Quantum process tomography of a high-dimensional quantum communication channel

Frédéric Bouchard1, Felix Hufnagel1, Dominik Koutný2, Aazad Abbas1, Alicia Sit1, Khabat Heshami3, Robert Fickler1,4,5, and Ebrahim Karimi1,6

1Department of Physics, University of Ottawa, 25 Templeton Street, Ottawa, ON, K1N 6N5, Canada.
2Department of Optics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
3National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
4Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria.
5Current address: Photonics Laboratory, Physics Unit, Tampere University, Tampere, FI-33720, Finland.
6Department of Physics, Institute for Advanced Studies in Basic Sciences, 45137-66731 Zanjan, Iran.

The characterization of quantum processes, e.g. communication channels, is an essential ingredient for establishing quantum information systems. For quantum key distribution protocols, the amount of overall noise in the channel determines the rate at which secret bits are distributed between authorized partners. In particular, tomographic protocols allow for the full reconstruction, and thus characterization, of the channel. Here, we perform quantum process tomography of high-dimensional quantum communication channels with dimensions ranging from 2 to 5. We can thus explicitly demonstrate the effect of an eavesdropper performing an optimal cloning attack or an intercept-resend attack during a quantum cryptographic protocol. Moreover, our study shows that quantum process tomography enables a more detailed understanding of the channel conditions compared to a coarse-grained measure, such as quantum bit error rates. This full characterization technique allows us to optimize the performance of quantum key distribution under asymmetric experimental conditions, which is particularly useful when considering high-dimensional encoding schemes.

► BibTeX data

► References

[1] Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 361, 1655-1674 (2003).
https:/​/​doi.org/​10.1098/​rsta.2003.1227

[2] Bennett, C. H. & Brassard, G., Quantum cryptography: Public key distribution and coin tossing, Proceedings of the ieee international conference on computers, systems, and signal processing, bangalore, india, 1984 (1984).

[3] Nielsen, M. A. & Chuang, I. Quantum computation and quantum information. Cambridge: Cambridge University Press (2002).
https:/​/​doi.org/​10.1017/​CBO9780511976667

[4] Degen, C., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
https:/​/​doi.org/​10.1103/​RevModPhys.89.035002

[5] Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455-2467 (1997).
https:/​/​doi.org/​10.1080/​09500349708231894

[6] Poyatos, J., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390 (1997).
https:/​/​doi.org/​10.1103/​PhysRevLett.78.390

[7] Nielsen, M. A., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52 (1998).
https:/​/​doi.org/​10.1038/​23891

[8] Childs, A. M., Chuang, I. L. & Leung, D. W. Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012314 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.012314

[9] O'Brien, J. L. et al. Quantum process tomography of a controlled-not gate. Phys. Rev. Lett. 93, 080502 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.93.080502

[10] Myrskog, S. H., Fox, J. K., Mitchell, M. W. & Steinberg, A. M. Quantum process tomography on vibrational states of atoms in an optical lattice. Phys. Rev. A 72, 013615 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.72.013615

[11] Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P. O., Korber, T. K., Hansel, W., Haffner, H., Roos, C. F. & Blatt, R. Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006).
https:/​/​doi.org/​10.1103/​PhysRevLett.97.220407

[12] Howard, M. et al. Quantum process tomography and linblad estimation of a solid-state qubit. New Journal of Physics 8, 33 (2006).
https:/​/​doi.org/​10.1088/​1367-2630/​8/​3/​033

[13] Lobino, M. et al. Complete characterization of quantum-optical processes. Science 322, 563-566 (2008).
https:/​/​doi.org/​10.1126/​science.1162086

[14] Kim, D. et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70 (2014).
https:/​/​doi.org/​10.1038/​nature13407

[15] Jacob, K. V., Mirasola, A. E., Adhikari, S. & Dowling, J. P. Direct characterization of linear and quadratically nonlinear optical systems. Phys. Rev. A 98, 052327 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.052327

[16] Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002).
https:/​/​doi.org/​10.1103/​RevModPhys.74.145

[17] Bienvenu, N., Perez-Garcia, B., Roux, F. S., McLaren, M., Rosales-Guzman, C., Zhang, Y., Mouane, O., Hernandez-Aranda, R. I., Konrad, T. & Forbes, A. Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 13, 397 (2017).
https:/​/​doi.org/​10.1038/​nphys4003

[18] Muller, A., Zbinden, H. & Gisin, N. Underwater quantum coding. Nature 378, 449 (1995).
https:/​/​doi.org/​10.1038/​378449a0

