Quantum-assisted quantum compiling

Sumeet Khatri1,2, Ryan LaRose1,3, Alexander Poremba1,4, Lukasz Cincio1, Andrew T. Sornborger5, and Patrick J. Coles1

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM USA.
2Hearne Institute for Theoretical Physics and Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA.
3Department of Computational Mathematics, Science, and Engineering and Department of Physics and Astronomy, Michigan State University, East Lansing, MI USA.
4Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA USA.
5Information Sciences, Los Alamos National Laboratory, Los Alamos, NM USA.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Compiling quantum algorithms for near-term quantum computers (accounting for connectivity and native gate alphabets) is a major challenge that has received significant attention both by industry and academia. Avoiding the exponential overhead of classical simulation of quantum dynamics will allow compilation of larger algorithms, and a strategy for this is to evaluate an algorithm's cost on a quantum computer. To this end, we propose a variational hybrid quantum-classical algorithm called quantum-assisted quantum compiling (QAQC). In QAQC, we use the overlap between a target unitary $U$ and a trainable unitary $V$ as the cost function to be evaluated on the quantum computer. More precisely, to ensure that QAQC scales well with problem size, our cost involves not only the global overlap ${\rm Tr}(V^†U)$ but also the local overlaps with respect to individual qubits. We introduce novel short-depth quantum circuits to quantify the terms in our cost function, and we prove that our cost cannot be efficiently approximated with a classical algorithm under reasonable complexity assumptions. We present both gradient-free and gradient-based approaches to minimizing this cost. As a demonstration of QAQC, we compile various one-qubit gates on IBM's and Rigetti's quantum computers into their respective native gate alphabets. Furthermore, we successfully simulate QAQC up to a problem size of 9 qubits, and these simulations highlight both the scalability of our cost function as well as the noise resilience of QAQC. Future applications of QAQC include algorithm depth compression, black-box compiling, noise mitigation, and benchmarking.

Ordinary computers require a compiler that converts one's code into a machine-level language. Quantum computers require a compiler as well. However, a new challenge for such "quantum compilers" is that they should be optimal, i.e., they should return a machine-level program that has as few operations as possible. This optimality is crucial for current noisy quantum devices, where longer programs accumulate more errors while shorter programs avoid errors. In this work, we introduce an algorithm for optimal quantum compiling. The key feature that allows for optimality is that we propose to use quantum computers themselves to assist in the compiling process. Hence, our algorithm is called quantum-assisted quantum compiling (QAQC, pronounced "Quack").

The idea is that one needs to quantify the distance between the original program and the compiled program, with the goal of trying to minimize this distance. We prove that this distance calculation cannot be done efficiently on a classical computer. On the other hand, we provide an efficient quantum circuit for computing it.

In addition to shortening the length of one's quantum program, QAQC can be used to learn algorithms that compensate for a given quantum computer's noise and also to benchmark the noise processes occurring on a quantum computer. We successfully implement QAQC for small programs using currently available quantum computers from IBM and Rigetti, and we use simulators to explore the compilation of larger programs. Overall, QAQC appears to be a promising tool for mitigating errors in the era of noisy intermediate-scale quantum computers.

► BibTeX data

► References

[1] P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing 26, 1484 (1997).
https:/​/​doi.org/​10.1137/​S0097539795293172

[2] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028 (2014).
arXiv:1411.4028

[3] R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics 21, 467 (1982).
https:/​/​doi.org/​10.1007/​BF02650179

[4] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[5] J. Preskill, Quantum computing and the entanglement frontier, arXiv:1203.5813 (2012).
arXiv:1203.5813

[6] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, et al., A blueprint for demonstrating quantum supremacy with superconducting qubits, Science 360, 195 (2018).
https:/​/​doi.org/​10.1126/​science.aao4309

[7] D. Venturelli, M. Do, E. Rieffel, and J. Frank, Compiling quantum circuits to realistic hardware architectures using temporal planners, Quantum Science and Technology 3, 025004 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aaa331

[8] K. E. C. Booth, M. Do, J. C. Beck, E. Rieffel, D. Venturelli, and J. Frank, Comparing and integrating constraint programming and temporal planning for quantum circuit compilation, arXiv:1803.06775 (2018).
arXiv:1803.06775

[9] L. Cincio, Y. Subaşi, A. T. Sornborger, and P. J. Coles, Learning the quantum algorithm for state overlap, New Journal of Physics 20, 113022 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aae94a

[10] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne, Quantum circuit simplification and level compaction, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 436 (2008).
https:/​/​doi.org/​10.1109/​TCAD.2007.911334

[11] A. G. Fowler, Constructing arbitrary Steane code single logical qubit fault-tolerant gates, Quantum Information and Computation 11, 867 (2011).
http:/​/​dl.acm.org/​citation.cfm?id=2230936.2230946

[12] J. Booth Jr, Quantum compiler optimizations, arXiv:1206.3348 (2012).
arXiv:1206.3348

[13] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, Automated optimization of large quantum circuits with continuous parameters, npj Quantum Information 4, 23 (2018).
https:/​/​doi.org/​10.1038/​s41534-018-0072-4

[14] F. T. Chong, D. Franklin, and M. Martonosi, Programming languages and compiler design for realistic quantum hardware, Nature 549, 180 (2017).
https:/​/​doi.org/​10.1038/​nature23459

[15] L. E. Heyfron and E. T. Campbell, An efficient quantum compiler that reduces T count, Quantum Science and Technology 4, 015004 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aad604

[16] T. Häner, D. S. Steiger, K. Svore, and M. Troyer, A software methodology for compiling quantum programs, Quantum Science and Technology 3, 020501 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aaa5cc

[17] A. Oddi and R. Rasconi, in International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (Springer, 2018) pp. 446–461.
https:/​/​link.springer.com/​chapter/​10.1007/​978-3-319-93031-2_32

[18] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien, A variational eigenvalue solver on a photonic quantum processor, Nature Communications 5, 4213 (2014).
https:/​/​doi.org/​10.1038/​ncomms5213

[19] P. D. Johnson, J. Romero, J. Olson, Y. Cao, and A. Aspuru-Guzik, QVECTOR: an algorithm for device-tailored quantum error correction, arXiv:1711.02249 (2017).
arXiv:1711.02249

