Operational relevance of resource theories of quantum measurements

Michał Oszmaniec and Tanmoy Biswas

Institute of Theoretical Physics and Astrophysics, National Quantum Information Centre, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, 80-308 Gdańsk, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


For any resource theory it is essential to identify tasks for which resource objects offer advantage over free objects. We show that this identification can always be accomplished for resource theories of quantum measurements in which free objects form a convex subset of measurements on a given Hilbert space. To this aim we prove that every resourceful measurement offers advantage for some quantum state discrimination task. Moreover, we give an operational interpretation of robustness, which quantifies the minimal amount of noise that must be added to a measurement to make it free. Specifically, we show that this geometric quantity is related to the maximal relative advantage that a resourceful measurement offers in a class of minimal-error state discrimination (MESD) problems. Finally, we apply our results to two classes of free measurements: incoherent measurements (measurements that are diagonal in the fixed basis) and separable measurements (measurements whose effects are separable operators). For both of these scenarios we find, in the asymptotic setting in which the dimension or the number of particles increase to infinity, the maximal relative advantage that resourceful measurements offer for state discrimination tasks.

► BibTeX data

► References

[1] E. Chitambar and G. Gour, arXiv:1806.06107 (2018).

[2] B. Coecke, T. Fritz, and R. W. Spekkens, Information and Computation 250, 59 (2016).

[3] F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M. Renes, and R. W. Spekkens, Phys. Rev. Lett. 111, 250404 (2013).

[4] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk, Journal of Physics A: Mathematical and Theoretical 49, 143001 (2016).

[5] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).

[6] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[7] A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, P. Joshi, W. Kłobus, and A. Wójcik, Phys. Rev. Lett. 112, 120401 (2014).

[8] J. Barrett, Phys. Rev. A 75, 032304 (2007).

[9] R. Gallego and L. Aolita, Phys. Rev. X 5, 041008 (2015).

[10] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, New Journal of Physics 14, 113011 (2012).

[11] S. M. Barnett and S. Croke, Adv. Opt. Photon. 1, 238 (2009).

[12] J. Bae and L.-C. Kwek, J. Phys. A: Math. Gen. 48, 083001 (2015).

[13] N. Brunner, M. Navascués, and T. Vértesi, Phys. Rev. Lett. 110, 150501 (2013).

[14] I. Marvian and R. W. Spekkens, Phys. Rev. A 94, 052324 (2016).

[15] J. Bae, W.-Y. Hwang, and Y.-D. Han, Phys. Rev. Lett. 107, 170403 (2011).

[16] C. Lomont, arxiv:0411037 (2005).

[17] P. Skrzypczyk and N. Linden, Phys. Rev. Lett. 122, 140403 (2019).

[18] R. Takagi, B. Regula, K. Bu, Z.-W. Liu, and G. Adesso, Phys. Rev. Lett. 122, 140402 (2019).

[19] G. Vidal and R. Tarrach, Phys. Rev. A 59, 141 (1999).

[20] F. G. S. L. Brandão and G. Gour, Phys. Rev. Lett. 115, 070503 (2015).

[21] B. Regula, Journal of Physics A: Mathematical and Theoretical 51, 045303 (2017).

[22] J. Aberg, arXiv:quant-ph/​0612146 (2006).

[23] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014).

[24] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89, 041003 (2017).

[25] S. Bandyopadhyay and M. Nathanson, Phys. Rev. A 88, 052313 (2013).

[26] J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).

[27] E. Bagan, M. A. Ballester, R. Muñoz Tapia, and O. Romero-Isart, Phys. Rev. Lett. 95, 110504 (2005).

[28] V. Kargin, The Annals of Statistics 33, 959 (2004).

[29] M. Nathanson, J. Math. Phys. 46, 141 (2005).

[30] E. Chitambar, D. Leung, L. Mančinska, M. Ozols, and A. Winter, Communications in Mathematical Physics 328, 303 (2014).

[31] G. M. D'Ariano, P. Lo Presti, and M. G. A. Paris, Phys. Rev. Lett. 87, 270404 (2001).

