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We investigate minimax estimators for quantum state tomography under general
Bregman divergences. First, generalizing the work of Koyama et al. [Entropy 19, 618
(2017)] for relative entropy, we find that given any estimator for a quantum state,
there always exists a sequence of Bayes estimators that asymptotically perform at
least as well as the given estimator, on any state. Second, we show that there always
exists a sequence of priors for which the corresponding sequence of Bayes estimators is
asymptotically minimax (i.e. it minimizes the worst-case risk). Third, by re-formulating
Holevo’s theorem for the covariant state estimation problem in terms of estimators, we
find that there exists a covariant measurement that is, in fact, minimax (i.e. it minimizes
the worst-case risk). Moreover, we find that a measurement that is covariant only under
a unitary 2-design is also minimax. Lastly, in an attempt to understand the problem
of finding minimax measurements for general state estimation, we study the qubit case
in detail and find that every spherical 2-design is a minimax measurement.

1 Introduction
Quantum state tomography [1, 2] refers to the process of determining an unknown quantum state
of a physical system by performing quantum measurements. Any information processing task nec-
essarily involves verifying the output of a quantum channel which mandates the study of quantum
state tomography, apart from the unavoidable theoretical necessity. With recent developments
leading to a transition of quantum computation from theory to practice, the verification of quan-
tum systems and processes is of particular importance.

Given an unknown quantum state with no prior knowledge, it is clear that the measurement
must be informationally complete, i.e. a measurement with outcome statistics sufficient to fully
specify the quantum state [3]. Conventional data-processing techniques such as direct inversion
and maximum likelihood estimation, thus, implicitly assume that the measurement statistics are
informationally complete.

In direct inversion, given a fixed informationally complete measurement, one identifies the
frequencies of each outcome with the corresponding probabilities. Then, by inverting Born’s rule
one obtains a unique estimator for the density operator that reproduces the measurement statistics;
an estimator is defined as a map on the set of measurement outcomes X , ρ̂ : X 7→ S(H), where
S(H) is the set of density operators on the underlying Hilbert space H that describes the physical
system. However, this strategy suffers from the drawback that such an estimator might not be a
physical state and would yield negative eigenvalues.

Example 1. Suppose one measures an unknown quantum state in C2 along the x, y and z direc-
tions. Assuming that each of the measurements are performed only once, let us suppose that each
of the outcome is ‘up’. Thus, nx = ny = nz = 1 and Nx = Ny = Nz = 1, so that px = nx/Nx = 1,
etc. Now, an estimator that would yield the same probabilities would be the one with the Bloch
vector: (2px− 1, 2py − 1, 2pz − 1) = (1, 1, 1). This is an invalid quantum state as it lies outside the
Bloch ball, and thus necessarily has negative eigenvalues.
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Reference [4] referred to such a shortcoming of direct inversion and proposed an alternative
that enforces positivity on the estimator, called maximum likelihood estimation.

A likelihood functional L[ρ] : S(H) 7→ [0, 1] is the probability of observing a data set D given
that the system is in the state ρ :

L[ρ] = p(D|ρ) (1)

The data set D is characterized by the outcome set of the given measurement {E1, ..., EN |Ei ≥
0,
∑N
i=1Ei = I}. Thus, p(D|ρ) =

∏N
i=1(Tr[Eiρ])ni where ni is the number of times the i-th

outcome is recorded in D. Maximum likelihood estimation involves maximizing Equation (1) over
the space of density operators S(H), and thus obtaining as the estimator the state that maximizes
the likelihood functional.

The problem with MLE is that the estimator ρ̂MLE can be rank-deficient. A rank-deficient
estimator is not good, as it would mean that by performing only finite number of measurements
we are absolutely certain to rule out many possibilities. This kind of certainty must be bogus,
suggesting that there has to be a better estimator. Let us look at Example 1 once again to
illustrate this point.

Example 1 (continued). Given the choice of measurement and the corresponding outcomes, the
likelihood functional is L[ρ] = (1 + rx)(1 + ry)(1 + rz)/63, which needs to be maximized under
the constraint ‖~r‖ ≤ 1—that characterizes the physical set of states in C2. This implies that
rx = ry = rz = 1/

√
3, which corresponds to an estimator that is a pure state.

This shows that state estimators that are unphysical in direct inversion get mapped to the
closest physical states in MLE, that lie on the state space boundary, and are thus rank-deficient.
In fact, it can be shown [5] that if there exists a ρDI obtained via direct inversion over a data set
D which is physical, then, it also maximizes the likelihood functional, i.e. ρ̂DI = ρ̂MLE . Although,
Example 1 is an instance of an extreme case where probabilities are approximated by frequencies
of a single measurement, it suffices to illustrate that in direct inversion as well as MLE, all that one
cares about is to obtain an estimate of the true state that reproduces the observed measurement
statistics, regardless of the fact that in the light of new data the state’s estimate might change
completely. Reference [5] gives a detailed critique of both direct inversion and MLE, proposing
Bayesian Mean Estimation (BME) to be a more plausible estimation technique. Moreover, it has
been shown that such an estimation technique is quantitatively better in reference [6].

Generally speaking, in estimation theory [7], the average measure of closeness of an estimator
to the actual state is defined as the risk,

R(ρ, ρ̂) = EX|ρ[L(ρ, ρ̂(X))], (2)

where X is the random variable corresponding to the measurement outcomes and L is a distance-
measure between the true state and the estimator. One way of choosing an optimal estimator is
to look at the average risk—defined as the expectation of risk with respect to a prior distribution
over S(H). Then, by minimizing the average risk over the set of all probability distributions over
S(H), one obtains what is called a Bayes estimator, ρ̂B [7, pg. 228]. In fact, it has been shown that
the Bayes estimator is the mean if the loss function is the relative entropy [8], while in reference [9]
the same was proved for a more general class of distance-measures called Bregman divergence (see
Definition 3.3), which generalizes two important distance-measures—relative entropy and Hilbert-
Schmidt distance, but in the classical setting. We provide a proof for the quantum setting in
Appendix A for completion.

Now, the Bayesian mean estimator for a prior distribution π(ρ) is given by

ρ̂B(D) =
∫
S(H)

p(ρ|D)ρdρ, (3)

where p(ρ|D) is the posterior probability density given by the Bayes rule:

p(ρ|D) = p(D|ρ)π(ρ)
p(D) , (4)

and p(D) =
∫
S(H) dπ(ρ)p(D|ρ). However, BME can yield nonsensical estimators if one starts with

a bad prior, as the following example illustrates.
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Example 2. Consider a σX measurement on an unknown quantum state ρ in C2. Suppose there
exists a prior π(ρ) such that it assigns zero measure to all states in C2 but |−〉〈−|. A single
measurement outcome of ‘+’ rules out the outcome ‘−’ and thus annihilates the prior!

In fact, it should be clear from the above example that some priors can be annihilated by a finite
number of (independent) measurements. Thus, in general, one needs a robust [5] prior that cannot
be annihilated in order to prevent rank-deficient estimates. However, the estimator’s knowledge
of the true state can still be jeopardized in the presence of an adversary who provides her with a
wrong prior. Therefore, although BME seems to be the best bet, it remains inherently ambiguous
due to its dependence on the choice of priors. A systematic approach towards deriving optimality
criteria for priors is thus a compelling problem.

The minimax approach, complementary to BME, seems to be doing just that. In classical
statistics, the problem of estimating probability distributions (analogous to state estimation) has
been studied using the minimax approach [10–13], that offers an alternative characterization of
optimality of estimators. In the minimax approach, one looks at the space of all possible estimators
defined on X and, for each estimator ρ̂, picks the state ρ for which it has the worst performance or
risk (quantified in terms of a suitably chosen distance-measure between the estimator and the true
state). Then, the minimax estimator is the one that has the best worst-case risk. Such an estimator
necessarily works for all states ρ ∈ S(H). It can be shown [10] that such a minimax estimator is
a Bayes estimator given a particular choice of ‘non-informative’ prior. Thus, the solution to the
minimax problem leads to a natural identification of a prior.

However, as pointed out in reference [5], no such rigorous statements were known for the
quantum analogue of the problem until then. Recently, the authors of reference [14] have studied
the quantum minimax estimation problem in analogy to the classical problem [13], quantifying
the estimator’s risk in terms of relative entropy. To summarize, they find that given an unknown
quantum state ρ and some estimator ρ̂ of it, there always exists a sequence of Bayes estimators
that perform at least as well as ρ̂ in the limiting case. Moreover, they show that there always exists
a class of priors, called latent information priors (although, conventionally, such priors are called
least favourable, and we shall follow the convention!) for which there is a corresponding sequence of
Bayes estimators whose limit is minimax. Finally, they define a minimax POVM as a POVM that
minimizes the minimax risk, see Definition 4.1, and study the qubit (C2) case in detail, obtaining
the class of the least favourable priors as well as the minimax POVM for C2.