[20] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega, Y. Nam, and A. Perdomo-Ortiz, A generative modeling approach for benchmarking and training shallow quantum circuits, arXiv:1801.07686 (2018a).
arXiv:1801.07686

[21] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum circuit learning, Physical Review A 98, 032309 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.032309

[22] G. Verdon, J. Pye, and M. Broughton, A Universal Training Algorithm for Quantum Deep Learning, arXiv:1806.09729 (2018).
arXiv:1806.09729

[23] J. Romero, J. P. Olson, and A. Aspuru-Guzik, Quantum autoencoders for efficient compression of quantum data, Quantum Science and Technology 2, 045001 (2017).
https:/​/​doi.org/​10.1088/​2058-9565/​aa8072

[24] J. Romero, J. P. Olson, and A. Aspuru-Guzik, Quantum autoencoders for short depth quantum circuit synthesis, GitHub article (2018).
https:/​/​github.com/​zapatacomputing/​cusp_cirq_demo/​blob/​master/​cusp_protocol.pdf

[25] B. Dive, A. Pitchford, F. Mintert, and D. Burgarth, In situ upgrade of quantum simulators to universal computers, Quantum 2, 80 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-08-80

[26] E. Knill and R. Laflamme, Power of one bit of quantum information, Physical Review Letters 81, 5672 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.81.5672

[27] K. Fujii, H. Kobayashi, T. Morimae, H. Nishimura, S. Tamate, and S. Tani, Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error, Physical Review Letters 120, 200502 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.200502

[28] B. Rosgen and J. Watrous, in 20th Annual IEEE Conference on Computational Complexity (CCC'05) (2005) pp. 344–354.
https:/​/​doi.org/​10.1109/​CCC.2005.21

[29] R. S. Smith, M. J. Curtis, and W. J. Zeng, A practical quantum instruction set architecture, arXiv:1608.03355 (2016).
arXiv:1608.03355

[30] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, Open Quantum Assembly Language, arXiv:1707.03429 (2017).
arXiv:1707.03429

[31] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
https:/​/​doi.org/​10.1017/​CBO9780511976667

[32] A. Kitaev, Quantum computations: algorithms and error correction, Russian Mathematical Surveys 52, 1191 (1997).
https:/​/​doi.org/​10.1070/​RM1997v052n06ABEH002155

[33] C. M. Dawson and M. A. Nielsen, The Solovay-Kitaev algorithm, Quantum Information and Compututation 6, 81 (2006).
http:/​/​dl.acm.org/​citation.cfm?id=2011679.2011685

[34] T. T. Pham, R. Van Meter, and C. Horsman, Optimization of the Solovay-Kitaev algorithm, Physical Review A 87, 052332 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.052332

[35] V. Kliuchnikov, D. Maslov, and M. Mosca, Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits, Physical Review Letters 110, 190502 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.190502

[36] V. Kliuchnikov, A. Bocharov, and K. M. Svore, Asymptotically optimal topological quantum compiling, Physical Review Letters 112, 140504 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.112.140504

[37] Y. Zhiyenbayev, V. M. Akulin, and A. Mandilara, Quantum compiling with diffusive sets of gates, Physical Review A 98, 012325 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.012325

[38] M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Physical Review A 60, 1888 (1999).
https:/​/​doi.org/​10.1103/​PhysRevA.60.1888

[39] M. A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical operation, Physics Letters A 303, 249 (2002).
https:/​/​doi.org/​10.1016/​S0375-9601(02)01272-0

[40] A. Gepp and P. Stocks, A review of procedures to evolve quantum algorithms, Genetic Programming and Evolvable Machines 10, 181 (2009).
https:/​/​doi.org/​10.1007/​s10710-009-9080-7

[41] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations, Physics Letters A 146, 319 (1990).
https:/​/​doi.org/​10.1016/​0375-9601(90)90962-N

[42] T. Jones and S. C. Benjamin, Quantum compilation and circuit optimisation via energy dissipation, arXiv:1811.03147 (2018).
arXiv:1811.03147

[43] J. C. Garcia-Escartin and P. Chamorro-Posada, Swap test and Hong-Ou-Mandel effect are equivalent, Physical Review A 87, 052330 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.052330

[44] P. W. Shor and S. P. Jordan, Estimating jones polynomials is a complete problem for one clean qubit, Quantum Information & Computation 8, 681 (2008).
http:/​/​www.rintonpress.com/​xxqic8/​qic-8-89/​0681-0714.pdf

[45] IBM Q 5 Tenerife backend specification, (2018a).
https:/​/​github.com/​QISKit/​qiskit-backend-information/​tree/​master/​backends/​tenerife/​V1

[46] IBM Q 16 Rueschlikon backend specification, (2018b).
https:/​/​github.com/​Qiskit/​qiskit-backend-information/​tree/​master/​backends/​rueschlikon/​V1

[47] Rigetti 8Q-Agave specification v.2.0.0.dev0, (2018).
http:/​/​docs.rigetti.com/​en/​latest/​qpu.html

[48] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Barren plateaus in quantum neural network training landscapes, Nature Communications 9, 4812 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

[49] A. G. R. Day, M. Bukov, P. Weinberg, P. Mehta, and D. Sels, Glassy phase of optimal quantum control, Physical Review Letters 122, 020601 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.020601

[50] X. Glorot and Y. Bengio, in In Proceedings of the International Conference on Artificial Intelligence and Statistics (2010) pp. 249–256.
http:/​/​proceedings.mlr.press/​v9/​glorot10a/​glorot10a.pdf?hc_location=ufi

[51] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega, Y. Nam, and A. Perdomo-Ortiz, A generative modeling approach for benchmarking and training shallow quantum circuits, arXiv:1801.07686 (2018b).
arXiv:1801.07686

[52] R. LaRose, A. Tikku, É. O'Neel-Judy, L. Cincio, and P. J. Coles, Variational quantum state diagonalization, arXiv:1810.10506 (2018).
arXiv:1810.10506

