec. 44, we relate the fluctuations
of quantum heat to the rate of entanglement in-
duced between the qubits. This one is investi-
gated through the time-derivative of the concur-
rence, a monotone measure for two-qubit entan-
glement. We derive upper and lower bounds for
the rate of entanglement genesis, which we ex-
ploit in Sec. 55 to build an estimator assessing the
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Figure 1: Model and motivation. a) Weak continuous
half-parity measurement. Two qubits are weakly cou-
pled to a meter able to measure continuously the joint
observable Φ̂, for instance in circuit QED setups, see
Refs. [1414, 1515]. The corresponding measurement record
Iγ(t) is stochastic. Two realizations are shown: tra-
jectory leading the qubits into a maximally entangled
state (red) or into a product state (blue). b) After post-
selection, time-dependent single-trajectory concurrence
and single-trajectory quantum heat fluctuations. Verti-
cal dashed lines highlight similar times for the concur-
rence and the quantum heat fluctuations to reach their
long-time limit value. In this work we derive formal rela-
tions between those quantities and exploit them to derive
an energetic-based estimator, an alternative to quantum
state tomography.

presence of entanglement. The latter does not
depend explicitly on the measurement record, it
is solely based on energetic quantities and is valid
at the single-trajectory level. We also investigate
its robustness in presence of finite detection effi-
ciency.

2 Model
System– The system is made of two two-level sys-
tems (qubits) with identical energy splitting ε de-
scribed by their Hamiltonian ĤS

ĤS = ε
(
σ̂(1)
z ⊗ 1 + 1⊗ σ̂(2)

z

)
, (1)

where σ
(i)
z denotes the z-Pauli matrix for qubit i.

We assume the two qubits to be initially in a sep-
arable state, and more specifically in a maximal
superposition state:

|ψ(0)〉 = 1
2 (|↑〉+ |↓〉)⊗ (|↑〉+ |↓〉) . (2)

This choice is motivated by previous works
showing that this state belongs to the set of
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optimal states that lead to maximally entangled
final states (i.e. Bell states) when the qubits
are subject to a (half-) parity measurement [1212].
Hence, this choice of initial state will allow us
to investigate the energetic signatures associated
to the generation of entanglement in optimal
conditions. In addition, the qubits are subject
to a weak continuous measurement of the joint
observable Φ̂, that implements a half-parity
measurement, see Fig. 11. Within the two-qubit
computational basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}, the

collective operator Φ̂ =
∑
i=1,2 σ

(i)
z is defined

by |↑↑〉〈↑↑| − |↓↓〉〈↓↓| and has three eigenval-
ues ±1 and 0 with eigenstates |↑↑〉, |↓↓〉 and
(|↑↓〉± |↓↑〉)/

√
2 respectively. The eigenvalue 0 is

degenerate, implying that this outcome does not
allow one to distinguish between the two odd
states {|↑↓〉, |↓↑〉}. Consequently, when outcome
0 is obtained from the measurement, the two
qubits are driven into a coherent superposition
of those states, which leads to entanglement. On
the contrary, the measurement of the eigenvalues
±1 allows to distinguish the two even states,
leaving the qubits in a product state. Hence, the
half-parity measurement presents the specificity
of producing in a probabilistic way entangled and
product states. It is clear from the expression of
Φ̂ that its measurement does not put the qubits
into an entangled state (spanned by the odd
states) if these ones are not in a coherent super-
position initially. Although the forms of Φ̂ and

of the parity operator P̂ = σ
(1)
z ⊗σ(2)

z seem to be
specific, these joint operators are the only ones
up to local unitary operations that can generate
correlations between two qubits. This explains
the high interest in the past years for this parity
measurement protocol within solid-state setups,
also known within the quantum information
community as a Bell measurement. This one was
for instance proposed and realized for quantum
teleportation [22, 2727].

Quantum trajectories– Assuming a weak con-
tinuous measurement of Φ̂, each realization of
the measurement procedure is associated to a
quantum stochastic trajectory followed by the
qubits and labelled γ in the rest of the manuscript
[2828, 2929]. We assume the initial state of the qubits
is a known pure state, see Eq.(22), such that the
trajectory γ is made of a sequence of pure states
{|ψγ(t)〉}. To each trajectory γ corresponds a

stochastic measurement record Iγ(t):

Iγ(t) = 〈Φ̂(t)〉γ + dWγ(t)
2
√

Γdt
. (3)

Here, 〈Φ̂(t)〉γ = 〈ψγ(t)|Φ̂|ψγ(t)〉 is the expecta-
tion value of the half-parity operator w.r.t. the
state |ψγ(t)〉, and Γ corresponds to the detector
measurement rate, i.e. the rate at which one is
able to distinguish the measurement outcomes
from the detector’s shot noise [1212, 1313, 3030, 3131].
The infinitesimal Wiener increment dWγ(t) is a
stochastic variable characterized by a zero av-
erage and variance dt, i.e. 〈〈dWγ〉〉t = 0 and
〈〈dW 2

