Two-local qubit Hamiltonians: when are they stoquastic?
1QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
2Institute for Theoretical Nanoelectronics, Forschungszentrum Juelich, D-52425 Juelich, Germany
Published: | 2019-05-06, volume 3, page 139 |
Eprint: | arXiv:1806.05405v3 |
Doi: | https://doi.org/10.22331/q-2019-05-06-139 |
Citation: | Quantum 3, 139 (2019). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We examine the problem of determining if a 2-local Hamiltonian is stoquastic by local basis changes. We analyze this problem for two-qubit Hamiltonians, presenting some basic tools and giving a concrete example where using unitaries beyond Clifford rotations is required in order to decide stoquasticity. We report on simple results for $n$-qubit Hamiltonians with identical 2-local terms on bipartite graphs. Our most significant result is that we give an efficient algorithm to determine whether an arbitrary $n$-qubit XYZ Heisenberg Hamiltonian is stoquastic by local basis changes.

► BibTeX data
► References
[1] S. Bravyi, D. P. DiVincenzo, R. I. Oliveira, and B. M. Terhal, ``The Complexity of Stoquastic Local Hamiltonian Problems,'' Quantum Information and Computation 8 no. 5, (2008) 0361–0385 , arXiv:0606140 [quant-ph].
https://doi.org/10.26421/QIC8.5
arXiv:0606140
[2] N. J. Cerf and O. C. Martin, ``Projection Monte Carlo methods : an algorithmic analysis,'' International Journal of Modern Physics C 6 no. 5, (1995) 693–723.
https://doi.org/10.1142/S0129183195000587
[3] S. Sorella and L. Capriotti, ``Green function Monte Carlo with stochastic reconfiguration: An effective remedy for the sign problem,'' Physical Review B - Condensed Matter and Materials Physics 61 no. 4, (2000) 2599–2612, arXiv:9902211 [cond-mat].
https://doi.org/10.1103/PhysRevB.61.2599
arXiv:9902211
[4] S. Bravyi, ``Monte Carlo Simulation of Stoquastic Hamiltonians,'' Quantum Information and Computation 15 no. 13/14, (2015) 1122–1140, arXiv:1402.2295.
https://doi.org/10.26421/QIC15.13-14
arXiv:1402.2295
[5] S. Wessel, ``Monte Carlo Simulations of Quantum Spin Models Institute for Theoretical Solid State Physics,'' in Autumn School on Correlated Electrons. 2013. https://www.cond-mat.de/events/correl13/manuscripts/.
https://www.cond-mat.de/events/correl13/manuscripts/
[6] E. Crosson, Classical and Quantum Computation in Ground States and Beyond. PhD thesis, University of Washington, 2015. http://hdl.handle.net/1773/34128.
http://hdl.handle.net/1773/34128
[7] S. Bravyi and D. Gosset, ``Polynomial-Time Classical Simulation of Quantum Ferromagnets,'' Physical Review Letters 119 no. 10, (2017) , arXiv:1612.05602.
https://doi.org/10.1103/PhysRevLett.119.100503
arXiv:1612.05602
[8] T. Albash and D. A. Lidar, ``Adiabatic quantum computation,'' Reviews of Modern Physics 90 no. 1, (2018) 015002, arXiv:1611.04471 [quant-ph].
https://doi.org/10.1103/RevModPhys.90.015002
arXiv:1611.04471
[9] S. Bravyi and B. Terhal, ``Complexity of stoquastic frustration-free Hamiltonians,'' SIAM J. Comput. 39 no. 4, (2009) 1642, arXiv:0806.1746.
https://doi.org/10.1137/08072689X
arXiv:0806.1746
[10] M. B. Hastings and M. H. Freedman, ``Obstructions To Classically Simulating The Quantum Adiabatic Algorithm,'' Quantum Information and Computation 13 no.11/12, (2013) 1038-1076 arXiv:1302.5733.
https://doi.org/10.26421/QIC13.11-12
arXiv:1302.5733
[11] J. Bringewatt, W. Dorland, S. P. Jordan, and A. Mink, ``Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians,'' Phys. Rev. A 97 no. 2, (Feb., 2018) 022323, arXiv:1709.03971 [quant-ph].