[53] A. Kandala, K. Temme, A. D. Corcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta, Extending the computational reach of a noisy superconducting quantum processor, Nature 567, 491 (2018).
https:/​/​doi.org/​10.1038/​s41586-019-1040-7

[54] Scikit-optimize, (2018a).
https:/​/​github.com/​scikit-optimize/​scikit-optimize

[55] J. Močkus, in Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1975) pp. 400–404.
https:/​/​doi.org/​10.1007/​978-3-662-38527-2_55

[56] M. A. Osborne, R. Garnett, and S. J. Roberts, in 3rd International Conference on Learning and Intelligent Optimization (LION3) 2009 (2009).
https:/​/​www.cse.wustl.edu/​~garnett/​files/​papers/​osborne_et_al_lion_2009.pdf

[57] P. Rebentrost, M. Schuld, L. Wossnig, F. Petruccione, and S. Lloyd, Quantum gradient descent and Newton's method for constrained polynomial optimization, arXiv:1612.01789 (2016).
arXiv:1612.01789

[58] I. Kerenidis and A. Prakash, Quantum gradient descent for linear systems and least squares, arXiv:1704.04992 (2017).
arXiv:1704.04992

[59] A. Gilyén, S. Arunachalam, and N. Wiebe, Optimizing quantum optimization algorithms via faster quantum gradient computation, in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1425–1444.
https:/​/​doi.org/​10.1137/​1.9781611975482.87

[60] P. B. M. Sousa and R. V. Ramos, Universal quantum circuit for $n$-qubit quantum gate: A programmable quantum gate, Quantum Information and Computation 7, 228 (2007).
http:/​/​dl.acm.org/​citation.cfm?id=2011717.2011721

[61] F. Vatan and C. Williams, Optimal quantum circuits for general two-qubit gates, Physical Review A 69, 032315 (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.69.032315

[62] Scipy optimization and root finding, (2018b).
https:/​/​docs.scipy.org/​doc/​scipy/​reference/​optimize.html

[63] X.-Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B. P. Lanyon, and J. L. O'Brien, Adding control to arbitrary unknown quantum operations, Nature Communications 2, 413 (2011).
https:/​/​doi.org/​10.1038/​ncomms1392

Cited by

[1] Haozhen Situ, Tianxiang Lu, Minghua Pan, and Lvzhou Li, "Quantum continual learning of quantum data realizing knowledge backward transfer", Physica A: Statistical Mechanics and its Applications 620, 128779 (2023).

[2] Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew Arrasmith, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Long-time simulations for fixed input states on quantum hardware", npj Quantum Information 8 1, 135 (2022).

[3] Guru-Vamsi Policharla and Sai Vinjanampathy, "Algorithmic Primitives for Quantum-Assisted Quantum Control", Physical Review Letters 127 22, 220504 (2021).

[4] Nicola Mariella and Andrea Simonetto, "A Quantum Algorithm for the Sub-graph Isomorphism Problem", ACM Transactions on Quantum Computing 4 2, 1 (2023).

[5] Andrew Arrasmith, Zoë Holmes, M Cerezo, and Patrick J Coles, "Equivalence of quantum barren plateaus to cost concentration and narrow gorges", Quantum Science and Technology 7 4, 045015 (2022).

[6] Olivia Di Matteo, Josh Izaac, Thomas R. Bromley, Anthony Hayes, Christina Lee, Maria Schuld, Antal Száva, Chase Roberts, and Nathan Killoran, "Quantum Computing with Differentiable Quantum Transforms", ACM Transactions on Quantum Computing 4 3, 1 (2023).

[7] Noah Linden and Ronald de Wolf, "Lightweight Detection of a Small Number of Large Errors in a Quantum Circuit", Quantum 5, 436 (2021).

[8] Shichuan Xue, Yizhi Wang, Junwei Zhan, Yaxuan Wang, Ru Zeng, Jiangfang Ding, Weixu Shi, Yong Liu, Yingwen Liu, Anqi Huang, Guangyao Huang, Chunlin Yu, Dongyang Wang, Xiang Fu, Xiaogang Qiang, Ping Xu, Mingtang Deng, Xuejun Yang, and Junjie Wu, "Variational Entanglement-Assisted Quantum Process Tomography with Arbitrary Ancillary Qubits", Physical Review Letters 129 13, 133601 (2022).

[9] Carlos Bravo-Prieto, Josep Lumbreras-Zarapico, Luca Tagliacozzo, and José I. Latorre, "Scaling of variational quantum circuit depth for condensed matter systems", Quantum 4, 272 (2020).

[10] Liam Madden, Albert Akhriev, and Andrea Simonetto, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 492 (2022) ISBN:978-1-6654-9113-6.

[11] Zhimin He, Xuefen Zhang, Chuangtao Chen, Zhiming Huang, Yan Zhou, and Haozhen Situ, "A GNN-based predictor for quantum architecture search", Quantum Information Processing 22 2, 128 (2023).

[12] Michael R. Geller, Zoë Holmes, Patrick J. Coles, and Andrew Sornborger, "Experimental quantum learning of a spectral decomposition", Physical Review Research 3 3, 033200 (2021).

[13] Ryan Shaffer, Hang Ren, Emiliia Dyrenkova, Christopher G. Yale, Daniel S. Lobser, Ashlyn D. Burch, Matthew N. H. Chow, Melissa C. Revelle, Susan M. Clark, and Hartmut Häffner, "Sample-efficient verification of continuously-parameterized quantum gates for small quantum processors", Quantum 7, 997 (2023).

[14] Kunal Sharma, Sumeet Khatri, M Cerezo, and Patrick J Coles, "Noise resilience of variational quantum compiling", New Journal of Physics 22 4, 043006 (2020).

[15] Alicia B. Magann, Christian Arenz, Matthew D. Grace, Tak-San Ho, Robert L. Kosut, Jarrod R. McClean, Herschel A. Rabitz, and Mohan Sarovar, "From Pulses to Circuits and Back Again: A Quantum Optimal Control Perspective on Variational Quantum Algorithms", PRX Quantum 2 1, 010101 (2021).

[16] Aritra Laha and Santosh Kumar, "Random density matrices: Analytical results for mean fidelity and variance of squared Bures distance", Physical Review E 107 3, 034206 (2023).