γ 〉〉t = dt, where 〈〈·〉〉t denotes the average
over all realizations of the measurement during
the time interval [0, t]. Note that throughout
this work, we use Ito’s convention for stochas-
tic differential calculus [3232, 3333]. This infinitesi-
mal Wiener increment encodes Gaussian fluctu-
ations of the measurement record Iγ(t) around
its expectation value 〈Φ̂(t)〉γ and therefore cap-
tures the detector’s shot noise in the weak cou-
pling limit [2929, 3131]. Based upon the knowledge
of Iγ , the conditional dynamics of the two qubits
subject to the weak measurement of the half-
parity observable Φ̂ is captured by the stochastic
Schrödinger equation

d|ψγ(t)〉 =
[
−iĤSdt−

Γ
2 dt(Φ̂− 〈Φ̂(t)〉γ)2

+
√

Γ dWγ(t)(Φ̂− 〈Φ̂(t)〉γ)
]
|ψγ(t)〉.(4)

Using ĤS = εΦ̂, see Eq. (11), one can solve
analytically Eq.(44) at any time t as a function of
the stochastic measurement record:

|ψ(Jγ , t)〉 = 1
Nγ(t)

(
e(−iε+2ΓJγ )Φ̂t−ΓΦ̂2t

)
|ψ(0)〉 ,(5)

with Nγ(t) the time-dependent normalization

factor Nγ(t) =
√

(1 + e−2Γt cosh(4ΓJγt))/2. Fol-

lowing Ref. [2929], this solution is expressed
in terms of the measurement outcome Jγ =
1/t

∫ t
0 Iγ(τ) dτ :

Jγ(t) = 1
t

∫ t

0
〈Φ̂(τ)〉γ dτ + Wγ(t)

2
√

Γt
, (6)

with Wγ(t) =
∫ t
0 dWγ(t′) a Gaussian random

variable with mean zero and variance t. The
time integral corresponds to a finite resolution
time, typically set by experimental constraints.
The probability distribution of Jγ(t) is a sum of
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Figure 2: Post-selected average concurrence Cγ and
quantum heat Qγ (as a function of time i.u. of [1/Γ]).
Red dashed curves are obtained by averaging over all odd
trajectories, i.e. that lead the qubits into the maximally
entangled state (|↑↓〉 + |↓↑〉)/

√
2. Blue (full, dashed)

curves are obtained by averaging over all even trajec-
tories, i.e. that lead the qubits into a product state
(|↑↑〉, |↓↓〉). The half-parity measurement induces en-
tanglement, but also serves as energy filter. When aver-
aged over all trajectories (even and odd), 〈〈Qγ〉〉 = 0 as
expected for a QND-measurement [ĤS , Φ̂] = 0. Total
number of simulated quantum trajectories: 800

three Gaussian functions of variance 1/4Γt, each
peaked around one of the eigenvalues {0,±1} of
the measured observable Φ̂:

P (Jγ , t) = 1
3

1∑
j=−1

√
2Γt
π
e−(Jγ−j)2/(2σ̃2

0) , (7)

with the variance σ̃0 ≡
√

Γt setting the mea-
surement strength. In the long time limit
t � (4Γ)−1, Jγ(t) only takes one of three
possible outcomes which are the eigenvalues of
the half-parity measurement operator: J0 ≡ 0,
J±1 ≡ ±1. At those long times, the measurement
becomes projective. In the following of the work,
we choose to label the different trajectories with
their long-time value of Jγ ; this defines three
subsets of trajectories, leading the qubits either
in an entangled state (Jγ = 0) or in a product
state (Jγ = ±1).

Measure of entanglement– We quantify the
presence of entanglement at any time t using the
concurrence, a monotone measure for two-qubit
entangled states [3434]. The qubits being in a pure
state at each instant of time along their trajec-
tory γ, we can make use of a simpler definition
Cγ(t) = max {0, 2|ad− bc|} where a, b, c, d are the
amplitudes of |ψγ(t)〉 with respect to the com-
putational states |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 respectively.
Inserting Eq.(55), we get a stochastic concurrence
which depends on the measurement outcome Jγ :

Cγ(t) = 1− e−2Γt

1 + e−2Γt cosh(4ΓJγt)
. (8)

Figure 22 a) shows the time evolution of the
average post-selected concurrence Cγ according
to the three subsets of trajectories, labeled
by the final outcomes Jγ → {J0, J±1}. The
average is made over all realizations that belong
to a given subset. At long times, t > 6/Γ,
the concurrence can be directly obtained by
replacing in Eq.(88) Jγ by the Φ̂-eigenvalues 0,±1
as the measurement becomes projective. Under
optimal conditions as considered here (QND-
measurement, no additional dephasing processes,
ideal detection scheme), the concurrence reaches
the value 1 when qubits are driven into the
odd subspace, meaning that the qubits end
up in a maximally entangled state. Non-ideal
conditions encountered in experiments lead
to a lower maximal value of concurrence, and
eventually to a long-time state that is separable
if dephasing processes are too important. This
was for instance the case in Ref. [1515], and can
be accounted for theoretically.