This paper is divided into six sections—we discuss our main results in Section 2, followed by
Section 3 that contains the formalism and Section 4 that contains the proofs in detail. Finally, in
Section 5, we discuss the state estimation problem for C2. In Section 6, we summarize the results
and outline future work.

2 Main Results
Bayesian mean estimation is arguably a more plausible approach towards state estimation as op-
posed to maximum likelihood estimation or direct inversion. However, the performance of BME is
tied to the choice of the prior. A complementary approach towards the state estimation problem—
the minimax approach provides a window to explore all possible classes of priors, enabling one
to narrow down those that are consistent with the requirements of both the Bayesian and the
minimax analysis.

We extend the work done in reference [14] on minimax analysis (as discussed earlier) to a more
general class of distance-measures called the Bregman divergence, see Definition 3.3, that generalizes
both relative entropy and Hilbert-Schmidt distance. We also generalize the minimax POVM for C2

to Hilbert-Schmidt distance, finding that such a minimax POVM is a spherical 2-design. Moreover,
by re-formulating Holevo’s theorem [15, pg. 171] for the covariant state estimation problem in
terms of estimators, we find that a covariant POVM is, infact, minimax with Bregman divergence
as the distance-measure. Let us discuss these results in detail, informally, postponing the formal
statements and proofs to Section 4.

Result 2.1. For any estimator ρ̂, there always exists a sequence of Bayes estimators such that the
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limit of the sequence performs at least as well as ρ̂, i.e.

R(ρ, ρ̂) ≥ R
(
ρ, lim
n→∞

ρ̂πnB

)
, ∀ρ ∈ S(H).

So, for a given quantum state and some estimator, the above result says that one can always
find a sequence of Bayes estimators that asymptotically perform at least as well as the estimator.
That there exists such a sequence of Bayes estimators means that there exists a corresponding
convergent sequence of priors, see Equation (3). However, in general, the Bayes estimator is
uniquely defined only up to the null set of pπ comprised of outcomes that have zero probability
under π. This illustrates that one cannot replace any given estimator by a corresponding Bayes
estimator. However, one can still find a sequence of Bayes estimators that, in the limiting case,
perform at least as well as the given estimator. This is an interesting result as it benchmarks BME
against any given estimation technique. A related question is: “Does there exist a Bayes estimator
that is also minimax?” Well, if one is given a minimax estimator, then Result 2.1 tells us that
there exists a sequence of Bayes estimators that are at least as good as the minimax estimator,
which in turns implies that the limit itself is minimax. In fact, the next result gives us a Bayesian
procedure to arrive at such a minimax estimator.

Result 2.2. There always exists a sequence of priors such that the limit of the sequence maximizes
the average risk of a Bayes estimator,

r(π, ρ̂πB) =
∫
S(H)

dπ(ρ)R(ρ, ρ̂πB), (5)

and the limit of the respective sequence of Bayes estimators minimizes the worst-case risk, i.e., it
is minimax.

We find that the prior that maximizes the average risk of the Bayes estimator—referred to
as the least favourable prior (as it maximizes the minimum possible average risk) is the limit
of a convergent sequence of priors, such that the limit of the corresponding sequence of Bayes
estimators is minimax. Note that the average risk with relative entropy as the loss function is the
average of the maximal accessible information—Holevo information for the ensemble {π(ρ|x), ρ}
with respect to the total probability of measurement outcomes. So, maximizing this average Holevo
information of the given ensemble over all possible priors is like asking “What is the prior for which
the posterior yields maximum accessible information for the ensemble {π(ρ|x), ρ}?” However, no
such interpretation can be made for general loss functions such as Bregman divergence.

At this point, it must be noted that the underlying measurement in all the analysis done so far
is fixed. Thus, a least favourable prior is inherently tied to the measurement. Any construction
of such a prior necessarily implies that we also need to find a class of measurements for which it
works. Although it is not clear if one would be able to solve this problem in general, one can do
so for at least a subset of the estimation problem—the covariant state estimation problem.

In covariant state estimation, given a fixed state ρ0, one is interested in estimating the states
ρθ such that ρθ ∈ {Vgρ0V

†
g } where g ∈ G is a group element acting on the parameter space Θ with

θ ∈ Θ and Vg is the projective unitary representation of the parametric group G. By generalizing
Holevo’s theorem [15, Theorem 3.1] to Bregman divergences, we obtain a least favourable prior.

Lemma 2.1. The uniform measure on the parameter space Θ is a least favourable prior for
covariant measurements.

A covariant measurement is a measurement that reflects the transformation of the state under
the group action appropriately in the outcome statistics (see Definition 4.2). Now, the question
is: “What is the measurement that minimizes the worst-case risk?” An answer to this question
is closely related to finding the class of measurements for the least favourable priors. The only
additional information that is needed is if such a class of measurements also minimizes the average
risk with respect to the least favourable prior. It turns out that this is indeed the case as far as
covariant estimation is concerned.

Result 2.3. There exists a covariant measurement Pc which is minimax for covariant state esti-
mation. Moreover, if there exists a measurement P′c which is covariant under a subgroup H of G
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such that {Vh| h ∈ H} forms a unitary 2-design, where Vh is the projective unitary representation
of the subgroup H, and Pc and P′c have the same seed1, then P′c is also minimax.

It is not so straightforward to generalize these results to the general state estimation problem.
To better understand the situation for the general case, we look at the simplest system of a single
qubit (extending the results of reference [14] to Hilbert-Schmidt distance—details in Section 6. In
particular, we find that every spherical 2-design in C2 is a minimax POVM.

3 Formalism
Consider a quantum system S described by a finite-dimensional Hilbert space H with S(H) as the
set of density operators on H. Then, consider a quantum measurement to be an experiment in
which the quantum system S is measured and let X be the corresponding outcome space of the
measurement outcomes. Each possible event of the experiment can be identified with a subset B
⊆ X , the event being ‘the measurement outcome x lies in B’. The probability distribution of the
events is thus defined over a Σ-algebra of the measurable subsets B ⊆ X . To be in touch with
physical reality, we choose the outcome space to be a Haursdorff space, i.e. a topological space
where for any x1, x2 ∈ X there exist two disjoint open sets X1, X2 ⊂ X such that x1 ∈ X1 and
x2 ∈ X2. This ensures that the Σ-algebra is a Borel Σ-algebra generated by countable intersections,
countable unions and relative complements of open subsets of X . Let P(H) be the set of positive
operators on H.

Definition 3.1 (Quantum measurement). A Positive Operator-Valued Measure (POVM) is a map
P : Σ 7→ P(H), where Σ is the Σ-algebra of all measurable subsets of X . Thus, a POVM associates
an operator P(B) to each B ∈ Σ satisfying the following:

1. P (B) ≥ 0, ∀B ∈ Σ.

2. P (X ) = I.

3. P
( ∞⋃
i=1

Bi

)
=
∞∑
i=1

P (Bi), where ∀Bi, Bj s.t. Bi ∩Bj = ∅ .

The set of all POVMs on Σ forms a convex set denoted by P. A POVM is informationally
complete [3] if the operators {P (B)} span L(H), the space of linear operators on H. The mea-
surement statistics of such an IC-POVM is sufficient to determine, uniquely, all possible states
that the quantum system could be in, in the limit when an infinite number of measurements are
performed. Optimization of data-processing deals with the practical aspect of not having infinite
resources and minimizing the corresponding statistical error. Reference [16] reviews the theoretical
development of optimization techniques in quantum tomography based on informationally com-
plete measurements. However, in this paper, we make no assumptions on the POVM. In fact, we
look at an alternative definition for an optimal POVM—to be discussed later in this section.

The following lemma (see Appendix B for proof) provides a convenient way of representing a
POVM as an operator-valued density.

Lemma 3.1 (Existence of a POVM density). Every P ∈ P admits a density, i.e. for any POVM
P there exists a finite measure µ(dx) over X such that µ(X ) = 1 and

P (B) =
∫
B

dµ(x)M(x), (6)

with M(x) ≥ 0, and Tr[M(x)] = d µ−almost everywhere.

The conditional probability of the event ‘the measurement outcome x′ lies in B given that the
system is in a state ρ’ is given by Born’s rule as

Pr[x′ ∈ B| ρ] = trP (B)ρ =
∫
B

dµ(x) trM(x)ρ, (7)

1See Lemma E.3.
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or, in the differential form as

dp(x|ρ) = dµ(x) trM(x)ρ (8)

which will come in handy later. Now that we have defined a quantum measurement, we proceed
with the formulation.