[17] Daniel Bultrini, Samson Wang, Piotr Czarnik, Max Hunter Gordon, M. Cerezo, Patrick J. Coles, and Lukasz Cincio, "The battle of clean and dirty qubits in the era of partial error correction", Quantum 7, 1060 (2023).

[18] S. Moradi, Clemens Spielvogel, Denis Krajnc, C. Brandner, S. Hillmich, R. Wille, T. Traub-Weidinger, X. Li, M. Hacker, W. Drexler, and L. Papp, "Error mitigation enables PET radiomic cancer characterization on quantum computers", European Journal of Nuclear Medicine and Molecular Imaging (2023).

[19] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini, "Parameterized quantum circuits as machine learning models", Quantum Science and Technology 4 4, 043001 (2019).

[20] Ryan LaRose and Brian Coyle, "Robust data encodings for quantum classifiers", Physical Review A 102 3, 032420 (2020).

[21] Lingling Lao and Carmen G. Almudever, "Fault-tolerant quantum error correction on near-term quantum processors using flag and bridge qubits", Physical Review A 101 3, 032333 (2020).

[22] Brian Coyle, Daniel Mills, Vincent Danos, and Elham Kashefi, "The Born supremacy: quantum advantage and training of an Ising Born machine", npj Quantum Information 6 1, 60 (2020).

[23] I. Meyerov, A. Liniov, M. Ivanchenko, and S. Denisov, "Modeling Complex Quantum Dynamics: Evolution of Numerical Algorithms in the HPC Context", Lobachevskii Journal of Mathematics 41 8, 1509 (2020).

[24] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles, "Cost function dependent barren plateaus in shallow parametrized quantum circuits", Nature Communications 12 1, 1791 (2021).

[25] Hsin-Yuan Huang, Kishor Bharti, and Patrick Rebentrost, "Near-term quantum algorithms for linear systems of equations with regression loss functions", New Journal of Physics 23 11, 113021 (2021).

[26] Shuo Liu, Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao, "Probing many-body localization by excited-state variational quantum eigensolver", Physical Review B 107 2, 024204 (2023).

[27] A. E. Russo, K. M. Rudinger, B. C. A. Morrison, and A. D. Baczewski, "Evaluating Energy Differences on a Quantum Computer with Robust Phase Estimation", Physical Review Letters 126 21, 210501 (2021).

[28] Kunal Sharma, M. Cerezo, Zoë Holmes, Lukasz Cincio, Andrew Sornborger, and Patrick J. Coles, "Reformulation of the No-Free-Lunch Theorem for Entangled Datasets", Physical Review Letters 128 7, 070501 (2022).

[29] Jonas M. Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J. Coles, "An Adaptive Optimizer for Measurement-Frugal Variational Algorithms", Quantum 4, 263 (2020).

[30] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J. Coles, "Noise-induced barren plateaus in variational quantum algorithms", Nature Communications 12 1, 6961 (2021).

[31] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan, "Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation", Journal of the Physical Society of Japan 90 3, 032001 (2021).

[32] Zhenhuan Liu, Pei Zeng, You Zhou, and Mile Gu, "Characterizing correlation within multipartite quantum systems via local randomized measurements", Physical Review A 105 2, 022407 (2022).

[33] Alexis De Vos and Stijn De Baerdemacker, "The decomposition of an arbitrary 2  × 2 unitary matrix into signed permutation matrices", Linear Algebra and its Applications 606, 23 (2020).

[34] Ieva Čepaitė, Brian Coyle, and Elham Kashefi, "A continuous variable Born machine", Quantum Machine Intelligence 4 1, 6 (2022).

[35] Eric R. Anschuetz and Bobak T. Kiani, "Quantum variational algorithms are swamped with traps", Nature Communications 13 1, 7760 (2022).

[36] Ludmila Botelho, Adam Glos, Akash Kundu, Jarosław Adam Miszczak, Özlem Salehi, and Zoltán Zimborás, "Error mitigation for variational quantum algorithms through mid-circuit measurements", Physical Review A 105 2, 022441 (2022).

[37] M. Fanizza, M. Rosati, M. Skotiniotis, J. Calsamiglia, and V. Giovannetti, "Beyond the Swap Test: Optimal Estimation of Quantum State Overlap", Physical Review Letters 124 6, 060503 (2020).

[38] Mathias Weiden, Justin Kalloor, John Kubiatowicz, Ed Younis, and Costin Iancu, 2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS) 1 (2022) ISBN:978-1-6654-7536-5.

[39] Sanjib Ghosh, Tanjung Krisnanda, Tomasz Paterek, and Timothy C. H. Liew, "Realising and compressing quantum circuits with quantum reservoir computing", Communications Physics 4 1, 105 (2021).

[40] Mahabubul Alam, Satwik Kundu, and Swaroop Ghosh, Proceedings of the 28th Asia and South Pacific Design Automation Conference 639 (2023) ISBN:9781450397834.

[41] Tyson Jones and Simon C. Benjamin, "Robust quantum compilation and circuit optimisation via energy minimisation", Quantum 6, 628 (2022).

[42] Matthias C. Caro, Hsin-Yuan Huang, Nicholas Ezzell, Joe Gibbs, Andrew T. Sornborger, Lukasz Cincio, Patrick J. Coles, and Zoë Holmes, "Out-of-distribution generalization for learning quantum dynamics", Nature Communications 14 1, 3751 (2023).

[43] Daan Camps and Roel Van Beeumen, "Approximate quantum circuit synthesis using block encodings", Physical Review A 102 5, 052411 (2020).

[44] Enrico Fontana, M. Cerezo, Andrew Arrasmith, Ivan Rungger, and Patrick J. Coles, "Non-trivial symmetries in quantum landscapes and their resilience to quantum noise", Quantum 6, 804 (2022).

[45] Richard Meister, Cica Gustiani, and Simon C Benjamin, "Exploring ab initio machine synthesis of quantum circuits", New Journal of Physics 25 7, 073018 (2023).

[46] Lingling Lao, Prakash Murali, Margaret Martonosi, and Dan Browne, 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) 846 (2021) ISBN:978-1-6654-3333-4.