[19] Buttler, W. T., Hughes, R. J., Kwiat, P. G., Lamoreaux, S. K., Luther, G. G., Morgan, G. L., Nordholt, J. E., Peterson, C. G. & Simmons, C. M. Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett. 81, 3283 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.81.3283

[20] Yin, J., Cao, Y., Li, Y. H., Ren, J. G., Liao, S. K., Zhang, L., Cai, W. Q., Liu, W. Y., Li, B., Dai, H., Li, M., Huang, Y. M., Deng, L., Li, L., Zhang, Q., Liu, N. L., Chen, Y. A., Lu, C. Y., Shu, R., Peng, C. Z., Wang, J. Y. & Pan, J. W. Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119, 200501 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.200501

[21] Bennett, C. H., Brassard, G., Crépeau, C. & Maurer, U. M. Generalized privacy amplification. IEEE T. Inform. Theory 41, 1915-1923 (1995).
https:/​/​doi.org/​10.1109/​18.476316

[22] Coles, P. J., Metodiev, E. M. & Lütkenhaus, N. Numerical approach for unstructured quantum key distribution. Nature Commun. 7, 11712 (2016).
https:/​/​doi.org/​10.1038/​ncomms11712

[23] Bechmann-Pasquinucci, H. & Tittel, W. Quantum cryptography using larger alphabets. Phys. Rev. A 61, 062308 (2000).
https:/​/​doi.org/​10.1103/​PhysRevA.61.062308

[24] Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).
https:/​/​doi.org/​10.1103/​PhysRevLett.88.127902

[25] Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Physics 3, 305 (2007).
https:/​/​doi.org/​10.1038/​nphys607

[26] Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light: Sci. & Appl. 7, 17146 (2018).
https:/​/​doi.org/​10.1038/​lsa.2017.146

[27] Forbes, A., Dudley, A. & McLaren, M. Creation and detection of optical modes with spatial light modulators. Advances in Optics and Photonics 8, 200-227 (2016).
https:/​/​doi.org/​10.1364/​AOP.8.000200

[28] Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M. J., Konrad, T., Petruccione, F., Lutkenhaus, N. & Forbes, A. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.032305

[29] Mirhosseini, M. et al. High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​3/​033033

[30] Bouchard, F. et al. Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons. Quantum 2, 111 (2018).
https:/​/​doi.org/​10.22331/​q-2018-12-04-111

[31] Vallone, G., DAmbrosio, V., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F. & Villoresi, P. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.060503

[32] Krenn, M., Handsteiner, J., Fink, M., Fickler, R. & Zeilinger, A. Twisted photon entanglement through turbulent air across Vienna. PNAS 112, 14197-14201 (2015).
https:/​/​doi.org/​10.1073/​pnas.1517574112

[33] Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006-1010 (2017).
https:/​/​doi.org/​10.1364/​OPTICA.4.001006

[34] Bouchard, F. et al. Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Exp. 26, 22563-22573 (2018).
https:/​/​doi.org/​10.1364/​OE.26.022563

[35] Bongioanni, I., Sansoni, L., Sciarrino, F., Vallone, G. & Mataloni, P. Experimental quantum process tomography of non-trace-preserving maps. Phys. Rev. A 82, 042307 (2010).
https:/​/​doi.org/​10.1103/​PhysRevA.82.042307

[36] Wootters, W. K. & Fields, B. D. Optimal state-determination by mutually unbiased measurements. Annals of Physics 191, 363-381 (1989).
https:/​/​doi.org/​10.1016/​0003-4916(89)90322-9

[37] Knee, G. C., Bolduc, E., Leach, J. & Gauger, E. M. Quantum process tomography via completely positive and trace-preserving projection. Phys. Rev. A 98, 062336 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.062336

[38] Ježek, M., Fiurášek, J. & Hradil, Z. Quantum inference of states and processes. Phys. Rev. A 68, 012305 (2003).
https:/​/​doi.org/​10.1103/​PhysRevA.68.012305

[39] Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313-316 (2001).
https:/​/​doi.org/​10.1038/​35085529

[40] Qassim, H. et al. Limitations to the determination of a Laguerre-Gauss spectrum via projective, phase-flattening measurement. J. Opt. Soc. Am. B 31, A20-A23 (2014).
https:/​/​doi.org/​10.1364/​JOSAB.31.000A20

[41] Fernández-Pérez, A., Klimov, A. B. & Saavedra, C. Quantum process reconstruction based on mutually unbiased basis. Phys. Rev. A 83, 052332 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.83.052332