In this work, the goal is to establish funda-
mental links between energetic signatures and
the generation of entanglement. This is why we
focus below on the realization of weak continu-
ous half-parity measurement under optimal con-
ditions. Non-ideal conditions could also be ac-
counted for, but would prevent us to draw clear
conclusions on the origin of these energetic sig-
natures.

3 Half-parity measurement seen as an
energy measurement (filter)
It is remarkable that the half-parity observable
also serves as energy filter within our model:
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Φ̂ ∝ ĤS , both being related by the energy gap
of the qubits ε (see Eq. (11)). Hence, the half-
parity measurement provides a direct access to
the energetics of the qubits along the quantum
trajectories generated by the weak measurement
of Φ̂. The internal energy Uγ(t) of the two qubits
along a given trajectory γ is given by:

Uγ(t) = 〈ψγ(t)|ĤS |ψγ(t)〉 = ε〈ψγ(t)|Φ̂|ψγ(t)〉 .(9)
Considering the initial state |ψ(0)〉 (see Eq.(22)),
the initial internal energy U(0) is zero and con-
stitutes the energy reference. In the absence of
driving, ĤS is time-independent. Hence no work
is performed onto the qubits. In addition, there
is no thermal reservoir involved in the problem
so that a change in the internal energy of the
qubits can only arise from the measurement
process itself. This form of energy exchange has
no classical counter-part [2323, 2525, 3535–3838] and will
be, in the line of [2323], referred to as quantum
heat and denoted Q in this article.

Long times: projective energetic measurement–
At long times, t > (6Γ)−1, the change of internal
energy (associated here to a net quantum heat
Q) takes three different values depending on the
measurement outcomes:

∆U ≡ Q =


0 for Jγ = 0
ε for Jγ = 1
−ε for Jγ = −1.

(10)

When averaged over all trajectories, 〈〈∆U〉〉γ = 0,
which equals the reference internal energy at
initial time U(0) = 0. This equality follows
from [ĤS , Φ̂] = 0 that characterizes a QND-
measurement. Indeed, as both observables
commute, there must be no change of internal
energy on average and this must hold at all
times. At long times, the weak continuous
measurement of Φ̂ is equivalent to a projective
energy measurement, and this explains the
long-time values of ∆U for the different subsets
of trajectories, equal to the energy of the odd
states {|↑↓〉, |↓↑〉} and even states |↑↑〉 and |↓↓〉
respectively.

Intermediate times– At arbitrary time t, the
quantum heat exchange depends on the exact
outcome Jγ(t):

Qγ(t) = Uγ(t)− U(0)

= ε
e−2Γt sinh(4ΓtJγ)

1 + e−2Γt cosh(4ΓtJγ) . (11)

This quantum heat exchange Qγ(t), after post-
selection, is plotted in Fig. 22 b) as a function
of time. As for the concurrence, an average is
made within each subset of trajectories defined
by the long-time limit value of the measurement
record Jγ = 0,±1. Because the half-parity
measurement amounts to an energetic mea-
surement, an access to the internal energy is
sufficient to determine whether the qubits are
entangled or not. A record equal to 0 implies
that the qubits ended up in the odd subspace,
in a coherent superposition of the odd states
(|↑↓〉 + |↓↑〉)

√
2. This first part demonstrates

that, on top of being a way to generate entangled
state in a heralded way (the outcome is enough
to know whether the final state is entangled) as
demonstrated in previous works, the half-parity
measurement also gives access to the joint
internal energy of the qubits. Let us note that
the rate at which the quantum heat exchange
converges to its final value corresponds to the
measurement-induced dephasing rates derived in
previous works [1212–1515].

