Divisibility of qubit channels and dynamical maps
1Instituto de Física, Universidad Nacional Autónoma de México, México, D.F., México
2Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84511, Slovakia
3Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
4Faculty of Physics, University of Vienna, 1090 Vienna, Austria
Published: | 2019-05-20, volume 3, page 144 |
Eprint: | arXiv:1812.11437v4 |
Doi: | https://doi.org/10.22331/q-2019-05-20-144 |
Citation: | Quantum 3, 144 (2019). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
The concept of divisibility of dynamical maps is used to introduce an analogous concept for quantum channels by analyzing the simulability of channels by means of dynamical maps. In particular, this is addressed for Lindblad divisible, completely positive divisible and positive divisible dynamical maps. The corresponding L-divisible, CP-divisible and P-divisible subsets of channels are characterized (exploiting the results by Wolf et al. [25]) and visualized for the case of qubit channels. We discuss the general inclusions among divisibility sets and show several equivalences for qubit channels. To this end we study the conditions of L-divisibility for finite dimensional channels, especially the cases with negative eigenvalues, extending and completing the results of Ref.~[26]. Furthermore we show that transitions between every two of the defined divisibility sets are allowed. We explore particular examples of dynamical maps to compare these concepts. Finally, we show that every divisible but not infinitesimal divisible qubit channel (in positive maps) is entanglement breaking, and open the question if something similar occurs for higher dimensions.

Featured image: The set of Pauli channels acting on a qubit ($\mathcal{E}[\rho]=\sum_{i=0}^3
\sigma_i \rho \sigma_i$, $\sigma_0=\mathbf{1}$, $\sum p_i=1$, $p_i\geq0$), form a tetrahedron in the space of their eigenvalues. The subset consisting of channels that are implementable with $\textit{Lindblad master equations}$ (${\sf
C}^\text{L}$) is shown in green. The solid subset corresponds to channels with positive eigenvalues, and the 2D subsets correspond to the negative eigenvaluecase. The point where the four sets meet correspond to the $\textit{total
depolarizing}$ channel. Notice that this set $\textit{does not}$ have the symmetries of the tetrahedron.
Note: The originally published version was 1812.11437v2, after authors noticed a typo it was updated to 1812.11437v3 and 1812.11437v4 contains further minor clarifications.
Popular summary
We address the problem of which channels can be implemented as concatenation of other channels. We define several divisibility types, and investigate how they are related with the implementability of quantum channels using dynamical maps. To illustrate this, think in the following example. The flip of the direction of the magnetization of a spin might be understood as a discrete operation. But we can ask for the dynamical process that changes continuously the direction of the spin, and what mathematical properties the process must fulfill.
In the context of quantum information and open quantum systems, the dynamical maps are typically presented in the form of master equations generalizing the concept of Schroedinger equation determining the evolution of closed quantum systems. The most known and studied are the so-called Markovian quantum evolutions. The concept of Markovianity is closely related to the concept of channel divisibility. In particular, being a result of Markovian evolution implies the channel can be divided into an infinite number of quantum channels that can be chosen to be infinitesimal (i.e. they describe arbitrary small changes on the system).
Our contribution includes the analysis of tests deciding on the Markovianity features of quantum channels, their connections to different types of divisibility and entanglement. We also question the transitions between different types of Markovianity and divisibility. By analysing particular quantum dynamical maps we showed that all transitions are possible. We give an extensive characterization of the channels acting on the qubit system. Seizing the mathematical simplicity of the qubit channels that leave invariant the state with highest entropy, we present visually the structure and symmetries of channels enjoying each studied type of divisibility. We found that divisible but not infinitesimal divisible qubit channels are necessarily entanglement-breaking, i.e. they destroy all originally existing entanglement.
► BibTeX data
► References
[1] Ángel Rivas, Susana F Huelga, and Martin B Plenio. Quantum non-markovianity: characterization, quantification and detection. Rep. Prog. Phys., 77 (9): 094001, 2014. 10.1088/0034-4885/77/9/094001.
https://doi.org/10.1088/0034-4885/77/9/094001
[2] I. Bengtsson and K. Życzkowski. Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, 2017. ISBN 9781107026254. URL https://books.google.com.mx/books?id=sYswDwAAQBAJ.
https://books.google.com.mx/books?id=sYswDwAAQBAJ
[3] W. J Culver. On the Existence and Uniqueness of the Real Logarithm of a Matrix. Proceedings of the American Mathematical Society, 17 (5): 1146–1151, 1966. 10.1090/S0002-9939-1966-0202740-6.
https://doi.org/10.1090/S0002-9939-1966-0202740-6
[4] L. V. Denisov. Infinitely Divisible Markov Mappings in Quantum Probability Theory. Theory Prob. Appl., 33 (2): 392–395, 1989. 10.1137/1133064.
https://doi.org/10.1137/1133064
[5] D. E. Evans and J. T. Lewis. Dilations of Irreversible Evolutions in Algebraic Quantum Theory, volume 24 of Communications of the Dublin Institute for Advanced Studies: Theoretical physics. Dublin Institute for Advanced Studies, 1977. URL http://orca.cf.ac.uk/34031/.