[42] Durt, T., Englert, B.-G., Bengtsson, I. & Życzkowski, K. On mutually unbiased bases. Int. J. Quantum Inf. 8, 535-640 (2010).
https:/​/​doi.org/​10.1142/​S0219749910006502

[43] Bouchard, F., Valencia, N. H., Brandt, F., Fickler, R., Huber, M., & Malik, M., Measuring azimuthal and radial modes of photons. Optics Express 26, 31925 (2018).
https:/​/​doi.org/​10.1364/​OE.26.031925

[44] Gilchrist, A., Langford, N. K. & Nielsen, M. A. Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.71.062310

[45] Irvine, W. T. M., Linares, A. L., deDood, M. J. A. & Bouwmeester, D. Optimal quantum cloning on a beam splitter. Phys. Rev. Lett. 92, 047902 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.92.047902

[46] Ricci, M., Sciarrino, F., Sias, C. & DeMartini, F. Teleportation scheme implementing the universal optimal quantum cloning machine and the universal not gate. Phys. Rev. Lett. 92, 047901 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.92.047901

[47] Nagali, E. et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nature Photonics 3, 720 (2009).
https:/​/​doi.org/​10.1038/​nphoton.2009.214

[48] Nagali, E., Giovannini, D., Marrucci, L., Slussarenko, S., Santamato, E. & Sciarrino, F. Experimental optimal cloning of four-dimensional quantum states of photons. Phys. Rev. Lett. 105, 073602 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.105.073602

[49] Bouchard, F., Fickler, R., Boyd, R. W. & Karimi, E. High-dimensional quantum cloning and applications to quantum hacking. Science Adv. 3, e1601915 (2017).
https:/​/​doi.org/​10.1126/​sciadv.1601915

[50] Bruß, D. & Macchiavello, C. Optimal state estimation for d-dimensional quantum systems. Phys. Lett. A 253, 249-251 (1999).
https:/​/​doi.org/​10.1016/​S0375-9601(99)00099-7

[51] Thekkadath, G. S., Saaltink, R. Y., Giner, L. & Lundeen, J. S. Determining complementary properties with quantum clones. Phys. Rev. Lett. 119, 050405 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.050405

[52] Hong, C.-K., Ou, Z.-Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).
https:/​/​doi.org/​10.1103/​PhysRevLett.59.2044

[53] Lo, H.-K., Chau, H. F., & Ardehali, M. Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security. Journal of Cryptology 18, 133-165 (2005).
https:/​/​doi.org/​10.1007/​s00145-004-0142-y

[54] Devetak, I. & Winter, A. Distillation of secret key and entanglement from quantum states. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 461, 207-235 (The Royal Society, 2005).
https:/​/​doi.org/​10.1098/​rspa.2004.1372

[55] Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009).
https:/​/​doi.org/​10.1103/​RevModPhys.81.1301

[56] Berkhout, C. G. et al. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.105.153601

[57] Fontaine, N. K. et al. Laguerre-Gaussian mode sorter. arXiv preprint arXiv:1803.04126v2 (2018).
arXiv:1803.04126v2

Cited by

[1] Frédéric Bouchard, Natalia Herrera Valencia, Florian Brandt, Robert Fickler, Marcus Huber, and Mehul Malik, "Measuring azimuthal and radial modes of photons", Optics Express 26 24, 31925 (2018).

[2] Frédéric Bouchard, Khabat Heshami, Duncan England, Robert Fickler, Robert W. Boyd, Berthold-Georg Englert, Luis L. Sánchez-Soto, and Ebrahim Karimi, "Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons", arXiv:1802.05773.

[3] Fang-Xiang Wang, Wei Chen, Zhen-Qiang Yin, Shuang Wang, Guang-Can Guo, and Zheng-Fu Han, "Characterizing High-Quality High-Dimensional Quantum Key Distribution by State Mapping Between Different Degrees of Freedom", Physical Review Applied 11 2, 024070 (2019).

[4] Bienvenu Ndagano and Andrew Forbes, "Characterization and mitigation of information loss in a six-state quantum-key-distribution protocol with spatial modes of light through turbulence", Physical Review A 98 6, 062330 (2018).

[5] Florian Brandt, Markus Hiekkamäki, Frédéric Bouchard, Marcus Huber, and Robert Fickler, "High-dimensional quantum gates using full-field spatial modes of photons", arXiv:1907.13002.

The above citations are from SAO/NASA ADS (last updated 2019-09-22 10:04:30). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2019-09-22 10:04:28).