Stochastic fluctuations at arbitrary times– To
derive the fluctuations of the quantum heat, let
us first introduce the increment δQγ(t) that cor-
responds to the stochastic infinitesimal variation
of the internal energy Uγ(t) between times t and
t + dt along a trajectory γ. It is related to the
total quantum heat exchange Qγ(t) up to time t
via:

Qγ(t) =
∫ t

0
δQγ(t′) , (12)

and is defined as

δQγ(t) ≡ d
(
〈ψγ(t)|ĤS |ψγ(t)〉

)
(13)

=
(
d〈ψγ(t)|

)
ĤS |ψγ(t)〉+ 〈ψγ(t)|ĤS

(
d|ψγ(t)〉

)
+
(
d〈ψγ(t)|

)
ĤS
(
d|ψγ(t)〉

)
(14)

Inserting Eqs. (11) and (55) into Eq. (1414) and
expanding the last term up to the first order in
dt, we obtain

δQγ(t) = 2ε
√

ΓdWγ(t) (4P↑↑P↓↓ + PoPe)
≡ δQ(e)

γ (t) + δQ(eo)
γ (t) , (15)

with

δQ(e)
γ (t) = 8ε

√
ΓdWγ(t)P↑↑P↓↓ (16)

δQ(eo)
γ (t) = 2ε

√
ΓdWγ(t)PePo . (17)
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Here, we have introduced the populations Pij for
the 4 two-qubit states defined as Pij ≡ Pij,γ(t) =
|〈ij|ψγ(t)〉|2 i, j =↑, ↓ and we denote Pe = P↑↑+
P↓↓ and Po = P↑↓ + P↓↑ the populations within
the even and odd parity subspaces respectively.
From those definitions, the products P↑↑P↓↓ and
PePo correspond respectively to the squared co-
herences (off-diagonal elements in the two-qubit
density matrix) within the even subspace and be-
tween the even and odd subspaces. Let us re-
call that a (half-) parity measurement generates
entanglement by distinguishing the even states
form the odd ones. It is therefore the loss of co-
herence between the two parity subspaces that
brings the two qubits in a coherent superposi-
tion of odd states when outcome Jγ = 0 is ob-
tained. Hence, we claim that the product PoPe
(equivalently δQ

(eo)
γ (t)) in Eq.(1717) reflects entan-

glement genesis, and so does the total heat incre-
ment δQγ(t). We demonstrate this claim in the
following sections.

4 Energetic bounds for the entangle-
ment genesis rate
To validate our claim, we define the standard de-
viation of the quantum heat increment between
times t and t+ dt as

σγ(t) =
√
〈〈δQ2

γ(t)〉〉dt

= 2ε
√

Γdt e
−4Γt + e−2Γt cosh(4ΓtJγ)
(1 + e−2Γt cosh(4ΓtJγ))2 ,(18)

where we made use of 〈〈dW (t)2〉〉dt = dt and
〈〈dW (t)〉〉dt = 0. For simplicity, we will work in
the following with dimensionless quantities:

σ̃γ(t) = σγ(t)
2ε
√

Γdt
and Q̃γ(t) = Qγ(t)

ε
.(19)

√
Γdt refers to the variance of the Gaussian dis-

tribution of the measurement record Iγ(t) during
the discrete time interval dt, see the variance σ̃0
defined in Eq. (77). Similarly to Eq. (1515), we de-
fine two contributions to the standard deviation
of the stochastic quantum heat increment:

σ̃γ(t) = σ̃(eo)
γ (t) + σ̃(e)

γ (t) (20)

Figure 33 illustrates our claim. The contour
plot corresponding to constant values of the con-
currence is superimposed onto the density plot
of σ̃(eo)(t). It highlights that an increase in the

0
0.
05

0.
10

0.
15

0.
20

0.
25

0.2 0.2
0.4 0.4

0.6

0.8
0.6

0.
8

C = 1
C = 0 C = 0t[

1/
�
]

2

4

6

8

10

0

�̃(eo)
�

�2 �1 1 20

Meas. record J�

0

0.25

0.05

0.1

0.15

0.2

Figure 3: Infinitesimal quantum heat fluctuations σ̃(eo)
γ

as a function of the outcome Jγ and the duration of
the measurement t. The contour plot (solid black lines)
corresponds to the lines of constant concurrence (from
0.2 to 0.8). Regions for C = 0, 1 correspond to the
blue ones and are explicit on the figure. There exists a
one to one correspondance between a finite derivative of
the concurrence (C is changing) and finite fluctuations
of the increment of quantum heat exchange. At long
times, measurement outcome Jγ converges to 0 or ±1,
shown with dashed lines (not anymore continuous along
the x-axis). Fluctuations are not present (σ̃(eo)

0,±1 = 0)and
C = {1, 0} for Jγ = {0,±1}.

concurrence is associated with non-zero fluctu-
ations of δQ

(eo)
γ (t). In contrast, the concurrence

plateaus correspond to the areas where σ̃(eo) van-
ishes. This observation is supported by a strict
equality between the concurrence variation (the

concurrence derivative) and σ̃
(eo)
γ for the trajec-

tories leading the qubits into an entangled state
Jγ = 0 (see App. AA for detailed derivation):

dCγ
dt

∣∣∣∣
Jγ=0

= 4Γ σ̃(eo)
γ

∣∣∣
Jγ=0

. (21)

Because it constitutes at the same time the
source of entanglement and a direct access to
the energy and its fluctuations, it follows that
the energy fluctuations must be related to the
creation of entanglement. However, the practical
interest of Eq. (2121) is limited as it would be
impossible in a heat-sensitive measurement to

distinguish the two contributions δQ
(eo)
γ and

δQ
(e)
γ .