http://orca.cf.ac.uk/34031/
[6] S. N. Filippov, J. Piilo, S. Maniscalco, and M. Ziman. Divisibility of quantum dynamical maps and collision models. Phys. Rev. A, 96 (3): 032111, 2017. 10.1103/PhysRevA.96.032111.
https://doi.org/10.1103/PhysRevA.96.032111
[7] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan. Completely positive dynamical semigroups of N-level systems. J. Math. Phys., 17 (5): 821, 1976. 10.1063/1.522979.
https://doi.org/10.1063/1.522979
[8] A. D. Greentree, J. Koch, and J. Larson. Fifty years of Jaynes–Cummings physics. J. Phy. B, 46 (22): 220201, 2013. 10.1088/0953-4075/46/22/220201.
https://doi.org/10.1088/0953-4075/46/22/220201
[9] S. Haroche and J.-M. Raimond. Exploring the Quantum: Atoms, Cavities, and Photons. Oxford University Press, USA, 2006. URL http://www.worldcat.org/isbn/0198509146.
http://www.worldcat.org/isbn/0198509146
[10] T. Heinosaari and M. Ziman. The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement. Cambridge University Press, 2012. 10.1017/CBO9781139031103.
https://doi.org/10.1017/CBO9781139031103
[11] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entanglement. Rev. Mod. Phys., 81 (2): 865–942, 2009. 10.1103/RevModPhys.81.865.
https://doi.org/10.1103/RevModPhys.81.865
[12] E. T. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE, 51: 89, 1963. 10.1109/PROC.1963.1664.
https://doi.org/10.1109/PROC.1963.1664
[13] A. B. Klimov and S. M. Chumakov. A Group-Theoretical Approach to Quantum Optics: Models of Atom-Field Interactions. Wiley-VCH, 2009. 10.1002/9783527624003.
https://doi.org/10.1002/9783527624003
[14] A. Kossakowski. On quantum statistical mechanics of non-hamiltonian systems. Rep. Math. Phys., 3 (4): 247 – 274, 1972. 10.1016/0034-4877(72)90010-9.
https://doi.org/10.1016/0034-4877(72)90010-9
[15] J. M. Leinaas, J. Myrheim, and E. Ovrum. Geometrical aspects of entanglement. Phys. Rev. A, 74: 012313, Jul 2006. 10.1103/PhysRevA.74.012313.
https://doi.org/10.1103/PhysRevA.74.012313
[16] G. Lindblad. On the generators of quantum dynamical semigroups. Comm. Math. Phys., 48 (2): 119–130, 1976. 10.1007/BF01608499.
https://doi.org/10.1007/BF01608499
[17] M. Musz, M. Kuś, and K. Życzkowski. Unitary quantum gates, perfect entanglers, and unistochastic maps. Phys. Rev. A, 87: 022111, Feb 2013. 10.1103/PhysRevA.87.022111.
https://doi.org/10.1103/PhysRevA.87.022111
[18] C. Pineda, T. Gorin, D. Davalos, D. A. Wisniacki, and I. García-Mata. Measuring and using non-Markovianity. Phys. Rev. A, 93: 022117, 2016. 10.1103/PhysRevA.93.022117.
https://doi.org/10.1103/PhysRevA.93.022117
[19] Ł. Rudnicki, Z. Puchała, and K. Zyczkowski. Gauge invariant information concerning quantum channels. Quantum, 2: 60, April 2018. ISSN 2521-327X. 10.22331/q-2018-04-11-60.
https://doi.org/10.22331/q-2018-04-11-60
[20] M. B. Ruskai, S. Szarek, and E. Werner. An analysis of completely-positive trace-preserving maps on M$_2$. Lin. Alg. Appl., 347 (1): 159 – 187, 2002. 10.1016/S0024-3795(01)00547-X.
https://doi.org/10.1016/S0024-3795(01)00547-X
[21] T. Rybár, S. N. Filippov, M. Ziman, and V. Bužek. Simulation of indivisible qubit channels in collision models. J. Phys. B, 45 (15): 154006, 2012. 10.1088/0953-4075/45/15/154006.
https://doi.org/10.1088/0953-4075/45/15/154006
[22] B. Vacchini, A. Smirne, E.-M. Laine, J. Piilo, and H.-P. Breuer. Markovianity and non-markovianity in quantum and classical systems. New J. Phys., 13 (9): 093004, 2011. 10.1088/1367-2630/13/9/093004.
https://doi.org/10.1088/1367-2630/13/9/093004
[23] F. Verstraete and H. Verschelde. On quantum channels. Unpublished, 2002. URL http://arxiv.org/abs/quant-ph/0202124.
arXiv:quant-ph/0202124
[24] F. Verstraete, J. Dehaene, and B. DeMoor. Local filtering operations on two qubits. Phys. Rev. A, 64 (1): 010101, 2001. 10.1103/PhysRevA.64.010101.
https://doi.org/10.1103/PhysRevA.64.010101
[25] M. M. Wolf and J. I. Cirac. Dividing quantum channels. Comm. Math. Phys., 279 (1): 147–168, 2008. 10.1007/s00220-008-0411-y.