In estimation theory [7], one typically parametrizes the system S by a parameter θ. The data
set of the measurement outcomes is represented by a random variable X. Using this data set
one estimates the parameter θ or more generally ρθ—the estimand. Succinctly, this involves two
random variables Θ and X defined as below:

• In the Bayesian model, the quantity θ that parametrizes the system S is treated as a random
variable Θ. This random variable is defined over the parameter space ΩΘ

2 and is distributed
according to an a-priori probability distribution πΘ ∈ P(Θ) (where P(Θ) is the set of all
probability distributions on Θ).

• X is the random variable associated with the outcomes of the measurement performed on
the system S, defined over the sample space X . The outcomes of the measurement are
conditioned on the random variable Θ. Thus, X is distributed according to the conditional
probability pX(x|θ), given by Equation (7).

The parameter space Θ is chosen to be a compact metric space. The set of all bounded contin-
uous real-valued function on Θ is denoted by C(Θ,R). The set of probability distributions P(Θ)
on Θ is endowed with a weak topology, which essentially defines the notion of weak convergence.

Definition 3.2. A sequence of probability measures πn ∈ P(Θ) weak converges to µ if for every
f ∈ C(Θ,R), ∫

fdπn →
∫
fdµ, as n→∞. (9)

Then, as Θ is a compact metric space and P(Θ) is endowed with a weak topology, by [17,
Theorem 6.4], it implies that P(Θ) is also a compact metric space.

The central problem in quantum state estimation is to obtain an estimator of ρθ. We define
an estimator as the map

ρ̂ : X 7→ S(H). (10)

The value of ρ̂(x) is the estimate of ρθ when the measurement outcome is X = x. We want ρ̂(X)
to be close to ρθ, but ρ̂(X) is a random variable. One way of defining a meaningful measure of
closeness is by defining an expectation over the conditional distribution of X, Equation (7). Let
L(ρθ, ρ̂(x)) be the loss function that quantifies the closeness of an estimated state ρ̂(x) to the true
state ρθ. We assume two things about L:

1. L(ρθ, ρ̂(x)) ≥ 0, ∀θ ∈ Θ, ρ̂, with equality if and only if ρθ = ρ̂(x).

2. L(ρθ, ρθ) = 0, ∀θ ∈ Θ.

The average measure of closeness of ρ̂(X) to ρθ is defined as the risk function

R(ρθ, ρ̂) = EX|θ[L(ρθ, ρ̂(X))]. (11)

One would like to obtain an estimator that minimizes the risk for all values of θ. Obviously, this
problem does not have a solution, i.e. there does not exist an estimator that uniformly minimizes
the risk for all values of θ except for the case when ρθ is a constant. Instead, one can look at the
following two quantities that are a good measure of the risk in a global sense:

2However, we will abuse notation and refer to the parameter space as Θ from now onwards.
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1. Average risk:

r(π, ρ̂) =
∫

Θ
dπ(θ)R(ρθ, ρ̂), (12)

where π(θ) is an a-priori distribution over the parameter space Θ.

2. Worst-case/minimax risk:

inf
ρ̂

sup
θ
R(ρθ, ρ̂). (13)

The estimator that minimizes the average risk is the Bayes estimator ρ̂B [7, pg.228]. In reference
[8] it was shown that the Bayes estimator is the mean if the loss function is the relative entropy
D(ρθ||ρ̂(x)), i.e.,

ρ̂B = x 7→
∫

Θ
dπ(θ|x)ρθ, (14)

where dπ(θ|x) is the posterior probability distribution obtained via the Bayes rule,

dπ(θ|x) = dp(x|θ)
dpπ(x) dπ(θ),

where pπ(B) =
∫
B

∫
Θ dp(x|θ)dπ(θ). Note that in the continuous case, the likelihood ratio p(x|θ)

pπ(x) is
replaced by the corresponding Radon-Nikodym derivative, which is defined uniquely upto the null
set of pπ. In fact, the same was proved [9] for a more general class of distance-measures called
Bregman divergence which is the measure we will use in our analysis, but only in the classical
setting. We provide a proof for the quantum setting in Appendix A for completion. Let us now
define Bregman divergence.

Definition 3.3 (Bregman divergence for density matrices). Let f : [0, 1] 7→ R be a strictly convex
continuously-differentiable real-valued function. Then, the Bregman divergence between density
matrices ρ, σ is defined as

Df (ρ, σ) = tr
(
f(ρ)− f(σ)− f ′(σ)(ρ− σ)

)
.

Bregman divergence generalizes two important classes of distance-measures: the relative en-
tropy obtained by choosing f : x 7→ x log x and the Hilbert-Schmidt distance (Schatten 2-norm)
obtained by choosing f : x 7→ x2.

Let us now look at a few of its important properties. First, Bregman divergence is invariant
under unitary transformations of its arguments, i.e. Df (UρU†, UσU†) = Df (ρ, σ). Second, it is not
a metric, as it is neither symmetric nor satisfies the triangle inequality, but by the strict convexity
of f, Df (ρ, σ) ≥ 0, with equality if and only if ρ = σ. Third, the convexity of f implies that Df (., .)
is convex in its first argument; it is jointly convex if f ′′ is operator convex and numerically non-
increasing [18]. Moreover, by generalizing the proof of lower semi-continuity of relative entropy as
in reference [19], we obtain the lower semi-continuity of Bregman divergence (see Appendix C for
the proof).

We are now ready to state and prove the main results of this paper.

4 Proofs
4.1 Bayesian state estimation
Formally, Result 2.1 is stated as the following theorem.

Theorem 4.1. Let ρ̂ : X 7→ S(H) be an estimator. Then, there exists a convergent sequence of
priors such that the corresponding sequence of Bayes estimators (ρ̂πnB )n converges, with

R(ρθ, ρ̂) ≥ R
(
ρθ, lim

n→∞
ρ̂πnB

)
, ∀θ ∈ Θ. (15)
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Proof. Consider the average distance between the Bayes estimator and a given estimator ρ̂ for
some prior π ∈ P(Θ) as the map

g : π 7→ Df
ρ̂ (π) =

∫
X
dpπ(x) Df (ρ̂πB(x), ρ̂(x)).

Now, the Bayes estimator is uniquely defined up to the null set of pπ. In fact, it is discontinuous
on X , see Appendix D, and the points of discontinuity belong to the null set of pπ. So, unless the
null set of pπ is empty, the Bayes estimator cannot be defined continuously since there can exist
different sequences that converge to the same prior, but the limit of the corresponding sequences
of Bayes estimators may not coincide on the null set of pπ. To deal with the discontinuity of the
Bayes estimator, we consider closed subsets of P(Θ) with the defining property that every element
of these subsets renders the corresponding Bayes estimator continuous on X . Then, g is lower semi-
continuous on each closed subset as Bregman divergence is lower-semi continuous (Appendix C).
Thus, there exists a prior πn in every subset that minimizes it on that subset. So, we look at the
sequence of such priors (πn)n and find that the corresponding sequence of Bayes estimators (ρ̂πnB )n
converges to a limit that has a risk lower than or equal to that of the given estimator. Let us now
proceed with the proof.

We define the closed subsets of P(Θ) as

Pµ/n =
{µ
n

+
(

1− 1
n

)
π
∣∣∣π ∈ P(Θ)

}
, (16)

where µ is a measure such that pµ(x) > 0, for all x ∈ X . The latter condition ensures that the
Bayes estimator for a prior that lies in Pµ/n is continuous on Pµ/n. Then, as a closed subset of a
compact set is compact, there exists a prior πn ∈ Pµ/n such that Df

ρ̂ (πn) = inf
π∈Pµ/n

Df
ρ̂ (π). In fact,

as P(Θ) is a compact metric space, the sequence of priors (πn)n has a convergent subsequence.
Let us denote this subsequence as (π′m)m. Let nm be such that πnm = π

′

m.
Then, the idea is to use the fact that each π′m minimizes Df

ρ̂ on the corresponding closed subset
Pµ/nm to obtain a suitable condition. To begin with, we define a prior in the neighbourhood of
π
′

m+1 ∈ Pµ/nm+1 by taking a convex sum of it with another element in Pµ/nm+1 . Observe that(
nm
nm+1

π
′

m+1 + (1− nm
nm+1

)δ(θ − θ0)
)
lies in Pµ/nm+1 , for any θ0 ∈ Θ. So, we define a prior

π(θ) = u

(
nm
nm+1

π
′

m +
(

1− nm
nm+1

)
δ(θ − θ0)

)
+ (1− u)π

′

m+1, (17)

with 0 ≤ u ≤ 1. This is like considering a perturbation in the neighbourhood of π′m+1 and noting
that the derivative of Df

ρ̂ (π) is positive as one approaches π′m+1 as it minimizes Df
ρ̂ (π) on the set

Pµ/nm+1 . Thus, we have

0 ≤ d
duD

f
ρ̂ (π)

∣∣∣∣∣
u=0

= d
du

∫
X
dpπ(x) Df (ρ̂πB(x), ρ̂(x))

∣∣∣∣∣
u=0

=
∫
X

dpπ(x)
du

∣∣∣∣∣
u=0

Df (ρ̂π
′
m+1
B (x), ρ̂(x)) +

∫
X
dpπ′m+1

(x) d
duDf (ρ̂πB(x), ρ̂(x))

∣∣∣∣∣
u=0

.