Nevertheless, at intermediate times, we
demonstrate that the concurrence derivative,
that characterizes the rate at which entanglement
is induced by the measurement, can be upper
and lower bounded by energetic quantities solely.
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Starting from

dCγ(t)
dt

= 2Γ
[
e−2Γt (1 + cosh(4ΓtJγ))
(1 + e−2Γt cosh(4ΓtJγ)2

−2Cγ(t)Qγ(t)
ε

(
〈Φ̂(t)〉γ + 1

2
√

Γ
dWγ(t)
dt

)]
,

(22)
we then perform an an ensemble average over
all trajectories (or equivalently over the mea-
surement record Iγ(t)) during the time interval
[t, t + dt], keeping the past records {Iγ(t′)}t′<t
fixed. This interval [t, t+dt] is the one over which
we investigate the fluctuations of the quantum
heat increment δQγ , and this ensemble average
〈〈·〉〉dt corresponds to the one used in the defini-
tions of the quantum heat increment fluctuations,
see Eq.(1818). We then have 〈〈dWγ(t)/dt〉〉dt = 0 in
Eq.(2222) and

〈〈
dCγ(t)
dt

〉〉
dt

= 2Γe
−2Γt + e−2Γt cosh(4ΓtJγ)
(1 + e−2Γt cosh(4ΓtJγ))2

−4Γ Qγ
ε
Cγ〈Φ̂(t)〉γ . (23)

The first term on the r.h.s. can be upper and
lower bounded with σ̃γ (see Append. BB):〈〈

dCγ(t)
dt

〉〉
dt
≥ 2Γ

[
σ̃γ(t)− 2Q̃2

γ(t)Cγ(t)
]

(24)〈〈
dCγ(t)
dt

〉〉
dt
≤ 2Γ

[
2σ̃γ(t)− 2Q̃2

γ(t)Cγ(t)
]
(25)

Inequalities (2424) and (2525) constitute one of the
main analytical results of this work. The en-
tanglement rate is exclusively upper and lower
bounded by energetic quantities, the quantum
heat and quantum heat fluctuations defined in
Eq.(1919). All quantities are defined over a (small)
finite time interval dt. Remarkably, we can fur-
ther exploit Ineq. (2424) towards the derivation of
an energetic-based estimator to assess the pres-
ence of entanglement at intermediate times. Of
interest towards single shot entanglement detec-
tion, this will be done at the level of a unique
quantum trajectory.

5 Single-shot energetic-based estima-
tor for entanglement
Formally, a witness for entanglement is an ob-
servable that takes a negative value when aver-
aged with respect to a state that is entangled. If

the witness takes a positive value, no conclusions
can be drawn, the state can either be entangled
or separable [3939]. In the past years, few witnesses
based on temperature have been proposed, as a
first attempt to exploit energetic quantities to
certify the presence of entanglement [4040, 4141]. Fol-
lowing the spirit of assessing the presence of en-
tanglement with some independent quantities, we
introduce in this section a trajectory-based wit-
ness, i.e. a quantity which takes negative value
in presence of entanglement, just as usual entan-
glement witnesses, but which takes as an input a
single quantum trajectory, or equivalently a weak
measurement record, instead of a quantum state.
As a first step to build this witness, we use the
property that a given quantum trajectory γ will
drive the qubits onto an entangled state if,〈〈

dCγ(t′)
dt

〉〉
dt
≥ 0 , ∀t′ ∈ [0, t]. (26)

This condition is motivated by the idea that ac-
cumulating positive time-derivatives would lead
to a positive concurrence at final time t. While
one cannot certify the presence of entanglement
along individual trajectory γ from Eq.(2626), the

integration over time of
dCγ(t)
dt used to compute

the concurrence at time t is expected to play the
role of the ensemble average 〈〈·〉〉dt for Γdt � 1
and provided t & Γ−1. Therefore, condition (2626)
implies an entangled state at time t for a high
fraction of the considered trajectories.