https://doi.org/10.1007/s00220-008-0411-y
[26] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac. Assessing non-Markovian quantum dynamics. Phys. Rev. Lett., 101 (15): 150402, 2008. 10.1103/PhysRevLett.101.150402.
https://doi.org/10.1103/PhysRevLett.101.150402
[27] M. Ziman and V. Bužek. All (qubit) decoherences: Complete characterization and physical implementation. Phys. Rev. A, 72: 022110, Aug 2005. 10.1103/PhysRevA.72.022110.
https://doi.org/10.1103/PhysRevA.72.022110
[28] M. Ziman and V. Bužek. Concurrence versus purity: Influence of local channels on Bell states of two qubits. Phys. Rev. A, 72 (5): 052325, 2005. 10.1103/PhysRevA.72.052325.
https://doi.org/10.1103/PhysRevA.72.052325
Cited by
[1] Katarzyna Siudzińska, "Geometry of Pauli maps and Pauli channels", Physical Review A 100 6, 062331 (2019).
[2] Sayan Ghosh, Anant V Varma, and Sourin Das, "Leggett–Garg inequality in Markovian quantum dynamics: role of temporal sequencing of coupling to bath", Journal of Physics A: Mathematical and Theoretical 56 20, 205302 (2023).
[3] Dariusz Chruściński, Gen Kimura, Andrzej Kossakowski, and Yasuhito Shishido, "Universal Constraint for Relaxation Rates for Quantum Dynamical Semigroup", Physical Review Letters 127 5, 050401 (2021).
[4] Fereshte Shahbeigi, David Amaro-Alcalá, Zbigniew Puchała, and Karol Życzkowski, "Log-convex set of Lindblad semigroups acting on N-level system", Journal of Mathematical Physics 62 7, 072105 (2021).
[5] Shrikant Utagi, Subhashish Banerjee, and R. Srikanth, "On the non-Markovianity of quantum semi-Markov processes", Quantum Information Processing 20 12, 399 (2021).
[6] Dariusz Chruściński, "Dynamical maps beyond Markovian regime", Physics Reports 992, 1 (2022).
[7] Sean Prudhoe and Sarah Shandera, "Classifying the non-time-local and entangling dynamics of an open qubit system", Journal of High Energy Physics 2023 2, 7 (2023).
[8] S. N. Filippov, A. N. Glinov, and L. Leppäjärvi, "Phase Covariant Qubit Dynamics and Divisibility", Lobachevskii Journal of Mathematics 41 4, 617 (2020).
[9] Jose Alfredo de Leon, Alejandro Fonseca, François Leyvraz, David Davalos, and Carlos Pineda, "Pauli component erasing quantum channels", Physical Review A 106 4, 042604 (2022).
[10] Dariusz Chruściński and Farrukh Mukhamedov, "Dissipative generators, divisible dynamical maps, and the Kadison-Schwarz inequality", Physical Review A 100 5, 052120 (2019).
[11] Simon Milz and Kavan Modi, "Quantum Stochastic Processes and Quantum non-Markovian Phenomena", PRX Quantum 2 3, 030201 (2021).
[12] Matthias C. Caro and Benedikt R. Graswald, "Necessary criteria for Markovian divisibility of linear maps", Journal of Mathematical Physics 62 4, 042203 (2021).
[13] Katarzyna Siudzińska, "Non-Markovianity criteria for mixtures of noninvertible Pauli dynamical maps", Journal of Physics A: Mathematical and Theoretical 55 21, 215201 (2022).
[14] Katarzyna Siudzińska, "Geometry of generalized Pauli channels", Physical Review A 101 6, 062323 (2020).
[15] Koorosh Sadri, Fereshte Shahbeigi, Zbigniew Puchała, and Karol Życzkowski, "Accessible Maps in a Group of Classical or Quantum Channels", Open Systems & Information Dynamics 29 01, 2250002 (2022).
[16] David Davalos and Mario Ziman, "Quantum Dynamics is Not Strictly Bidivisible", Physical Review Letters 130 8, 080801 (2023).
[17] U. Shrikant and Prabha Mandayam, "Quantum non-Markovianity: Overview and recent developments", Frontiers in Quantum Science and Technology 2, 1134583 (2023).
[18] Katarzyna Siudzińska, "Geometry of symmetric and noninvertible Pauli channels", Physical Review A 102 6, 062615 (2020).
[19] Ujan Chakraborty and Dariusz Chruściński, "Construction of propagators for divisible dynamical maps", New Journal of Physics 23 1, 013009 (2021).
[20] Sagnik Chakraborty and Dariusz Chruściński, "Information flow versus divisibility for qubit evolution", Physical Review A 99 4, 042105 (2019).
[21] Zbigniew Puchała, Łukasz Rudnicki, and Karol Życzkowski, "Pauli semigroups and unistochastic quantum channels", Physics Letters A 383 20, 2376 (2019).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-21 14:16:08) and SAO/NASA ADS (last updated successfully 2023-09-21 14:16:09). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.