[32] M. Horodecki and J. Oppenheim, Nat. Commun. 4 (2013), 10.1038/​ncomms3059.

[33] R. W. Spekkens, D. H. Buzacott, A. J. Keehn, B. Toner, and G. J. Pryde, Phys. Rev. Lett. 102, 010401 (2009).

[34] D. Cavalcanti, P. Skrzypczyk, and I. Šupić, Phys. Rev. Lett. 119, 110501 (2017).

[35] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016).

[36] T. Biswas, M. G. Diaz, and A. Winter, Proc. R. Soc. A 473 (2017), 10.1098/​rspa.2017.0170.

[37] M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli, N. Johnston, and G. Adesso, Phys. Rev. A 93, 042107 (2016a).

[38] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, and G. Adesso, Phys. Rev. Lett. 116, 150502 (2016).

[39] M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404 (2015).

[40] M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli, N. Johnston, and G. Adesso, Phys. Rev. A 93, 042107 (2016b).

[41] T. Heinosaari, J. Kiukas, and D. Reitzner, Phys. Rev. A 92, 022115 (2015).

[42] L. Guerini, J. Bavaresco, M. Terra Cunha, and A. Acín, J. Math. Phys. 58, 092102 (2017).

[43] M. Oszmaniec, L. Guerini, P. Wittek, and A. Acín, Phys. Rev. Lett. 119, 190501 (2017).

[44] M. Oszmaniec, F. B. Maciejewski, and Z. Puchała, arXiv:1807.08449 (2018).

[45] M. Kleinmann and A. Cabello, Phys. Rev. Lett. 117, 150401 (2016).

[46] G. M. D'Ariano, P. L. Presti, and P. Perinotti, J. Phys. A: Math. Gen. 38, 5979 (2005).

[47] F. G. Brandao, Phys. Rev. A 72, 022310 (2005).

[48] M. Hillery, Phys. Rev. A 93, 012111 (2016).

[49] F. Bischof, H. Kampermann, and D. Bruss, arXiv:1812.00018 (2018).

[50] T. Theurer, D. Egloff, L. Zhang, and M. B. Plenio., arXiv:1806.07332 (2018).

[51] M. Bera, arXiv:1809.02578 (2018).

[52] L. Vandenberghe and S. Boyd, SIAM Review 38, 49 (1996).

[53] K. Korzekwa, S. Czachorski, Z. Puchała, and K. Zyczkowski, arXiv:1812.09083 (2018).

[54] L. Gurvits and H. Barnum, Phys. Rev. A 68, 042312 (2003).

[55] A. Montanaro, Commun Math Phys 273, 619 (2007).

[56] P. Hayden, D. Leung, P. W. Shor, and A. Winter, Communications in Mathematical Physics 250, 371 (2004).

[57] W. Matthews, S. Wehner, and A. Winter, Communications in Mathematical Physics 291, 813 (2009).

[58] A. Tavakoli, M. Smania, T. Vértesi, D. Rosset, and N. Brunner, arXiv:1811.12712 (2018).

[59] P. Mironowicz and M. Pawłowski, arXiv:1811.12872 (2018).

[60] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Guhne, Phys. Rev. Lett. 122, 130404 (2019).

[61] R. Takagi. and B. Regula, arXiv:1901.08127 (2019).

[62] C. Carmeli, T. Heinosaari, and A. Toigo, Phys. Rev. Lett. 122, 13040 (2019).

[63] P. Skrzypczyk, I. Šupić, and D. Cavalcanti, Phys. Rev. Lett. 122, 130403 (2019).

[64] D. Cavalcanti and P. Skrzypczyk, Reports on Progress in Physics 80, 024001 (2016).

[65] D. Gross, S. T. Flammia, and J. Eisert, Phys. Rev. Lett. 102, 190501 (2009).

Cited by

[1] Kyunghyun Baek, Adel Sohbi, Jaehak Lee, Jaewan Kim, and Hyunchul Nha, "Quantifying coherence of quantum measurements", New Journal of Physics 22 9, 093019 (2020).