[47] Jin Ming Koh, Tommy Tai, and Ching Hua Lee, "Simulation of Interaction-Induced Chiral Topological Dynamics on a Digital Quantum Computer", Physical Review Letters 129 14, 140502 (2022).

[48] Gregory Boyd and Bálint Koczor, "Training Variational Quantum Circuits with CoVaR: Covariance Root Finding with Classical Shadows", Physical Review X 12 4, 041022 (2022).

[49] Evan Peters, Prasanth Shyamsundar, Andy C.Y. Li, and Gabriel Perdue, "Qubit Assignment Using Time Reversal", PRX Quantum 3 4, 040333 (2022).

[50] Nikolay V. Tkachenko, James Sud, Yu Zhang, Sergei Tretiak, Petr M. Anisimov, Andrew T. Arrasmith, Patrick J. Coles, Lukasz Cincio, and Pavel A. Dub, "Correlation-Informed Permutation of Qubits for Reducing Ansatz Depth in the Variational Quantum Eigensolver", PRX Quantum 2 2, 020337 (2021).

[51] Zhimin He, Chuangtao Chen, Lvzhou Li, Shenggen Zheng, and Haozhen Situ, "Quantum Architecture Search with Meta‐Learning", Advanced Quantum Technologies 5 8, 2100134 (2022).

[52] Sean Greenaway, Frédéric Sauvage, Kiran E. Khosla, and Florian Mintert, "Efficient assessment of process fidelity", Physical Review Research 3 3, 033031 (2021).

[53] Tirthak Patel, Ed Younis, Costin Iancu, Wibe de Jong, and Devesh Tiwari, Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems 514 (2022) ISBN:9781450392051.

[54] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).

[55] Andrew Arrasmith, M. Cerezo, Piotr Czarnik, Lukasz Cincio, and Patrick J. Coles, "Effect of barren plateaus on gradient-free optimization", Quantum 5, 558 (2021).

[56] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo, "Effects of Quantum Noise on Quantum Approximate Optimization Algorithm ", Chinese Physics Letters 38 3, 030302 (2021).

[57] Principles of Superconducting Quantum Computers 327 (2022) ISBN:9781119750727.

[58] Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkoff, Andrew T. Sornborger, and Patrick J. Coles, "Absence of Barren Plateaus in Quantum Convolutional Neural Networks", Physical Review X 11 4, 041011 (2021).

[59] Nikita A. Nemkov, Evgeniy O. Kiktenko, Ilia A. Luchnikov, and Aleksey K. Fedorov, "Efficient variational synthesis of quantum circuits with coherent multi-start optimization", Quantum 7, 993 (2023).

[60] Angus Lowe, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio, "Unified approach to data-driven quantum error mitigation", Physical Review Research 3 3, 033098 (2021).

[61] Shi-Ning Sun, Mario Motta, Ruslan N. Tazhigulov, Adrian T.K. Tan, Garnet Kin-Lic Chan, and Austin J. Minnich, "Quantum Computation of Finite-Temperature Static and Dynamical Properties of Spin Systems Using Quantum Imaginary Time Evolution", PRX Quantum 2 1, 010317 (2021).

[62] Christophe Piveteau, David Sutter, and Stefan Woerner, "Quasiprobability decompositions with reduced sampling overhead", npj Quantum Information 8 1, 12 (2022).

[63] Kok Chuan Tan and Tyler Volkoff, "Variational quantum algorithms to estimate rank, quantum entropies, fidelity, and Fisher information via purity minimization", Physical Review Research 3 3, 033251 (2021).

[64] Benjamin Weder, Johanna Barzen, Frank Leymann, and Marie Salm, "Automated Quantum Hardware Selection for Quantum Workflows", Electronics 10 8, 984 (2021).

[65] Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio, "Error mitigation with Clifford quantum-circuit data", Quantum 5, 592 (2021).

[66] Laura Gentini, Alessandro Cuccoli, Stefano Pirandola, Paola Verrucchi, and Leonardo Banchi, "Noise-resilient variational hybrid quantum-classical optimization", Physical Review A 102 5, 052414 (2020).

[67] Ryan LaRose, Arkin Tikku, Étude O’Neel-Judy, Lukasz Cincio, and Patrick J. Coles, "Variational quantum state diagonalization", npj Quantum Information 5 1, 57 (2019).

[68] Andrew Arrasmith, Lukasz Cincio, Andrew T. Sornborger, Wojciech H. Zurek, and Patrick J. Coles, "Variational consistent histories as a hybrid algorithm for quantum foundations", Nature Communications 10 1, 3438 (2019).

[69] Rolando D. Somma and Yiğit Subaşı, "Complexity of Quantum State Verification in the Quantum Linear Systems Problem", PRX Quantum 2 1, 010315 (2021).

[70] Ernesto Campos, Aly Nasrallah, and Jacob Biamonte, "Abrupt transitions in variational quantum circuit training", Physical Review A 103 3, 032607 (2021).

[71] Shichuan Xue, Yong Liu, Yang Wang, Pingyu Zhu, Chu Guo, and Junjie Wu, "Variational quantum process tomography of unitaries", Physical Review A 105 3, 032427 (2022).

[72] Peter Nimbe, Benjamin Asubam Weyori, and Prosper Kandabongee Yeng, "A Framework for Quantum-Classical Cryptographic Translation", International Journal of Theoretical Physics 60 3, 793 (2021).

[73] Thomas J. Maldonado, Johannes Flick, Stefan Krastanov, and Alexey Galda, "Error rate reduction of single-qubit gates via noise-aware decomposition into native gates", Scientific Reports 12 1, 6379 (2022).

[74] Zhimin He, Lvzhou Li, Shenggen Zheng, Yongyao Li, and Haozhen Situ, "Variational quantum compiling with double Q-learning", New Journal of Physics 23 3, 033002 (2021).

[75] Wonho Jang, Koji Terashi, Masahiko Saito, Christian W. Bauer, Benjamin Nachman, Yutaro Iiyama, Ryunosuke Okubo, and Ryu Sawada, "Initial-State Dependent Optimization of Controlled Gate Operations with Quantum Computer", Quantum 6, 798 (2022).