(18)

Let k = nm
nm+1

. Then,

dpπ(x) =
∫

dp(x|θ)
(
u
(
kπ
′

m(θ) + (1− k)δ(θ − θ0)
)

+ (1− u)π
′

m+1(θ)
)
dθ.

=⇒ dpπ(x)
du

∣∣∣∣∣
u=0

= kdpπ′m(x) + (1− k)dp(x|θ0)− dpπ′m+1
(x).
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So, the first term (18) is∫
X

(
kdpπ′m(x) + (1− k)dp(x|θ0)− dpπ′m+1

(x)
)
Df

(
ρ̂
π
′
m+1
B (x), ρ̂(x)

)
,

while the second term, using Lemma E.1, is

=
∫
X
dpπ′m+1

(x) d
du tr f

(
ρ̂πB(x)

)
− f ′

(
ρ̂(x)

)(
ρ̂πB(x)− ρ̂(x)

)∣∣∣∣∣
u=0

=
∫
X
dpπ′m+1

(x) tr
(
f ′
(
ρ̂
π
′
m+1
B (x)

)
− f ′

(
ρ̂(x)

)) d
duρ̂

π
B(x)

∣∣∣
u=0

. (19)

Let us now calculate the derivative of the Bayes estimator.

d
duρ̂

π
B(x)

∣∣∣
u=0

= d
du

∫
Θ

dp(x|θ)
dpπ(x) ρθdπ(θ)

∣∣∣
u=0

= d
du

∫
Θ

1
dpπ(x)
dp(x|θ)

ρθdπ(θ)
∣∣∣
u=0

=
∫

Θ

ρθ

(
kdπ′m(θ) + (1− k)δ(θ − θ0)dθ − dπ′m+1(θ)

)
dp
π
′
m+1

dp(x|θ)

−

∫
Θ

ρθdπ
′

m+1(θ)(
dp
π
′
m+1

dp(x|θ)

)2
d
du

(
dpπ(x)
dp(x|θ)

)∣∣∣∣∣
u=0

. (20)

Now, the derivative with respect to u in the second term can be calculated by exchanging the order
of differentiation as p(x|θ) is independent of u. So, we have

d
du

(
dpπ(x)
dp(x|θ)

)∣∣∣∣∣
u=0

= d
dp(x|θ)

(
dpπ(x)
du

)∣∣∣∣∣
u=0

= k
dpπ′m(x)
dp(x|θ) + (1− k)dp(x|θ0)

dp(x|θ) −
dpπ′m+1

dp(x|θ) (x).

Plugging in (20) we obtain,

d
duρ̂

π
B(x)

∣∣∣
u=0

=
∫

Θ

ρθ

(
kdπ′m(θ) + (1− k)δ(θ − θ0)dθ − dπ′m+1(θ)

)
dp
π
′
m+1

dp(x|θ)

−

∫
Θ

ρθdπ
′

m+1(θ)(
dp
π
′
m+1

dp(x|θ)

)2

(
k
dpπ′m(x)
dp(x|θ) + (1− k)dp(x|θ0)

dp(x|θ) −
dpπ′m+1

(x)
dp(x|θ)

)
.

Now, in the limit m → ∞, the coefficient of k vanishes in the expression above due to weak
convergence, while the last term of the first integral cancels with the last term of the second
integral. So, we have

lim
m→∞

d
duρ̂

π
B(x)

∣∣∣
u=0

= lim
m→∞

(1− k) dp(x|θ0)
dpπ′m+1

(x)

(
ρθ0 − ρ̂B

π
′
m+1(x)

)
. (21)

Applying the limit and plugging (21) in (19), we find that the second term in (18) is

= lim
m→∞

∫
X
dpπ′m+1

(x) tr
(
f ′
(
ρ̂
π
′
m+1
B (x)

)
− f ′

(
ρ̂(x)

))
(1− k) dp(x|θ0)

dpπ′m+1
(x)

(
ρθ0 − ρ̂

π
′
m+1
B (x)

)
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= lim
m→∞

(1− k)
∫
X
dp(x|θ0) tr

(
f ′
(
ρ̂
π
′
m+1
B (x)

)
− f ′

(
ρ̂(x)

))(
ρθ0 − ρ̂

π
′
m+1
B (x)

)
.

Finally, combining both the terms of (18) and applying the limit, we find that

0 ≤ lim
m→∞

d
duD

f
ρ̂ (π)

∣∣∣∣∣
u=0

= lim
m→∞

∫
X

(
kdpπ′m+1

(x) + (1− k)dp(x|θ0)− dpπ′m+1
(x)
)
Df

(
ρ̂
π
′
m+1
B (x), ρ̂(x)

)
+

(1− k)
∫
X
dp(x|θ0) tr

(
f ′
(
ρ̂
π
′
m+1
B (x)

)
− f ′

(
ρ̂(x)

))(
ρθ0 − ρ̂

π
′
m+1
B (x)

)
.

This implies that

lim
m→∞

(1− k)
∫
X
dpπ′m+1

(x)
)
Df

(
ρ̂
π
′
m+1
B (x), ρ̂(x)

)
≤ lim
m→∞

(1− k)
∫
X
dp(x|θ0) tr

(
f ′
(
ρ̂
π
′
m+1
B (x)

)
− f ′

(
ρ̂(x)

))
·(

ρθ0 − ρ̂
π
′
m+1
B (x)

)
+
∫
X
dp(x|θ0)Df

(
ρ̂
π
′
m+1
B (x), ρ̂(x)

)
.

The right-hand side of the inequality above can be rearranged to obtain

lim
m→∞

∫
X
dpπ′m+1

(x)
)
Df

(
ρ̂
π
′
m+1
B (x), ρ̂(x)

)
︸ ︷︷ ︸

≥ 0, due to non-negativity of Bregman divergence.

≤ lim
m→∞

∫
X
dp(x|θ0)Df

(
ρθ0 , ρ̂(x)

)
−Df

(
ρθ0 , ρ̂

π
′
m+1
B (x)

)
.

This implies that

lim
m→∞

R(ρθ0 , ρ̂
π
′
m+1
B ) ≤ R(ρθ0 , ρ̂), ∀θ0 ∈ Θ.

But, as Bregman divergence is lower semi-continuous (Appendix C), we have

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1
B ) ≤ lim

m→∞
R(ρθ0 , ρ̂

π
′
m+1
B ).

Therefore, we arrive at our result, i.e.

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1
B ) ≤ R(ρθ0 , ρ̂), ∀θ0 ∈ Θ.

4.2 A Bayesian method for minimax state estimation
Formally, Result 2.2 is stated as the following theorem.

Theorem 4.2. There exists a convergent sequence of priors (πn)n such that the limit of the
sequence maximizes the average risk, Equation (5), of the Bayes estimator. The limit of such a
sequence is referred to as a least favourable prior. Moreover, the sequence of Bayes estimators
(ρ̂πnB )n converges such that the limit of the sequence is minimax, i.e

inf
ρ̂

sup
θ
R(ρθ, ρ̂) = sup

θ
R(ρθ, lim

n→∞
ρ̂πnB ).

Proof. Consider the average risk of the Bayes estimator for a prior π ∈ P(Θ) as the map

h : π 7→ r(π, ρ̂πB) =
∫

Θ
dπ(θ)

∫
X
dp(x|θ)Df

(
ρθ, ρ̂

π
B(x)

)
.

Due to the discontinuity of the Bayes estimator, we follow the same regularization arguments as
made earlier and define closed subsets of P(Θ), Equation (16), such that the Bayes estimator is
continuous on each of these subsets. The map h : π 7→ r(π, ρ̂πB) is then continuous on each of
the subsets. Since these subsets are closed subsets of a compact set they are themselves compact.
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Therefore, h attains a maximum on each of the subsets. Then, denoting the maxima in each subset
Pµ/nm+1 as π′m+1, we define a prior as done earlier in Equation (17) as a convex sum of π′m+1 and
another element in Pµ/nm+1 . Since the average risk is maximized on Pµ/nm+1 , the derivative of
r(π, ρ̂πB) is negative as one approaches π′m+1, i.e.