[2] Ryuji Takagi and Bartosz Regula, "General Resource Theories in Quantum Mechanics and Beyond: Operational Characterization via Discrimination Tasks", Physical Review X 9 3, 031053 (2019).

[3] Erkka Haapasalo, Tristan Kraft, Nikolai Miklin, and Roope Uola, "Quantum marginal problem and incompatibility", Quantum 5, 476 (2021).

[4] Kenji Nakahira, "Quantum process discrimination with restricted strategies", Physical Review A 104 6, 062609 (2021).

[5] Roope Uola, Tom Bullock, Tristan Kraft, Juha-Pekka Pellonpää, and Nicolas Brunner, "All Quantum Resources Provide an Advantage in Exclusion Tasks", Physical Review Letters 125 11, 110402 (2020).

[6] Michał Oszmaniec, Filip B. Maciejewski, and Zbigniew Puchała, "Simulating all quantum measurements using only projective measurements and postselection", Physical Review A 100 1, 012351 (2019).

[7] Ryuji Takagi, Kun Wang, and Masahito Hayashi, "Application of the Resource Theory of Channels to Communication Scenarios", Physical Review Letters 124 12, 120502 (2020).

[8] Gael Sentís, Esteban Martínez-Vargas, and Ramon Muñoz-Tapia, "Online identification of symmetric pure states", Quantum 6, 658 (2022).

[9] Ho-Joon Kim and Soojoon Lee, "Relation between quantum coherence and quantum entanglement in quantum measurements", Physical Review A 106 2, 022401 (2022).

[10] Stanisław Kurdziałek and Rafał Demkowicz-Dobrzański, "Measurement Noise Susceptibility in Quantum Estimation", Physical Review Letters 130 16, 160802 (2023).

[11] Patryk Lipka-Bartosik, Andrés F. Ducuara, Tom Purves, and Paul Skrzypczyk, "Operational Significance of the Quantum Resource Theory of Buscemi Nonlocality", PRX Quantum 2 2, 020301 (2021).

[12] Shin-Liang Chen, Nikolai Miklin, Costantino Budroni, and Yueh-Nan Chen, "Device-independent quantification of measurement incompatibility", Physical Review Research 3 2, 023143 (2021).

[13] John H. Selby and Ciarán M. Lee, "Compositional resource theories of coherence", Quantum 4, 319 (2020).

[14] Otfried Gühne, Erkka Haapasalo, Tristan Kraft, Juha-Pekka Pellonpää, and Roope Uola, "Colloquium: Incompatible measurements in quantum information science", Reviews of Modern Physics 95 1, 011003 (2023).

[15] Lucas Tendick, Hermann Kampermann, and Dagmar Bruß, "Distributed Quantum Incompatibility", Physical Review Letters 131 12, 120202 (2023).

[16] Hüseyin Talha Şenyaşa and Gökhan Torun, "Golden states in resource theory of superposition", Physical Review A 105 4, 042410 (2022).

[17] Marie Ioannou, Pavel Sekatski, Sébastien Designolle, Benjamin D. M. Jones, Roope Uola, and Nicolas Brunner, "Simulability of High-Dimensional Quantum Measurements", Physical Review Letters 129 19, 190401 (2022).

[18] Bartosz Regula, Ludovico Lami, Giovanni Ferrari, and Ryuji Takagi, "Operational Quantification of Continuous-Variable Quantum Resources", Physical Review Letters 126 11, 110403 (2021).

[19] Thomas Theurer, Saipriya Satyajit, and Martin B. Plenio, "Quantifying Dynamical Coherence with Dynamical Entanglement", Physical Review Letters 125 13, 130401 (2020).

[20] Chandan Datta, Tanmoy Biswas, Debashis Saha, and Remigiusz Augusiak, "Perfect discrimination of quantum measurements using entangled systems", New Journal of Physics 23 4, 043021 (2021).

[21] Sébastien Designolle, Máté Farkas, and Jędrzej Kaniewski, "Incompatibility robustness of quantum measurements: a unified framework", New Journal of Physics 21 11, 113053 (2019).