[76] Synthesis Lectures on Computer Architecture (2020) ISBN:978-3-031-00637-1.

[77] Bálint Koczor, "Exponential Error Suppression for Near-Term Quantum Devices", Physical Review X 11 3, 031057 (2021).

[78] Christiane P. Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, Steffen J. Glaser, Ronnie Kosloff, Simone Montangero, Thomas Schulte-Herbrüggen, Dominique Sugny, and Frank K. Wilhelm, "Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe", EPJ Quantum Technology 9 1, 19 (2022).

[79] Nahum Sá, Ivan S. Oliveira, and Itzhak Roditi, "Towards solving the BCS Hamiltonian gap in near-term quantum computers", Results in Physics 44, 106131 (2023).

[80] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", Chemical Reviews 119 19, 10856 (2019).

[81] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles, "Variational quantum algorithms", Nature Reviews Physics 3 9, 625 (2021).

[82] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles, "Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus", PRX Quantum 3 1, 010313 (2022).

[83] Vu Tuan Hai and Le Bin Ho, "Universal compilation for quantum state tomography", Scientific Reports 13 1, 3750 (2023).

[84] Ryan Shaffer, Eli Megidish, Joseph Broz, Wei-Ting Chen, and Hartmut Häffner, "Practical verification protocols for analog quantum simulators", npj Quantum Information 7 1, 46 (2021).

[85] Carlos Bravo-Prieto, "Quantum autoencoders with enhanced data encoding", Machine Learning: Science and Technology 2 3, 035028 (2021).

[86] Kunal Sharma, M. Cerezo, Lukasz Cincio, and Patrick J. Coles, "Trainability of Dissipative Perceptron-Based Quantum Neural Networks", Physical Review Letters 128 18, 180505 (2022).

[87] Tariq M. Khan and Antonio Robles-Kelly, "Machine Learning: Quantum vs Classical", IEEE Access 8, 219275 (2020).

[88] Atsushi Matsuo, Lecture Notes in Computer Science 12805, 22 (2021) ISBN:978-3-030-79836-9.

[89] Shiro Tamiya and Hayata Yamasaki, "Stochastic gradient line Bayesian optimization for efficient noise-robust optimization of parameterized quantum circuits", npj Quantum Information 8 1, 90 (2022).

[90] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan, Patrick J. Coles, and M. Cerezo, "Diagnosing Barren Plateaus with Tools from Quantum Optimal Control", Quantum 6, 824 (2022).

[91] Matthias Möller, Computational Methods in Applied Sciences 58, 357 (2023) ISBN:978-3-031-29081-7.

[92] Xinyu Fei, Lucas T. Brady, Jeffrey Larson, Sven Leyffer, and Siqian Shen, "Binary Control Pulse Optimization for Quantum Systems", Quantum 7, 892 (2023).

[93] B Jaderberg, A Agarwal, K Leonhardt, M Kiffner, and D Jaksch, "Minimum hardware requirements for hybrid quantum–classical DMFT", Quantum Science and Technology 5 3, 034015 (2020).

[94] Jin Ming Koh, Tommy Tai, Yong Han Phee, Wei En Ng, and Ching Hua Lee, "Stabilizing multiple topological fermions on a quantum computer", npj Quantum Information 8 1, 16 (2022).

[95] Riccardo Porotti, Vittorio Peano, and Florian Marquardt, "Gradient-Ascent Pulse Engineering with Feedback", PRX Quantum 4 3, 030305 (2023).

[96] Xin Wang, Zhixin Song, and Youle Wang, "Variational Quantum Singular Value Decomposition", Quantum 5, 483 (2021).

[97] Kaoru Mizuta, Yuya O. Nakagawa, Kosuke Mitarai, and Keisuke Fujii, "Local Variational Quantum Compilation of Large-Scale Hamiltonian Dynamics", PRX Quantum 3 4, 040302 (2022).

[98] Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao, "Differentiable quantum architecture search", Quantum Science and Technology 7 4, 045023 (2022).

[99] Corey Jason Trahan, Mark Loveland, Noah Davis, and Elizabeth Ellison, "A Variational Quantum Linear Solver Application to Discrete Finite-Element Methods", Entropy 25 4, 580 (2023).

[100] Harsha Nagarajan, Owen Lockwood, and Carleton Coffrin, 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS) 55 (2021) ISBN:978-1-7281-8674-0.

[101] Robert Wille and Lukas Burgholzer, Handbook of Computer Architecture 1 (2022) ISBN:978-981-15-6401-7.

[102] Lis Arufe, Miguel A. González, Angelo Oddi, Riccardo Rasconi, and Ramiro Varela, "Quantum circuit compilation by genetic algorithm for quantum approximate optimization algorithm applied to MaxCut problem", Swarm and Evolutionary Computation 69, 101030 (2022).

[103] Margarite L. LaBorde, Allee C. Rogers, and Jonathan P. Dowling, "Finding broken gates in quantum circuits: exploiting hybrid machine learning", Quantum Information Processing 19 8, 230 (2020).

[104] Christophe Piveteau, David Sutter, Sergey Bravyi, Jay M. Gambetta, and Kristan Temme, "Error Mitigation for Universal Gates on Encoded Qubits", Physical Review Letters 127 20, 200505 (2021).

[105] Brian Coyle, Mina Doosti, Elham Kashefi, and Niraj Kumar, "Progress toward practical quantum cryptanalysis by variational quantum cloning", Physical Review A 105 4, 042604 (2022).

[106] Tirthak Patel, Daniel Silver, and Devesh Tiwari, Proceedings of the 49th Annual International Symposium on Computer Architecture 383 (2022) ISBN:9781450386104.

[107] Yuxuan Zhang, "Straddling-gates problem in multipartite quantum systems", Physical Review A 105 6, 062430 (2022).

[108] Xiaosi Xu, Simon C. Benjamin, and Xiao Yuan, "Variational Circuit Compiler for Quantum Error Correction", Physical Review Applied 15 3, 034068 (2021).

[109] Liam Madden and Andrea Simonetto, "Best Approximate Quantum Compiling Problems", ACM Transactions on Quantum Computing 3 2, 1 (2022).