Making use of inequality (2424), this condition
translates into:

σ̃γ(t)− 2Q̃2
γ(t)Cγ(t) ≥ 0 , (27)

We can now use that the concurrence Cγ takes
values within [0, 1] to prove an inequality assess-
ing the presence of entanglement, that only de-
pends on energetic quantities, σ̃γ(t)−2Q̃2

γ(t) ≥ 0 .
We can now directly use this condition to intro-
duce our trajectory-based entanglement witness
Wγ , defined as:

Wγ = 1
∆t

∫ ti+∆t

ti

[
2Q̃2

γ(t)− σ̃γ(t)
]
dt . (28)

The time-averaged over ∆t is meant to take into
account a finite acquisition time during the ex-
periment. When Wγ is negative, one can ex-
pect with high probability that the trajectory γ
leads to qubits in an entangled state. When it
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Figure 4: Success rate of the energetic-based estimator Ess for different coarse-graining times, τ = 0.1/Γ (a),
τ = 0.4/Γ (b), τ = ∆t/Γ (c), and for τ = ∆t/Γ and different values of the detection efficiency η = 1 (a-b-c),
η = 0.5 (d), η = 0.8 (e), η = 0.9 (f). The density plots show the success rate of Ess for all integration intervals
[ti, ti+∆t], ti and ∆t ranging from 0 to 10. In the simulation, we considered as entangled the trajectories leading to
a final concurrence greater or equal to 0.8. The success rate is defined as the proportion of entangled trajectories for
which the estimator takes a negative value over all entangled trajectories. The white crosses on plots (c-f) indicate
the points of minimum ti reaching a success rate of 50%, i.e τ = ∆t = 0.3/Γ and ti = 3/Γ, 6.4/Γ, 3.8/Γ and
3.4/Γ, respectively, for plots c), d), e) and f).

is positive, one can not draw a definite conclu-
sion. However, and as stated before, this quan-
tity implies an ensemble-average 〈〈·〉〉dt over all
trajectories occurring during the finite time inter-
val dt, which is not yet optimal for experimental
purposes. We therefore define an estimator Ess
(with the label ss referring to single-shot), where
the ensemble average in the definition of σγ(t)
Eq.(1818) is replaced by a time average over an in-
terval τ . This procedure is similar to a coarse-
graining of the fluctuations along a single trajec-
tory. The witness (2828) then transforms into an
estimator, valid at the level of single trajectory:

Ess=
1

∆t

∫ ti+∆t

ti

2Q̃γ(t)2 −

√
1
τ

∫ t+τ

t
δQ̃2

γ(t′) dt′
dt .
(29)

The performance of Ess as an estimator to

attest entanglement between the qubits is ana-
lyzed through two figures of merit, its success
rate (ratio of detected vs. total number of tra-
jectories leading to entangled states) and its er-
ror rate (whenever Ess takes a negative value
whereas the trajectory does not lead to entangled
qubits). The error rate takes the maximal value
of 0.2% for the coarse-graining times τ = 0.1 and
τ = 0.4 and 1.2% for τ = ∆t. Indeed, as the
coarse-graining time increases, the time average
leads to trusty measurements, as expected from
the analytical bound derived with the ensemble-
averaged. The finite error rate forbids us to claim
an energetic witness, but its small value demon-
strates the usefulness of our energetic-based esti-
mator. As shown in Fig.44, the success rate of Ess
does not strongly depend on the overall integra-
tion window ∆t, but rather on the initial time ti
from which the averages are performed. At large
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ti, the success rate reaches 1 as expected from
the convergence of each trajectory towards one
of the eigenstate of the measurement operator Φ̂.
However, the success rate exceeds 0.5 for ti as
small as 3/Γ for τ = ∆t = 0.3/Γ, with a corre-
sponding error rate of 0.4%, being promising for
future experiments towards single-shot energetic-
based estimators to certify the presence of entan-
glement. Finally, as a first step towards realistic
implementation, we have also investigated the ro-
bustness of our estimator against finite detection
efficiency. We have numerically simulated tra-
jectories when the half-parity detection channel
has an efficiency η < 1, which leads to mixed
state trajectories ργ(t) [2929], see App. CC . As
a consequence, the analytic justification for the
estimator is not valid anymore as the formula
for the concurrence has to be modified for mixed
state[3434] and there is no analytic expression for
the state conditioned to a given readout Jγ . How-
ever, a numerical treatment is possible, and it is
straightforward to extend the definition (2929) to
mixed state trajectories, using the average heat
increment along mixed state trajectory γ defined
as δQγ(t) = Tr{dργ(t)ĤS}. The latter is related
to the populations of the states |↑↑〉 and |↓↓〉 and
of the even and odd subspaces in the same way
as in Eq.(1515), with an additional overall factor√
η. The generation of entanglement happens to

be quite robust to finite detection efficiency, as
witnessed by the experimental implementations
[1414, 1515]. The success rate, computed from a sam-
ple of 1000 numerically generated trajectories, is
plotted for finite efficiency in Fig. 44d)-f) for dif-
ferent values of η, showing that our method is
robust against finite detection efficiency. High
success rates (up to 80% for ∆t = 10/Γ) are pre-
dicted even for η = 0.5 which is the order of
magnitude of the experimental conditions. The
error rate remains smaller or of the order of 1%.