[22] Junki Mori, "Operational characterization of incompatibility of quantum channels with quantum state discrimination", Physical Review A 101 3, 032331 (2020).

[23] Nikola Andrejic and Ravi Kunjwal, "Joint measurability structures realizable with qubit measurements: Incompatibility via marginal surgery", Physical Review Research 2 4, 043147 (2020).

[24] Yu Guo, Shuming Cheng, Xiao-Min Hu, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo, "Experimental investigation of measurement incompatibility of mutually unbiased bases", Chip 2 1, 100041 (2023).

[25] Francesco Buscemi, Kodai Kobayashi, and Shintaro Minagawa, "A complete and operational resource theory of measurement sharpness", Quantum 8, 1235 (2024).

[26] Faedi Loulidi and Ion Nechita, "The compatibility dimension of quantum measurements", Journal of Mathematical Physics 62 4, 042205 (2021).

[27] Kohdai Kuroiwa, Ryuji Takagi, Gerardo Adesso, and Hayata Yamasaki, "Robustness- and weight-based resource measures without convexity restriction: Multicopy witness and operational advantage in static and dynamical quantum resource theories", Physical Review A 109 4, 042403 (2024).

[28] Erkka Haapasalo, Tristan Kraft, Juha-Pekka Pellonpää, and Roope Uola, "Operational Characterization of Infinite-Dimensional Quantum Resources", Physical Review Letters 127 25, 250401 (2021).

[29] Mingfei Ye, Yongming Li, and Zhihui Li, "Operational characterization of weight-based resource quantifiers via exclusion tasks in general probabilistic theories", Quantum Information Processing 20 9, 317 (2021).

[30] Zi-Wen Liu, Kaifeng Bu, and Ryuji Takagi, "One-Shot Operational Quantum Resource Theory", Physical Review Letters 123 2, 020401 (2019).

[31] Ryuji Takagi, Xiao Yuan, Bartosz Regula, and Mile Gu, "Virtual quantum resource distillation: General framework and applications", Physical Review A 109 2, 022403 (2024).

[32] Roope Uola, Tristan Kraft, and Alastair A. Abbott, "Quantification of quantum dynamics with input-output games", Physical Review A 101 5, 052306 (2020).

[33] Jukka Kiukas, Daniel McNulty, and Juha-Pekka Pellonpää, "Amount of quantum coherence needed for measurement incompatibility", Physical Review A 105 1, 012205 (2022).

[34] Francesco Buscemi, Eric Chitambar, and Wenbin Zhou, "Complete Resource Theory of Quantum Incompatibility as Quantum Programmability", Physical Review Letters 124 12, 120401 (2020).

[35] Roberto Salazar, Tanmoy Biswas, Jakub Czartowski, Karol Życzkowski, and Paweł Horodecki, "Optimal allocation of quantum resources", Quantum 5, 407 (2021).

[36] Lucas Tendick, Martin Kliesch, Hermann Kampermann, and Dagmar Bruß, "Distance-based resource quantification for sets of quantum measurements", Quantum 7, 1003 (2023).

[37] Shaoying Yin, Jie Song, Yueyuan Wang, Lin Li, Wenjun Sun, and Shutian Liu, "Quantum coherence and its distribution in the extended Ising chain", Quantum Information Processing 20 10, 326 (2021).

[38] Andrés F. Ducuara, Patryk Lipka-Bartosik, and Paul Skrzypczyk, "Multiobject operational tasks for convex quantum resource theories of state-measurement pairs", Physical Review Research 2 3, 033374 (2020).

[39] Ludovico Lami, Bartosz Regula, Ryuji Takagi, and Giovanni Ferrari, "Framework for resource quantification in infinite-dimensional general probabilistic theories", Physical Review A 103 3, 032424 (2021).

[40] Mingfei Ye, Yu Luo, Zhihui Li, and Yongming Li, "Projective robustness for quantum channels and measurements and their operational significance", Laser Physics Letters 19 7, 075204 (2022).