[110] Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao, "Neural predictor based quantum architecture search", Machine Learning: Science and Technology 2 4, 045027 (2021).

[111] Cristina Cîrstoiu, Zoë Holmes, Joseph Iosue, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, "Variational fast forwarding for quantum simulation beyond the coherence time", npj Quantum Information 6 1, 82 (2020).

[112] Patrick J. Coles, M. Cerezo, and Lukasz Cincio, "Strong bound between trace distance and Hilbert-Schmidt distance for low-rank states", Physical Review A 100 2, 022103 (2019).

[113] Aram W. Harrow and John C. Napp, "Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms", Physical Review Letters 126 14, 140502 (2021).

[114] Merel A. Schalkers and Matthias Möller, Communications in Computer and Information Science 1585, 308 (2022) ISBN:978-3-031-06667-2.

[115] Zhimin He, Junjian Su, Chuangtao Chen, Minghua Pan, and Haozhen Situ, "Search space pruning for quantum architecture search", The European Physical Journal Plus 137 4, 491 (2022).

[116] Tyler Volkoff, Zoë Holmes, and Andrew Sornborger, "Universal Compiling and (No-)Free-Lunch Theorems for Continuous-Variable Quantum Learning", PRX Quantum 2 4, 040327 (2021).

[117] Lorenzo Pastori, Tobias Olsacher, Christian Kokail, and Peter Zoller, "Characterization and Verification of Trotterized Digital Quantum Simulation Via Hamiltonian and Liouvillian Learning", PRX Quantum 3 3, 030324 (2022).

[118] Nic Ezzell, Elliott M Ball, Aliza U Siddiqui, Mark M Wilde, Andrew T Sornborger, Patrick J Coles, and Zoë Holmes, "Quantum mixed state compiling", Quantum Science and Technology 8 3, 035001 (2023).

[119] Daniel Bultrini, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Patrick J. Coles, and Lukasz Cincio, "Unifying and benchmarking state-of-the-art quantum error mitigation techniques", Quantum 7, 1034 (2023).

[120] Bálint Koczor and Simon C. Benjamin, "Quantum analytic descent", Physical Review Research 4 2, 023017 (2022).

[121] Vladimir Vargas-Calderón, Fabio A. González, and Herbert Vinck-Posada, "Optimisation-free density estimation and classification with quantum circuits", Quantum Machine Intelligence 4 2, 16 (2022).

[122] Tyler Volkoff and Patrick J Coles, "Large gradients via correlation in random parameterized quantum circuits", Quantum Science and Technology 6 2, 025008 (2021).

[123] Aritra Laha, Agrim Aggarwal, and Santosh Kumar, "Random density matrices: Analytical results for mean root fidelity and the mean-square Bures distance", Physical Review A 104 2, 022438 (2021).

[124] Shichuan Xue, Yizhi Wang, Yong Liu, Weixu Shi, and Junjie Wu, "Variational Quantum Process Tomography of Non-Unitaries", Entropy 25 1, 90 (2023).

[125] Lindsay Bassman Oftelie, Roel Van Beeumen, Ed Younis, Ethan Smith, Costin Iancu, and Wibe A. de Jong, "Constant-depth circuits for dynamic simulations of materials on quantum computers", Materials Theory 6 1, 13 (2022).

[126] Santosh Kumar, "Wishart and random density matrices: Analytical results for the mean-square Hilbert-Schmidt distance", Physical Review A 102 1, 012405 (2020).

[127] Supanut Thanasilp, Samson Wang, Nhat Anh Nghiem, Patrick Coles, and Marco Cerezo, "Subtleties in the trainability of quantum machine learning models", Quantum Machine Intelligence 5 1, 21 (2023).

[128] Alexander J. Buser, Tanmoy Bhattacharya, Lukasz Cincio, and Rajan Gupta, "State preparation and measurement in a quantum simulation of the O(3) sigma model", Physical Review D 102 11, 114514 (2020).

[129] A V Uvarov and J D Biamonte, "On barren plateaus and cost function locality in variational quantum algorithms", Journal of Physics A: Mathematical and Theoretical 54 24, 245301 (2021).

[130] Jacques Carolan, Masoud Mohseni, Jonathan P. Olson, Mihika Prabhu, Changchen Chen, Darius Bunandar, Murphy Yuezhen Niu, Nicholas C. Harris, Franco N. C. Wong, Michael Hochberg, Seth Lloyd, and Dirk Englund, "Variational quantum unsampling on a quantum photonic processor", Nature Physics 16 3, 322 (2020).

[131] M Cerezo and Patrick J Coles, "Higher order derivatives of quantum neural networks with barren plateaus", Quantum Science and Technology 6 3, 035006 (2021).

[132] Tyler J. Volkoff, "Efficient Trainability of Linear Optical Modules in Quantum Optical Neural Networks", Journal of Russian Laser Research 42 3, 250 (2021).

[133] Smaran Adarsh and Matthias Moller, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 225 (2021) ISBN:978-1-6654-1691-7.

[134] Péter Rakyta and Zoltán Zimborás, "Approaching the theoretical limit in quantum gate decomposition", Quantum 6, 710 (2022).

[135] Mark M. Wilde, 2020 IEEE International Symposium on Information Theory (ISIT) 1915 (2020) ISBN:978-1-7281-6432-8.

[136] Evan Peters, Andy C. Y. Li, and Gabriel N. Perdue, "Perturbative readout-error mitigation for near-term quantum computers", Physical Review A 107 6, 062426 (2023).

[137] Matteo G. Pozzi, Steven J. Herbert, Akash Sengupta, and Robert D. Mullins, "Using Reinforcement Learning to Perform Qubit Routing in Quantum Compilers", ACM Transactions on Quantum Computing 3 2, 1 (2022).

[138] Lukas Burgholzer, Richard Kueng, and Robert Wille, Proceedings of the 26th Asia and South Pacific Design Automation Conference 767 (2021) ISBN:9781450379991.

[139] Jin-Min Liang, Qiao-Qiao Lv, Zhi-Xi Wang, and Shao-Ming Fei, "Assisted quantum simulation of open quantum systems", iScience 26 4, 106306 (2023).