6 Discussion

In this work, we investigate the energy fluctua-
tions associated with entanglement genesis dur-
ing the paradigmatic half-parity measurement
procedure. Not only this measurement generates
both product states and entangled states, but it
also constitutes an energy observable. Based on
a quantum-trajectory approach, and making use
of the framework provided by stochastic thermo-

dynamics, we demonstrate that the generation
of entanglement is closely related to the pres-
ence of quantum heat fluctuations induced by
the stochasticity of the weak continuous mea-
surement. We derive analytical upper and lower
bounds for the entanglement genesis rate. We
then exploit the lower bound to derive an esti-
mator that is solely based on energetic observ-
ables and their fluctuations. We show that this
energetic-based estimator is indeed able to attest
the presence of entanglement at a finite time for
a given quantum trajectory, with a tunable prob-
ability that depends on the total time-averaged
window ∆t. Remarkably, this single-shot esti-
mator is valid at the level of a single trajec-
tory and so does not require any ensemble av-
erage. Remarkably, the energetic-based estima-
tor we proposed is robust to finite detection effi-
ciency, reaching a success rate close to 1 for suit-
able integration times as discussed earlier.

These results do not aim at evaluating the en-
ergetic cost of creating quantum correlations, see
for instance Refs.[4242–4444], but rather at defining
an energetic signature associated to their genera-
tion. Whereas the quantum heat is zero on aver-
age, the quantum fluctuations δQ during a finite
time interval dt contain relevant information to
attest the presence of entanglement.

Exact in the context of the half-parity mea-
surement process which also plays the role of
an energetic filter, our work fixes theoretical
tools for thermodynamic analysis of the gen-
eration of quantum correlations and opens the
way to develop witnesses based exclusively on
the measurements of energetic quantities for
quantum information purposes. This theoretical
research is additionally motivated by recent
experimental achievements in the emergent field
of quantum caloritronics, aiming at controlling
and measuring energetic observables like the
heat current in various quantum circuits [4545–5151].
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A Long-time limit formula between
the concurrence derivative and infinites-
imal heat fluctuations
The fluctuations of the heat increment associated
to the lose of coherences between the two parity
subspaces are defined in a similar was as σγ :

σ(eo)
γ (t) =

√
〈〈δQ(eo)2

γ (t)〉〉dt . (30)

= 2ε
√

Γdt e−2Γt cosh 4ΓtJγ
(1 + e−2Γt cosh 4ΓtJγ)2 .(31)

We can compare them to the derivative of the
concurrence averaged over realizations occurring
during the time interval dt:〈〈

dCγ
dt

〉〉
dt

= 2Γe
−2Γt + e−2Γt cosh(4ΓtJγ)
(1 + e−2Γt cosh(4ΓtJγ))2

−4Γ Qγ
ε
Cγ〈Φ̂(t)〉γ . (32)

When t � 1/Γ, the probability distribution of
the measurement outcome Jγ is narrowly peaked
around the three values corresponding to the
eigenvalues of the half-parity measurement op-
erator Φ̂ [2929], i.e. ±1, 0. The average value
of Φ̂ tends also to one of the three eigenvalues.
Hence, for trajectories corresponding to qubits
in a maximally entangled state at long times,
Jγ = 〈Φ̂(t)〉γ = 0 and the heat flow Qγ = 0.
Consequently, Eqs. (3131) and (3232) simplify to

σ(eo)
γ

∣∣∣
Jγ=0

= 2ε
√

Γdt e−2Γt

(1 + e−2Γt)2 (33)〈〈
dCγ
dt

〉〉
dt

∣∣∣∣
Jγ=0

= 4Γ e−2Γt

(1 + e−2Γt)2 . (34)

When time exceeds the measurement time, the
following equality holds:〈〈

dCγ
dt

〉〉
dt

∣∣∣∣
Jγ=0

= 2
ε

√
Γ
dt
σ(eo)
γ

∣∣∣
Jγ=0

. (35)

Although only valid and meaningful at times
longer than the measurement time, this rela-
tion exemplifies the underlying fundamental role
of infinitesimal heat fluctuations for the gener-
ation of entanglement. As stated in the main

text, this relation is only exact in the context of
the half-parity measurement considered in this
work and can not be exploited experimentally.
Indeed, one could not distinguish in an exper-
iment infinitesimal heat fluctuations originating
in the loss of phase coherence between the two

parity subspaces (σ
(eo)
γ ) from total infinitesimal

heat fluctuations (σγ).