[41] Nikolai Miklin and Michał Oszmaniec, "A universal scheme for robust self-testing in the prepare-and-measure scenario", Quantum 5, 424 (2021).

[42] Kaiyuan Ji and Eric Chitambar, "Incompatibility as a Resource for Programmable Quantum Instruments", PRX Quantum 5 1, 010340 (2024).

[43] Kohdai Kuroiwa, Ryuji Takagi, Gerardo Adesso, and Hayata Yamasaki, "Every Quantum Helps: Operational Advantage of Quantum Resources beyond Convexity", Physical Review Letters 132 15, 150201 (2024).

[44] Teiko Heinosaari and Leevi Leppäjärvi, "Random access test as an identifier of nonclassicality* ", Journal of Physics A: Mathematical and Theoretical 55 17, 174003 (2022).

[45] Patryk Lipka-Bartosik and Paul Skrzypczyk, "Operational advantages provided by nonclassical teleportation", Physical Review Research 2 2, 023029 (2020).

[46] Kang-Da Wu, Tulja Varun Kondra, Swapan Rana, Carlo Maria Scandolo, Guo-Yong Xiang, Chuan-Feng Li, Guang-Can Guo, and Alexander Streltsov, "Operational Resource Theory of Imaginarity", Physical Review Letters 126 9, 090401 (2021).

[47] Thomas Guff, Nathan A McMahon, Yuval R Sanders, and Alexei Gilchrist, "A resource theory of quantum measurements", Journal of Physics A: Mathematical and Theoretical 54 22, 225301 (2021).

[48] Andrés F. Ducuara and Paul Skrzypczyk, "Operational Interpretation of Weight-Based Resource Quantifiers in Convex Quantum Resource Theories", Physical Review Letters 125 11, 110401 (2020).

[49] Tanmay Singal, Filip B. Maciejewski, and Michał Oszmaniec, "Implementation of quantum measurements using classical resources and only a single ancillary qubit", npj Quantum Information 8 1, 82 (2022).

[50] Gökhan Torun, Hüseyin Talha Şenyaşa, and Ali Yildiz, "Resource theory of superposition: State transformations", Physical Review A 103 3, 032416 (2021).

[51] Valeria Cimini, Ilaria Gianani, Marco Sbroscia, Jan Sperling, and Marco Barbieri, "Measuring coherence of quantum measurements", Physical Review Research 1 3, 033020 (2019).

[52] Adel Sohbi, Damian Markham, Jaewan Kim, and Marco Túlio Quintino, "Certifying dimension of quantum systems by sequential projective measurements", Quantum 5, 472 (2021).

[53] Weixu Shi and Chaojing Tang, "Number of quantum measurement outcomes as a resource", Quantum Information Processing 19 11, 393 (2020).

[54] Roberto Salazar, "Quantum-inspired Probabilistic Database Corruption Detection", Parallel Processing Letters 33 04, 2340014 (2023).

[55] Sébastien Designolle, Roope Uola, Kimmo Luoma, and Nicolas Brunner, "Set Coherence: Basis-Independent Quantification of Quantum Coherence", Physical Review Letters 126 22, 220404 (2021).

[56] Juha-Pekka Pellonpää, Sébastien Designolle, and Roope Uola, "Naimark dilations of qubit POVMs and joint measurements", Journal of Physics A: Mathematical and Theoretical 56 15, 155303 (2023).

[57] Roope Uola, Tristan Kraft, Jiangwei Shang, Xiao-Dong Yu, and Otfried Gühne, "Quantifying Quantum Resources with Conic Programming", Physical Review Letters 122 13, 130404 (2019).

[58] Carlos de Gois, George Moreno, Ranieri Nery, Samuraí Brito, Rafael Chaves, and Rafael Rabelo, "General Method for Classicality Certification in the Prepare and Measure Scenario", PRX Quantum 2 3, 030311 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-25 02:31:42) and SAO/NASA ADS (last updated successfully 2024-05-25 02:31:43). The list may be incomplete as not all publishers provide suitable and complete citation data.