0 ≥ d
dur(π, ρ̂

π
B)

∣∣∣∣∣
u=0

= d
du

∫
Θ
dπ(θ)

∫
X
dp(x|θ)Df

(
ρθ, ρ̂

π
B(x)

)∣∣∣∣∣
u=0

=
∫

Θ

dπ(θ)
du

∣∣∣∣∣
u=0

∫
X
dp(x|θ)Df

(
ρθ, ρ̂

π
′
m+1
B (x)

)
+

∫
Θ
dπ
′

m+1(θ)
∫
X
dp(x|θ) d

duDf

(
ρθ, ρ̂

π
B(x)

)∣∣∣∣∣
u=0

. (22)

Evaluating the derivatives using Lemma E.1, the first term in (22) is∫
X
dp(x|θ0)Df

(
ρθ0 , ρ̂

π
′
m+1
B (x)

)
−
∫

Θ
dπ
′

m+1(θ)
∫
X
dp(x|θ)Df

(
ρθ, ρ̂

π
′
m+1
B (x)

)
,

while the derivative in the second term of (22) is

d
duDf

(
ρθ, ρ̂

π
B(x)

)∣∣∣∣∣
u=0

= d
du tr

[
f(ρθ)− f(ρ̂πB(x))− f ′(ρ̂πB(x))

(
ρθ − ρ̂πB(x)

)]∣∣∣∣∣
u=0

= tr
[
− f ′(ρ̂π

′
m+1
B (x)) d

duρ̂
π
B(x)

∣∣∣
u=0

+ f ′(ρ̂π
′
m+1
B (x)) d

duρ̂
π
B(x)

∣∣∣
u=0

−
(
ρθ − ρ̂

π
′
m+1
B (x)

) d
duf

′(ρ̂πB(x))
∣∣∣
u=0

]
= tr

[(
ρ̂
π
′
m+1
B (x)− ρθ

) d
duf

′(ρ̂πB(x))
∣∣∣
u=0

]
.

So, plugging this in the second term of (22), we have∫
Θ
dπ
′

m+1(θ)
∫
X
dp(x|θ) tr

[(
ρ̂
π
′
m+1
B (x)− ρθ

) d
duf

′(ρ̂πB(x))
∣∣∣
u=0

]
= tr

[∫
X

∫
Θ
dπ
′

m+1(θ)dp(x|θ)
(
ρ̂
π
′
m+1
B (x)− ρθ

) d
duf

′(ρ̂πB(x))
∣∣∣
u=0

]

= tr
[∫
X

(
dpπ′m+1

(x)ρ̂π
′
m+1
B (x)−

∫
Θ
dπ
′

m+1(θ)dp(x|θ)ρθ

)
d
duf

′(ρ̂πB(x))
∣∣∣
u=0

]
= 0. (23)

Thus, applying the limit m→∞ we arrive at the following inequality,

0 ≥ lim
m→∞

∫
X
dp(x|θ0)Df

(
ρθ0 , ρ̂

π
′
m+1
B (x)

)
−
∫

Θ
dπ
′

m+1(θ)
∫
X
dp(x|θ)Df

(
ρθ, ρ̂

π
′
m+1
B (x)

)
,

which implies that

lim
m→∞

∫
X
dp(x|θ0)Df

(
ρθ0 , ρ̂

π
′
m+1
B (x)

)
≤ lim

m→∞

∫
Θ
dπ
′

m+1(θ)
∫
X
dp(x|θ)Df

(
ρθ, ρ̂

π
′
m+1
B (x)

)
.

So, we have

lim
m→∞

R(ρθ0 , ρ̂
π
′
m+1
B ) ≤ lim

m→∞

∫
Θ
dπ
′

m+1(θ)R(ρθ, ρ̂
π
′
m+1
B ), ∀θ0 ∈ Θ.

The lower semi-continuity of Bregman divergence implies that

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1
B ) ≤ lim

m→∞

∫
Θ
dπ
′

m+1(θ)R(ρθ, ρ̂
π
′
m+1
B ).
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Thus, we have

sup
θ0

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1
B ) ≤ lim

m→∞

∫
Θ
dπ
′

m+1(θ)R(ρθ, ρ̂
π
′
m+1
B ).

But, the other direction of the inequality above is true trivially i.e.

sup
θ0

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1
B ) ≥ lim

m→∞

∫
Θ
dπ
′

m+1(θ)R(ρθ, ρ̂
π
′
m+1
B ).

Therefore, we obtain

sup
θ0

R(ρθ0 , lim
m→∞

ρ̂
π
′
m+1
B ) = lim

m→∞

∫
Θ
dπ
′

m+1(θ)R(ρθ, ρ̂
π
′
m+1
B ). (24)

But,

lim
m→∞

∫
Θ
dπ
′

m+1(θ)R(ρθ, ρ̂
π
′
m+1
B ) = lim

m→∞
sup

π∈Pµ/nm+1

∫
Θ
dπ(θ)R(ρθ, ρ̂πB).

By Lemma E.2, the limit of the suprema over subsets Pµ/nm+1 can be replaced by a supremum
over the set P(Θ) since the sequence of subsets Pµ/nm+1 is dense in P(Θ). Thus, we have

lim
m→∞

∫
Θ
dπ
′

m+1(θ)R(ρθ, ρ̂
π
′
m+1
B ) = sup

π∈P(Θ)

∫
Θ
dπ(θ)R(ρθ, ρ̂πB)

= sup
π∈P(Θ)

inf
ρ̂

∫
Θ
dπ(θ)R(ρθ, ρ̂). (25)

Using the minimax theorem for lower semi-continuous and quasi-convex functions [20, Theorem
3.4], we can exchange the infimum and the supremum to obtain

sup
π∈P(Θ)

inf
ρ̂

∫
Θ
dπ(θ)R(ρθ, ρ̂) = inf

ρ̂
sup

π∈P(Θ)

∫
Θ
dπ(θ)R(ρθ, ρ̂) = inf

ρ̂
sup
Θ
R(ρθ, ρ̂).

Thus, by (24) and (25) we have the result

inf
ρ̂

sup
θ
R(ρθ, ρ̂) = sup

θ
R(ρθ, lim

m→∞
ρ̂
π
′
m+1
B ).

Result 2.1 and Result 2.2 are based on the assumption that the underlying POVM is fixed.
However, in general, the risk depends on the POVM P, i.e. R(ρθ, ρ̂) ≡ RP (ρθ, ρ̂). One way of
defining an optimal POVM could be to minimize the worst-case risk over P, the convex set of all
POVMs. The POVM that minimizes the worst-case risk is called a minimax POVM.

Definition 4.1 (Minimax POVM). A POVM P ∗ is minimax if:

inf
P∈P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) = inf

ρ̂
sup
θ
RP∗(ρθ, ρ̂) (26)

where ρθ is the estimand, ρ̂ : X 7→ S(H) is an estimator with risk RP (ρθ, ρ̂) which is a function of
the POVM P, and P is the convex set of all POVMs on the measurement outcome space X .

It remains unclear as to how one could obtain a minimax POVM for general state estimation,
but if we restrict ourselves to the case of covariant state estimation the situation simplifies.
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4.3 Covariant state estimation
In the covariant state estimation problem, as discussed in reference [15], one is given a fixed
state ρθ0 and is interested in estimating all the states ρθ that lie in the orbit {Vgρθ0V

†
g }, where

g ∈ G is a parametric group of transformations of the parameter space Θ and g 7→ Vg is a
(continuous) projective unitary representation of G. One can think of this as representing the
following physical scenario. Given that the parameter θ labels the quantum states of the Hilbert
space H, θ can be assumed to be describing some aspects of the preparation procedure for the state
ρθ—a transformation g of the parameter θ0 results in the preparation of the state ρθ = Vgρθ0V

†
g

where θ = gθ0. Covariant state estimation thus corresponds to the estimation of the state ρθ with
the measurement outcome space X being identical to the parameter space Θ. Let us first define a
covariant measurement.

Definition 4.2 (Covariant measurement). Let G be a parametric group of transformations of a
set Θ and g 7→ Vg be a (continuous) projective unitary representation of G in a Hilbert space H.
Let M(dθ̂) be a positive operator-valued measure defined on the σ-algebra A(Θ) of Borel subsets of
Θ. Then M(dθ̂) is covariant with respect to the representation g 7→ Vg if

V †gM(B)Vg = M(Bg−1), g ∈ G, (27)

for any B ∈ A(Θ), where Bg = {θ′ : θ′ = gθ, θ ∈ B}.