B Energetic bounds for the entangle-
ment genesis rate
The general expression of the concurrence deriva-
tive reads

dCγ
dt

= 2Γe
−2Γt + e−2Γt cosh(4ΓtJγ)
(1 + e−2Γt cosh(4ΓtJγ))2

−4Γe
−2Γt sinh(4ΓtJγ)(1− e−2Γt)d(Jγt)/dt

(1 + e−2Γt cosh(4ΓtJγ))2

(36)
Using Eqs. (66),(88) and (1111), it can be rewritten
as

dCγ
dt

= 2Γe
−2Γt + e−2Γt cosh(4ΓtJγ)
(1 + e−2Γt cosh(4ΓtJγ))2

−4Γ Qγ
ε
Cγ
(
〈Φ̂(t)〉γ + dWγ(t)

dt

)
.(37)

To enable the comparison with σ̃γ , we perform
the ensemble average 〈〈·〉〉dt and obtain:〈〈

dCγ
dt

〉〉
dt

= 2Γe
−2Γt + e−2Γt cosh(4ΓtJγ)
(1 + e−2Γt cosh(4ΓtJγ))2

−4Γ Qγ
ε
Cγ〈Φ̂(t)〉γ , (38)

which corresponds to Eq.(2323) in the main text.
Using the inequalities

e−2Γt + e−2Γt cosh(4ΓtJγ) ≤ 2e−2Γt cosh(4ΓtJγ) ,
(39)

and

e−2Γt + e−2Γt cosh(4ΓtJγ) ≥ e−4Γt + e−2Γt cosh(4ΓtJγ) ,
(40)

we can now compare the r.h.s. of these two in-
equalities with the st. dev. of the total heat
fluctuations σ̃γ(t):

σ̃γ(t) = e−4Γt + e−2Γt cosh(4ΓtJγ)
(1 + e−2Γt cosh(4ΓtJγ))2 . (41)

These bounds directly lead to Eqs. (2424) and
(2525) in the main text.
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C Finite detection efficiency
When the efficiency of the detector takes a finite
value η, the state of the two qubits along a given
trajectory γ is a mixed state ργ(t) which obeys
[2929]:

dργ(t) = −idt[ĤS , ργ(t)]

+Γdt
2
(
Φ̂ργ(t)Φ̂− 1

2{Φ̂
2, ργ(t)}

)
+
√
ηΓdWγ(t)

(
{Φ̂, ργ(t)} − 2〈Φ̂(t)〉ργ(t

)
,(42)

where {A,B} = AB + BA. The measurement
record Iγ(t) is now linked to the Wiener incre-
ment dWγ(t) via:

Iγ(t) = 〈Φ̂(t)〉γ + dWγ(t)
2
√
ηΓdt

. (43)
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R. Jozsa, A. Peres, and W. K. Wootters,
Phys. Rev. Lett. 70, 1895 (1993)Phys. Rev. Lett. 70, 1895 (1993).

[3] H.-J. Briegel, W. Dür, J. I. Cirac, and
P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)Phys. Rev. Lett. 81, 5932 (1998).

[4] R. Raussendorf and H. J. Briegel,
Phys. Rev. Lett. 86, 5188 (2001)Phys. Rev. Lett. 86, 5188 (2001).

[5] C. I. Nielsen M., Quantum Computation
and Quantum Information: 10th Anniver-
sary Edition (Cambridge: Cambridge Uni-
versity Press, 2010).

[6] K. Lalumière, J. M. Gambetta, and
A. Blais, Phys. Rev. A 81, 040301 (2010)Phys. Rev. A 81, 040301 (2010).

[7] L. Tornberg and G. Johansson,
Physical Review A 82, 012329 (2010)Physical Review A 82, 012329 (2010).

[8] A. Chantasri, M. E. Kimchi-Schwartz,
N. Roch, I. Siddiqi, and A. N. Jordan,
Phys. Rev. X 6, 041052 (2016)Phys. Rev. X 6, 041052 (2016).

[9] B. Royer, S. Puri, and A. Blais,
Science Advances 4, eaau1695 (2018)Science Advances 4, eaau1695 (2018).

[10] B. Trauzettel, A. N. Jordan, C. W. J.
Beenakker, and M. Büttiker,
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Phys. Rev. B 82, 155303 (2010)Phys. Rev. B 82, 155303 (2010).

[13] C. Meyer zu Rheda,
G. Haack, and A. Romito,
Phys. Rev. B 90, 155438 (2014)Phys. Rev. B 90, 155438 (2014).
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Phys. Rev. Lett. 118, 260603 (2017)Phys. Rev. Lett. 118, 260603 (2017).

[20] C. Elouard and A. N. Jordan,
Phys. Rev. Lett. 120, 260601 (2018)Phys. Rev. Lett. 120, 260601 (2018).

[21] L. Buffoni, A. Solfanelli, P. Verrucchi,
A. Cuccoli, and M. Campisi, (2018),
arXiv:1806.07814.

[22] X. Ding, J. Yi, Y. W. Kim, and P. Talkner,
Phys. Rev. E 98, 042122 (2018)Phys. Rev. E 98, 042122 (2018).

[23] C. Elouard, D. A. Herrera-Mart́ı,
M. Clusel, and A. Auffèves,
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