https://doi.org/10.1103/PhysRevA.97.022323
arXiv:1709.03971
[12] D. Kafri, C. Quintana, Y. Chen, A. Shabani, J. M. Martinis, and H. Neven, ``Tunable inductive coupling of superconducting qubits in the strongly nonlinear regime,'' Physical Review A 95 no. 5, (May, 2017) 052333, arXiv:1606.08382.
https://doi.org/10.1103/PhysRevA.95.052333
arXiv:1606.08382
[13] L. Hormozi, E. W. Brown, G. Carleo, and M. Troyer, ``Nonstoquastic Hamiltonians and quantum annealing of an Ising spin glass,'' Phys. Rev. B 95 no. 18, (May, 2017) 184416, arXiv:1609.06558 [quant-ph].
https://doi.org/10.1103/PhysRevB.95.184416
arXiv:1609.06558
[14] G. Samach, ``Tunable XX-Coupling Between High Coherence Flux Qubits,'' in APS March Meeting 2018. 2018. https://meetings.aps.org/Meeting/MAR18/Session/L33.13.
https://meetings.aps.org/Meeting/MAR18/Session/L33.13
[15] V. I. Iglovikov, E. Khatami, and R. T. Scalettar, ``Geometry dependence of the sign problem in quantum Monte Carlo simulations,'' Phys. Rev. B 92 (Jul, 2015) 045110. https://link.aps.org/doi/10.1103/PhysRevB.92.045110.
https://doi.org/10.1103/PhysRevB.92.045110
[16] C. Wu and S.-C. Zhang, ``Sufficient condition for absence of the sign problem in the fermionic quantum monte carlo algorithm,'' Phys. Rev. B 71 (Apr, 2005) 155115.
https://doi.org/10.1103/PhysRevB.71.155115
[17] Z.-X. Li and H. Yao, ``Sign-Problem-Free Fermionic Quantum Monte Carlo: Developments and Applications,'' arXiv e-prints (May, 2018) arXiv:1805.08219, arXiv:1805.08219 [cond-mat.str-el].
https://doi.org/10.1146/annurev-conmatphys-033117-054307
arXiv:1805.08219
[18] R. F. Bishop and D. J. J. Farnell, ``Marshall-Peierls sign rules, the quantum monte carlo method, and frustration,'' International Journal of Modern Physics B 15 no. 10n11, (2001) 1736–1739.
https://doi.org/10.1142/9789812792754_0052
[19] M. Marvian, D. A. Lidar, and I. Hen, ``On the Computational Complexity of Curing non-stoquastic Hamiltonians,'' Nature Communications 10 no. 1, (2019) 1571 , arXiv:1802.03408.
https://doi.org/10.1038/s41467-019-09501-6
arXiv:1802.03408
[20] B. M. Terhal, ``The Power and Use of Stoquastic Hamiltonians,'' in Adiabatic Quantum Computing Conference. 2017. https://www.youtube.com/watch?v=4dK30QExF4M.
https://www.youtube.com/watch?v=4dK30QExF4M
[21] T. Cubitt, A. Montanaro, and S. Piddock, ``Universal Quantum Hamiltonians,'' National Academy of Sciences 115 no. 38 (2018) 9497-9502 , arXiv:1701.05182.
https://doi.org/10.1073/pnas.1804949115%20
arXiv:1701.05182
[22] S. Bravyi and M. Hastings, ``On complexity of the quantum Ising model,'' Communications in Mathematical Physics 349 no. 1 (2017) 1-45 , arXiv:1410.0703 [quant-ph].
https://doi.org/10.1007/s00220-016-2787-4
arXiv:1410.0703
[23] D. Grier and L. Schaeffer, ``The Classification of Stabilizer Operations over Qubits,'' ArXiv e-prints (Mar., 2016) , arXiv:1603.03999 [quant-ph].
arXiv:1603.03999
[24] Y. Makhlin, ``Nonlocal properties of two-qubit gates and mixed states and optimization of quantum computations,'' Quantum Information Processing 1 no. 4, (2002) 243–252, arXiv:0002045 [quant-ph].
https://doi.org/10.1023/A:1022144002391
arXiv:0002045
[25] N. Linden, S. Popescu, and A. Sudbery, ``Nonlocal Parameters for Multiparticle Density Matrices,'' Physical Review Letters 83 no. 2, (1999) 243–247, arXiv:9801076 [quant-ph].