If M(dθ̂) is covariant, then

trM(B)ρθ = tr ρ0V
†
gM(B)Vg = tr ρ0M(Bg−1).

Thus,

Pr[θ̂ ∈ B| gθ0] = Pr[θ̂ ∈ Bg−1 | θ0],

i.e. a covariant measurement preserves the probability distribution under the transformation of
the state. We refer the reader to reference [15] for a more detailed discussion on covariant mea-
surements.

Before we start building towards the proof of Result 2.3, let us look at some of the properties
of the parametric group G to understand the situation better. First, the group G is chosen to act
transitively on Θ. This ensures that the map g 7→ gθ0 maps G onto the whole Θ. Second, G is
assumed to be unimodular which implies that there exists an invariant measure µ on G. Third, G
is assumed to be compact which ensures that the measure µ < ∞. The measure µ is normalized
as µ(G) = 1. Now, we are interested in an invariant measure ν on the Σ-algebra A(Θ) on Θ such
that

ν(B) = ν(Bg), B ∈ A(Θ),

where Bg = {θ′ : θ′ = gθ, θ ∈ B}. If G0, the stationary subgroup of G, is unimodular then such a
measure ν exists and if G0 is compact then ν is finite and can be constructed from µ by demanding
that the following relation holds for all integrable functions f on Θ:∫

G

f(gθ0)dµ(g) =
∫

Θ
f(θ)dν(θ). (28)

We now state Proposition 2.1 from reference [15] as the following lemma that gives a relation
between the two measures.

Lemma 4.1. Let M(dθ) be a measurement covariant with respect to a projective unitary repre-
sentation g 7→ Vg of the parametric group G acting on Θ. For any density operator ρ ∈ H, and for
any Borel set B ∈ A(Θ) ∫

G

tr[VgρV †gM(B)]dµ(g) = ν(B) (29)

Let us pause here to look at an example.
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Example 3. Let us assume that we are interested in estimating all those states in C2 that lie on
the Bloch sphere. Thus, the parameter space Θ is S2. This is a covariant estimation problem with
the parametric group of transformations on S2 being SO(3). Its projective unitary representation
is the quotient subgroup SU(2)/U(1). Let us assume that the initial state ρθ0 is |0〉〈0|. Then, the
elements of SU(2)/U(1) generate all the states on the Bloch sphere that are parametrized by a set
of two parameters: the latitude θ3 and azimuth φ, with the states being identified as |θ, φ〉. Note
that an element of SU(2)/U(1) can be written in terms of these as

Uθ,φ =
[

cos θ2 − sin θ
2e
−iφ

sin θ
2e
iφ cos θ2

]
.

It can be shown [15, Theorem 2.1] (stated as Lemma E.3 for reference) that starting from a positive
operator P0 that commutes with all the elements of the stationary subgroup of SU(2)/U(1) such
that it satisfies Equation (38), setting M(θ, φ) = Uθ,φP0U

†
θ,φ implies that the measurement defined

with M(θ, φ) as the operator-valued density with respect to the uniform measure on Θ is covariant.
In this case, P0 = 2|0〉〈0| and the operator-valued density is

M(θ, φ) = 2
[

cos θ2
sin θ

2e
iφ

]
·
[
cos θ2 sin θ

2e
−iφ] = 2

[
cos2 θ

2 cos θ2 sin θ
2e
−iφ

cos θ2 sin θ
2e
iφ sin2 θ

2

]
.

It is straightforward to verify that 1
4π
∫
S2 M(θ, φ) sin θdθdφ = I.

Having defined and illustrated the problem of covariant state estimation, we now recall Holevo’s
theorem [15, Theorem 3.1], which states that for every loss function that is invariant under the
group transformation g, the minimax risk as well as the average risk attain their minima at a
covariant measurement. But, the analysis in reference [15] is done for loss functions expressed as
functions of the true parameter and the estimator of the parameter. It can be recast in terms of
the general framework involving estimators that are functions of the parameter, ρ̂ : Θ 7→ D(H) by
simply choosing the domain of the loss function to be the set of density matrices S(H) as opposed
to the parameter space Θ. We thus state it as the following lemma which is the main ingredient
of the proof of Result 2.3.

Lemma 4.2 (Theorem 3.1, [15]). In the quantum covariant statistical estimation problem, given
an estimator ρ̂ of the state, the minima of the average risk rP (ν, ρ̂) with respect to the uniform
Haar measure ν on Θ and the worst case risk supθ RP (ρθ, ρ̂) for all Θ−measurements are achieved
on a covariant measurement. Moreover, for any covariant measurement Pc, we have

rPc(ν, ρ̂) = sup
θ
RPc(ρθ, ρ̂) = RPc(ρθ, ρ̂), θ ∈ Θ (30)

Note: A covariant measurement is not a unique minimum for either the average or the worst-
case risk.

The above theorem implies that for any measurement P , there exists a covariant measurement
that minimizes the average risk as well as the worst case risk for a fixed estimator ρ̂. But, we
know that for a fixed measurement the average risk is minimized by the Bayes estimator ρ̂B .
Thus, the Bayes estimator minimizes the average risk for a covariant measurement. However, the
invariance of the loss function implies that the Bayes estimator must be covariant under the group
transformations as shown below.

Lemma 4.3. The Bayes estimator is covariant under the group transformations Vg, i.e.

ρ̂B(Bg) = Vgρ̂B(B)V †g , B ∈ A(Θ).

Proof. Recalling the invariance property of the loss function: L(ρθ, ρ̂(x)) = L(ρgθ, ρ̂(gx)) =
L(VgρθV †g , Vgρ̂(x)V †g ), let us verify for the case of Bayes estimator. Recalling Equation (14), we
have

ρ̂B(Bg) =
∫

Θ dν(θ) tr ρθP (Bg)ρθ∫
Θ dν(θ) tr ρθP (Bg)

.

3We apologize for the redundancy, but it is best to stick to conventional symbols.
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As we are interested in a covariant measurement P (Bg) = VgP (B)V †g , therefore

ρ̂B(Bg) =
∫

Θ dν(θ)ρθ tr ρθVgP (B)V †g∫
Θ dν(θ) tr ρθVgP (B)V †g

=
∫

Θ dν(θ)ρθ trV †g ρθVgP (B)∫
Θ dν(θ) trV †g ρθVgP (B)

=
∫

Θ dν(θ)ρθ tr ρg−1θP (B)∫
Θ dν(θ) tr ρg−1θP (B)

.

By the invariance of ν and the fact that ρθ = Vgρg−1θV
†
g , we finally obtain

ρ̂B(Bg) =
∫

Θ dν(g−1θ)Vgρg−1θV
†
g tr ρg−1θP (B)∫

Θ dν(g−1θ) tr ρg−1θP (B)

= Vg

{∫
Θ dν(g−1θ)ρg−1θ tr ρg−1θP (B)∫

Θ dν(g−1θ) tr ρg−1θP (B)

}
V †g = Vgρ̂B(B)V †g .

Thus, we have established two things about a covariant measurement. First, that the risk of
a covariant measurement is independent of the state ρθ and second, that it minimizes the average
as well as the worst-case risk among all measurements. But, the problem of finding a minimax
POVM is closely tied to obtaining a least favourable prior which in turn is tied to the underlying
measurement, as we discussed in Section 2. The following lemma gives a least favourable prior and
the corresponding measurement in the context of covariant state estimation.

Lemma 2.1. The uniform measure on the parameter space Θ is a least favourable prior for
covariant measurements.

Proof. As the Bayes estimator ρ̂πB minimizes the average risk with respect to the prior π,

sup
θ
RPc(ρθ, ρνB) = sup

π

∫
Θ
dπ(θ)RPc(ρθ, ρνB) ≥ sup

π

∫
Θ
dπ(θ)RPc(ρθ, ρπB).

However, by Lemma 4.2, we know that for a covariant measurement the risk is independent of the
state ρθ, i.e.

sup
θ
RPc(ρθ, ρνB) =

∫
Θ
dν(θ)RPc(ρθ, ρνB).

This implies that ∫
Θ
dν(θ)RPc(ρθ, ρνB) ≥ sup

π

∫
Θ
dπ(θ)RPc(ρθ, ρπB).

The other direction of the above inequality holds trivially, i.e.∫
Θ
dν(θ)RPc(ρθ, ρνB) ≤ sup

π

∫
Θ
dπ(θ)RPc(ρθ, ρπB).

Therefore, ∫
Θ
dν(θ)RPc(ρθ, ρνB) = sup

π

∫
Θ
dπ(θ)RPc(ρθ, ρπB),

and so ν is a least favourable prior for a covariant measurement Pc.