[140] Shavindra P. Premaratne and A. Y. Matsuura, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) 278 (2020) ISBN:978-1-7281-8969-7.

[141] Daniel Mills, Seyon Sivarajah, Travis L. Scholten, and Ross Duncan, "Application-Motivated, Holistic Benchmarking of a Full Quantum Computing Stack", Quantum 5, 415 (2021).

[142] Matthias C. Caro, Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, and Patrick J. Coles, "Generalization in quantum machine learning from few training data", Nature Communications 13 1, 4919 (2022).

[143] Cica Gustiani, Richard Meister, and Simon C Benjamin, "Exploiting subspace constraints and ab initio variational methods for quantum chemistry", New Journal of Physics 25 7, 073019 (2023).

[144] Shota Kanasugi, Shoichiro Tsutsui, Yuya O. Nakagawa, Kazunori Maruyama, Hirotaka Oshima, and Shintaro Sato, "Computation of Green's function by local variational quantum compilation", Physical Review Research 5 3, 033070 (2023).

[145] A. Roggero and A. Baroni, "Short-depth circuits for efficient expectation-value estimation", Physical Review A 101 2, 022328 (2020).

[146] Lindsay Bassman Oftelie, Sahil Gulania, Connor Powers, Rongpeng Li, Thomas Linker, Kuang Liu, T K Satish Kumar, Rajiv K Kalia, Aiichiro Nakano, and Priya Vashishta, "Domain-specific compilers for dynamic simulations of quantum materials on quantum computers", Quantum Science and Technology 6 1, 014007 (2021).

[147] Zoë Holmes, Andrew Arrasmith, Bin Yan, Patrick J. Coles, Andreas Albrecht, and Andrew T. Sornborger, "Barren Plateaus Preclude Learning Scramblers", Physical Review Letters 126 19, 190501 (2021).

[148] H. Chen, L. Wossnig, S. Severini, H. Neven, and M. Mohseni, "Universal discriminative quantum neural networks", Quantum Machine Intelligence 3 1, 1 (2021).

[149] M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles, "Variational quantum state eigensolver", npj Quantum Information 8 1, 113 (2022).

[150] Zhan Yu, Xuanqiang Zhao, Benchi Zhao, and Xin Wang, "Optimal Quantum Dataset for Learning a Unitary Transformation", Physical Review Applied 19 3, 034017 (2023).

[151] Jacob L. Beckey, M. Cerezo, Akira Sone, and Patrick J. Coles, "Variational quantum algorithm for estimating the quantum Fisher information", Physical Review Research 4 1, 013083 (2022).

[152] David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin, "General parameter-shift rules for quantum gradients", Quantum 6, 677 (2022).

[153] Sanjiang Li, Xiangzhen Zhou, and Yuan Feng, "Qubit Mapping Based on Subgraph Isomorphism and Filtered Depth-Limited Search", IEEE Transactions on Computers 70 11, 1777 (2021).

[154] Lukasz Cincio, Kenneth Rudinger, Mohan Sarovar, and Patrick J. Coles, "Machine Learning of Noise-Resilient Quantum Circuits", PRX Quantum 2 1, 010324 (2021).

[155] Enrico Fontana, Nathan Fitzpatrick, David Muñoz Ramo, Ross Duncan, and Ivan Rungger, "Evaluating the noise resilience of variational quantum algorithms", Physical Review A 104 2, 022403 (2021).

[156] David A. Herrera-Martí, "Policy Gradient Approach to Compilation of Variational Quantum Circuits", Quantum 6, 797 (2022).

[157] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran, "Evaluating analytic gradients on quantum hardware", Physical Review A 99 3, 032331 (2019).

[158] Lukasz Cincio, Yiğit Subaşı, Andrew T. Sornborger, and Patrick J. Coles, "Learning the quantum algorithm for state overlap", New Journal of Physics 20 11, 113022 (2018).

[159] Juan Miguel Arrazola, Thomas R. Bromley, Josh Izaac, Casey R. Myers, Kamil Brádler, and Nathan Killoran, "Machine learning method for state preparation and gate synthesis on photonic quantum computers", Quantum Science and Technology 4 2, 024004 (2019).

[160] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", arXiv:1812.09976, (2018).

[161] Kentaro Heya, Yasunari Suzuki, Yasunobu Nakamura, and Keisuke Fujii, "Variational Quantum Gate Optimization", arXiv:1810.12745, (2018).

[162] Daniel Bultrini, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Patrick J. Coles, and Lukasz Cincio, "Unifying and benchmarking state-of-the-art quantum error mitigation techniques", arXiv:2107.13470, (2021).

[163] Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu, "QFAST: Quantum Synthesis Using a Hierarchical Continuous Circuit Space", arXiv:2003.04462, (2020).

[164] Matteo G. Pozzi, Steven J. Herbert, Akash Sengupta, and Robert D. Mullins, "Using Reinforcement Learning to Perform Qubit Routing in Quantum Compilers", arXiv:2007.15957, (2020).

[165] Lorenzo Leone, Salvatore F. E. Oliviero, Seth Lloyd, and Alioscia Hamma, "Learning efficient decoders for quasi-chaotic quantum scramblers", arXiv:2212.11338, (2022).

[166] Yihui Quek, Eneet Kaur, and Mark M. Wilde, "Multivariate trace estimation in constant quantum depth", arXiv:2206.15405, (2022).

[167] Marc Grau Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin Iancu, "Heuristics for Quantum Compiling with a Continuous Gate Set", arXiv:1912.02727, (2019).

[168] Ethan Smith, Marc G. Davis, Jeffrey Larson, Ed Younis, Costin Iancu, and Wim Lavrijsen, "LEAP: Scaling Numerical Optimization Based Synthesis Using an Incremental Approach", arXiv:2106.11246, (2021).

[169] Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu, "QFAST: Conflating Search and Numerical Optimization for Scalable Quantum Circuit Synthesis", arXiv:2103.07093, (2021).

[170] Mark M. Wilde, "Coherent Quantum Channel Discrimination", arXiv:2001.02668, (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2023-09-26 14:07:21) and SAO/NASA ADS (last updated successfully 2023-09-26 14:07:22). The list may be incomplete as not all publishers provide suitable and complete citation data.