https://doi.org/10.1103/PhysRevLett.83.243
arXiv:9801076
[26] M. Grassl, M. Rötteler, and T. Beth, ``Computing local invariants of quantum-bit systems,'' Phys. Rev. A 58 (Sept., 1998) 1833–1839, quant-ph/9712040.
https://doi.org/10.1103/PhysRevA.58.1833
arXiv:quant-ph/9712040
[27] R. A. Bertlmann and P. Krammer, ``Bloch vectors for qudits,'' Journal of Physics A: Mathematical and Theoretical 41 no. 23, (2008) , arXiv:0806.1174.
https://doi.org/10.1088/1751-8113/41/23/235303
arXiv:0806.1174
[28] T. F. Gonzalez, ``Clustering to minimize the maximum intercluster distance,'' Theoretical Computer Science 38 (1985) 293–306.
https://doi.org/10.1016/0304-3975(85)90224-5
Cited by
[1] Giacomo Torlai, Juan Carrasquilla, Matthew T. Fishman, Roger G. Melko, and Matthew P. A. Fisher, "Wave-function positivization via automatic differentiation", Physical Review Research 2 3, 032060 (2020).
[2] Dominik Hangleiter, Ingo Roth, Daniel Nagaj, and Jens Eisert, "Easing the Monte Carlo sign problem", arXiv:1906.02309, Science Advances 6 33, eabb8341 (2020).
[3] Philipp Hauke, Helmut G Katzgraber, Wolfgang Lechner, Hidetoshi Nishimori, and William D Oliver, "Perspectives of quantum annealing: methods and implementations", Reports on Progress in Physics 83 5, 054401 (2020).
[4] Gioele Consani and Paul A Warburton, "Effective Hamiltonians for interacting superconducting qubits: local basis reduction and the Schrieffer–Wolff transformation", New Journal of Physics 22 5, 053040 (2020).
[5] Andrew J Kerman, "Superconducting qubit circuit emulation of a vector spin-1/2", New Journal of Physics 21 7, 073030 (2019).
[6] Lalit Gupta and Itay Hen, "Elucidating the Interplay between Non‐Stoquasticity and the Sign Problem", Advanced Quantum Technologies 3 1, 1900108 (2020).
[7] I. Ozfidan, C. Deng, A.Y. Smirnov, T. Lanting, R. Harris, L. Swenson, J. Whittaker, F. Altomare, M. Babcock, C. Baron, A.J. Berkley, K. Boothby, H. Christiani, P. Bunyk, C. Enderud, B. Evert, M. Hager, A. Hajda, J. Hilton, S. Huang, E. Hoskinson, M.W. Johnson, K. Jooya, E. Ladizinsky, N. Ladizinsky, R. Li, A. MacDonald, D. Marsden, G. Marsden, T. Medina, R. Molavi, R. Neufeld, M. Nissen, M. Norouzpour, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, M. Reis, T. Prescott, C. Rich, Y. Sato, G. Sterling, N. Tsai, M. Volkmann, W. Wilkinson, J. Yao, and M.H. Amin, "Demonstration of a Nonstoquastic Hamiltonian in Coupled Superconducting Flux Qubits", Physical Review Applied 13 3, 034037 (2020).
[8] Adrian Chapman and Steven T. Flammia, "Characterization of solvable spin models via graph invariants", Quantum 4, 278 (2020).
[9] Valentin Torggler, Philipp Aumann, Helmut Ritsch, and Wolfgang Lechner, "A Quantum N-Queens Solver", Quantum 3, 149 (2019).
[10] Joel Klassen, Milad Marvian, Stephen Piddock, Marios Ioannou, Itay Hen, and Barbara M. Terhal, "Hardness and Ease of Curing the Sign Problem for Two-Local Qubit Hamiltonians", SIAM Journal on Computing 49 6, 1332 (2020).
[11] Tameem Albash, "Validating a two-qubit nonstoquastic Hamiltonian in quantum annealing", Physical Review A 101 1, 012310 (2020).
[12] Dorit Aharonov and Alex B. Grilo, "Stoquastic PCP vs. Randomness", arXiv:1901.05270.
The above citations are from Crossref's cited-by service (last updated successfully 2021-01-26 05:36:07) and SAO/NASA ADS (last updated successfully 2021-01-26 05:36:09). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.