The only remaining ingredient needed to prove Result 2.3 is the following lemma.
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Lemma 4.4. The Bayes estimator for a covariant measurement Pc is

ρ̂B(B) = 1
ν(B) tr

[
IR ⊗ PR

′

c (B)
∫
G

dµ(g)
(
Vgρ0V

†
g

)⊗2
]
, B ∈ A(Θ). (31)

Proof. Recalling Equation (14), the Bayes estimator for a covariant measurement Pc is

ρ̂B(B) =
∫

Θ dν(θ) tr[ρθPc(B)]ρθ∫
Θ dν(θ) tr ρθPc(B)

, B ∈ A(Θ).

Using Lemma 4.1, the denominator in the above expression is∫
Θ
dν(θ) tr ρθPc(B) = ν(B),

while the numerator is∫
Θ
dν(θ) tr[ρθPc(B)]ρθ =

∫
G

dµ(g) tr[ρgθ0Pc(B)]ρgθ0

=
∫
G

dµ(g) tr[Vgρ0V
†
g Pc(B)]Vgρ0V

†
g

= trR′
[
IR ⊗ PR

′

c (B)
∫
G

dµ(g)
(
Vgρ0V

†
g

)R ⊗ (Vgρ0V
†
g

)R′]
.

Now that we have a class of measurements and the corresponding least favourable prior, in
order to show that it is minimax (first part of Result 2.3), we have to show that this class of
measurements also minimizes the average risk with respect to such a least favourable prior. Recall
Result 2.3. Formally, the first part of Result 2.3 is stated as the following theorem and the second
part as a corollary to the theorem.

Theorem 4.3. There exists a covariant measurement that is minimax for covariant state estima-
tion.

Proof. Recalling Definition 4.1 of a minimax POVM and the fact that the Bayes estimator mini-
mizes the average risk, we have

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) = inf

P
inf
ρ̂

sup
π

∫
Θ
dπ(θ)RP (ρθ, ρ̂)

≥ inf
P

sup
π

∫
Θ
dπ(θ)RP (ρθ, ρπB).

But, as
sup
π

∫
Θ
dπ(θ)RP (ρθ, ρπB) ≥

∫
Θ
dµ(θ)RP (ρθ, ρµB), ∀µ ∈ P(Θ),

it implies that the same holds for the uniform Haar measure ν as well. Thus,

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) ≥ inf

P

∫
Θ
dν(θ)RP (ρθ, ρνB).

Now, we know from Lemma 4.2 that

inf
P

∫
Θ
dν(θ)RP (ρθ, ρνB) =

∫
Θ
dν(θ)RPc(ρθ, ρνB),

where Pc is a covariant measurement that minimizes the average risk. Also, by Lemma 2.1, ν is a
least favourable prior which means that ρ̂νB is a minimax estimator. Therefore, we have∫

Θ
dν(θ)RPc(ρθ, ρνB) = sup

θ
R
c
(ρθ, ρνB) = inf

ρ̂
sup
θ
RPc(ρθ, ρ̂).
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Thus, we obtain

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) ≥ inf

ρ̂
sup
θ
RPc(ρθ, ρ̂).

The other direction of the inequality above holds trivially, i.e.

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) ≤ inf

ρ̂
sup
θ
RPc(ρθ, ρ̂)

Hence, we have proved that Pc is a minimax POVM, i.e.

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) = inf

ρ̂
sup
θ
RPc(ρθ, ρ̂).

As the risk for a covariant measurement is independent of the state ρθ (by Lemma 4.2)
and depends only on the estimator (the Bayes estimator in this case, which is a function of∫
G
dµ(g)

(
Vgρ0V

†
g

)⊗2), we have the following corollary.

Corollary 4.3.1. Given a minimax covariant measurement Pc, if there exists a measurement P′c
which is covariant under a subgroup H of G such that {Vh| h ∈ H}, where Vh is the projective
unitary representation of the subgroup H, forms a unitary 2-design, i.e.

Pc(B) = V †hPc(Bg−1)Vh, B ∈ A(Θ); h ∈ H,

where Bg−1 = {g−1θ| θ ∈ B}, and Pc and P′c have the same seed, then P′c is also minimax.

In order to understand the above corollary better let us look at what it means for Example 3.

Example 3 (continued). Now, since any state |θ, φ〉 in S2 can be generated by elements of
SU(2)/U(1), the following equivalence holds:

1
4π

∫
S2
|θ, φ〉〈θ, φ| sin θdθdφ =

∫
SU(2)/U(1)

Uθ,φ|0〉〈0|U†θ,φdUθ,φ,

where dUθ,φ is the Haar measure on SU(2)/U(1). Infact, the above implies that

1
4π

∫
S2

(
|θ, φ〉〈θ, φ|

)⊗2 sin θdθdφ =
∫
SU(2)/U(1)

(
Uθ,φ|0〉〈0|U†θ,φ

)⊗2dUθ,φ.

Now, the above equivalence along with [21, Theorem 3.3.1] implies that one can construct a unitary
2-design from a quantum 2-design. Thus, the set of unitary matrices that generate the set of
eigenstates of the Pauli matrices σx, σy, σz is a unitary 2-design given as below.

U0,0 =
[
1 0
0 1

]
, Uπ,0 =

[
0 1
1 0

]
,

Uπ/2,0 = 1√
2

[
1 −1
1 1

]
, Uπ/2,π = 1√

2

[
1 1
−1 1

]
,

Uπ/2,π/2 = 1√
2

[
1 i
i 1

]
, Uπ/2,3π/2 = 1√

2

[
1 −i
−i 1

]
.

The corresponding measurement that is covariant under the above unitary 2-design is then obtained
via Mθ,φ = Uθ,φP0U

†
θ,φ. It is straightforward to see that the corresponding Mθ,φ are the same as

the Pauli measurements apart from a normalization constant. This measurement is thus minimax.

Note: In the above example we obtained a minimax POVM—a covariant measurement for the
parameter space S2 which describes only pure qubit states. There is no a-priori reason to believe
that the same measurement would also be minimax for estimating an arbitrary state of a qubit.
However, curiously, it happens to be true for a qubit as we will see in the following section.
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5 Example: Minimax measurement for a qubit
We look at the single qubit case as studied in reference [14] wherein the authors obtain such
a minimax POVM with relative entropy as the distance-measure. We generalize their results
to squared-distance ‖ρ − σ‖2 = tr(ρ − σ)2. However, the proof does not follow the generalized
treatment in terms of Bregman divergence as done in the previous sections.

To begin with, let us write the most general expression for a POVM on C2. Recalling Lemma 3.1,
we can write any POVM, see Definition 3.1, as an operator-valued density, i.e.

P (B) =
∫
B

µ(dx)M(x),

where B ∈ σ(X ), M(x) ≥ 0, Tr[M(x)] = 2 and µ(X ) = 1. Since positive operators can be
expanded in the Pauli basis {I, σx, σy, σz} with real coefficients, M(~x) = α0I + ~x · ~σ, but the trace
1 condition on M(~x) implies α0 = 1/2. Without loss of generality,

M(~x) = (I + ~x · ~σ).

Thus, the most general form of a POVM element on C2 is

P (B) =
∫
B

(I + ~x · ~σ)dµ(~x). (32)

Now that we have obtained the general expression for a POVM on C2, we next evaluate the
Bayes estimator which in turn is needed to evaluate the risk RP (ρθ, ρπB). Recalling that the Bayes
estimator is given as

ρπB(x) =
∫

Θ

dp(x|θ)
dpπ(x) ρθdπ(θ).

Recalling the differential form of Born’s rule (8), and using the Bloch sphere notation of ρθ,
ρθ = 1

2 (I + ~θ · ~σ), it is a straightforward calculation to obtain

trM(~x)ρθ = dµ(~x)(1 + ~x · ~θ). (33)

However, to be able to further simplify the Bayes estimator, we need to impose some restrictions
on the prior π defined on the parameter space Θ (which in this case is R3). In particular, we choose
a uniform prior π∗ supported only on pure states, i.e. π(θ) is zero for all vectors ~θ with ‖θ‖ < 1
but is uniformly distributed on the set of unit vectors with ‖θ‖ = 1. It can be verified that such a
prior has the following two properties :

1. Eπ∗ [θi] = 0, ∀i ∈ {x, y, z}.

2. Eπ∗ [θiθj ] = 1
3δij ∀i, j ∈ {x, y, z}.

By property (1) of the prior π∗, we have

pπ(B) =
∫

Θ

∫
B

dµ(~x)(1 + ~x · ~θ)π∗(θ)dθ = µ(B). (34)

Thus, the Bayes estimator reduces to

ρπ
∗

B (~x) =
∫

Θ

1
dpπ∗ (x)
dp(x|θ)

ρθdπ∗(θ)

=
∫

Θ

1
dµ(x)

dp(x|θ)

ρθdπ∗(θ)

=
∫

Θ

dp(x|θ)
dµ(x) ρθdπ

∗(θ)
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=
∫

Θ
ρθdπ∗(θ) trM(x)ρθ

= 1
2

∫
Θ
dπ∗(θ)(1 + ~x · ~θ)(I + ~θ · ~σ)

= 1
2

(
I +

∫
Θ
dπ∗(θ)(~x · ~θ)(~θ · ~σ))

)
= 1

2

(
I + 1

3~x · ~σ
)
.

Now, recalling that the risk is a function of the POVM P, i.e.

RP (ρθ, ρπ
∗

B ) =
∫
X
dµ(~x) trM(~x)ρθ Df (ρθ, ρπ

∗

B (~x)), (35)

we evaluate the risk for both relative entropy and Hilbert-Schmidt distance below.

Lemma 5.1. The risk for relative entropy and Hilbert-Schmidt distance are given as

RrelP (ρθ, ρπ
∗

B ) = −h
(

1 + ‖θ‖
2

)
+ 1

2 log 9
2 −

log 2
2

∫
X
dµ(~x)

∑
j,k

θjθkxjxk, and

RsqP (ρθ, ρπ
∗

B ) = 1
2

{
‖~θ‖2 + 1

9

∫
X
dµ(~x)‖~x‖2 + 1

9

∫
X
dµ(~x)‖~x‖2~x · ~θ − 2

3

∫
X
dµ(~x)

∑
j,k

θjθkxjxk

}
,

respectively.
Proof. (a) For relative entropy, see [14, pg. 11].
(b) For Hilbert-Schmidt distance, substituting f = ‖A‖21 in (35), we get

Dsq(ρθ, ρπ
∗

B (x)) = tr
(
ρθ − ρπ

∗

B (x)
)2
.

Thus,

Dsq(ρθ, ρπ
∗

B (B)) = 1
2 tr

[ [
1 + θz θx − iθy
θx + iθy 1− θz

]
−
[

1 + z/3 (x− iy)/3
(x+ iy)/3 1− z/3

] ]2

= 1
2 tr

[
(θz − z/3)σz + (θx − x/3)σx + (θy − y/3)σy

]2
= 1

2

(
(θz − z/3)2 + (θx − x/3)2 + (θy − y/3)2

)
= 1

2

(
‖~θ‖2 + 1

9‖~x‖
2 − 2

3~x ·
~θ
)
.

This implies that the risk is

RsqP (ρθ, ρπ
∗

B ) = 1
2

∫
X
dµ(~x)(1 + ~x · ~θ)

(
‖~θ‖2 + 1

9‖~x‖
2 − 2

3~x ·
~θ
)
.

We can write the above using the property of a general POVM on C2, i.e.
∫
X dµ(~x)~x = 0 as

RsqP (ρθ, ρπ
∗

B ) = 1
2

{
‖~θ‖2 + 1

9

∫
X
dµ(~x)‖~x‖2 + 1

9

∫
X
dµ(~x)‖~x‖2~x · ~θ − 2

3

∫
X
dµ(~x)

∑
j,k

θjθkxjxk

}
.

Note: Although in reference [14] it is assumed that the POVM P is rank-1, the above expressions
hold in general for any POVM P, i.e. the vector ~x in (32) need not be a unit vector.

Lemma 5.2. For any POVM P, the average risk of the Bayes estimator with respect to the prior
π∗ satisfies the inequalities:∫

Θ
dπ∗(θ)RrelP (ρθ, ρπ

∗

B ) ≥ 1
2 log 9

2 −
1
6 log 2,∫

Θ
dπ∗(θ)RsqP (ρθ, ρπ

∗

B ) ≥ 2
9 ,

for relative entropy and Hilbert-Schmidt distance respectively.
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Proof. (a) For relative entropy :
From Lemma 5.1 and the properties of the prior π∗ we get∫

Θ
dπ∗(θ)RrelP (ρθ, ρπ

∗

B ) =
∫

Θ
dπ∗(θ)

{
− h

(
1 + ‖θ‖

2

)
+ 1

2 log 9
2 −

log 2
2

∫
X
dµ(~x)

∑
j,k

θjθkxjxk

}

= 1
2 log 9

2 −
log 2

2

∫
X
dµ(~x)

∑
j,k

δjk
3 xjxk

= 1
2 log 9

2 −
1
6 log 2

∑
j

Eµ[r2
j ].

However, since
∑
j r

2
j ≤ 1, it implies

∑
j Eµ[r2

j ] ≤ 1, and we obtain the required inequality :∫
Θ
dπ∗(θ)RrelP (ρθ, ρπ

∗

B ) ≥ 1
2 log 9

2 −
1
6 log 2.

(b) For Hilbert-Schmidt distance :
From Lemma 5.1 and the properties of the prior π∗ we get∫

Θ
dπ∗(θ)Rf2

P (ρθ, ρπ
∗

B ) =
∫

Θ
dπ∗(θ)1

2

{
‖~θ‖2 + 1

9

∫
X
dµ(~x)‖~x‖2 + 1

9

∫
X
dµ(~x)‖~x‖2~x · ~θ−

2
3

∫
X
dµ(~x)

∑
j,k

θjθkxjxk

}
= 1

2

{
1 + 1

9
∑
j

Eµ[r2
j ]−

2
9
∑
j

Eµ[r2
j ]
}

= 1
2

{
1− 1

9
∑
j

Eµ[r2
j ]
}
.

Again, as
∑
j r

2
j ≤ 1, it implies

∑
j Eµ[r2

j ] ≤ 1, and we obtain the required inequality :∫
Θ
dπ∗(θ)Rf2

P (ρθ, ρπ
∗

B ) ≥ 1
2
(
1− 1

9
)

= 4
9 .

Lemma 5.3. For any POVM P ∗ that satisfies Eµ[rirj ] = 1
3δij, the average risk of the Bayes

estimator coincides with the worst-case risk:∫
Θ
dπ∗(θ)RP∗(ρθ, ρπ

∗

B ) = sup
θ
RP∗(ρθ, ρπ

∗

B ).

Proof. (i) (a) For relative entropy : (a) See [14, pg. 11].

(b) For Hilbert-Schmidt distance:

As Eµ[rirj ] = 1
3δij , it implies

∑
j Eµ[r2

j ] = 1, and thus by Lemma 5.2,∫
Θ
dπ∗(θ)Rf2

P∗(ρθ, ρ
π∗

B ) = 4
9 .

Now, for such a POVM P ∗, ‖~x‖2 = 1, and the risk, see Lemma 5.1, becomes

RsqP∗(ρθ, ρ
π∗

B ) = 1
2

(
‖~θ‖2 + 1

9 −
2
9‖
~θ‖2
)
.

Clearly,

max
‖θ‖

RsqP∗(ρθ, ρ
π∗

B ) = 4
9 , at ‖

~θ‖ = 1.
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This implies that∫
Θ
dπ∗(θ)RP∗(ρθ, ρπ

∗

B ) = sup
θ
RP∗(ρθ, ρπ

∗

B ), for both relative entropy and squared-distance.

Lemma 5.4. The uniform Haar measure on S2 is a least favourable prior for spherical 2-designs
in C2.

Proof. Firstly, note that a POVM P ∗ with Eµ[rirj ] = 1
3δij is a spherical 2-design. (See Defini-

tion F.2 of spherical t-designs. Examples of spherical 2-designs include the SIC-POVM [22] on C2

as well as the POVM defined through the Pauli measurements.) It can be seen from Lemma 5.1
that the risk is a polynomial function of degree 2 in the variables x, y, z. It is straightforward to
see that the average of the typical term xixj with respect to the Haar measure on S2 is δi,j

3 . Thus,
any POVM with Eµ[xixj ] = 1

3δij is a spherical 2-design. Let us now proceed with the proof of the
lemma. As the Bayes estimator ρ̂πB minimizes the average risk with respect to the prior π,

sup
θ
RP∗(ρθ, ρπ

∗

B ) = sup
π

∫
Θ
dπ(θ)RP∗(ρθ, ρπ

∗

B ) ≥ sup
π

∫
Θ
dπ(θ)RP∗(ρθ, ρπB).

However, we just proved in Lemma 5.3 that

sup
θ
RP∗(ρθ, ρπ

∗

B ) =
∫

Θ
dπ∗(θ)RP∗(ρθ, ρπ

∗

B ),

=⇒
∫

Θ
dπ∗(θ)RP∗(ρθ, ρπ

∗

B ) ≥ sup
π

∫
Θ
dπ(θ)RP∗(ρθ, ρπB).

The other direction of the above inequality holds trivially, i.e.∫
Θ
dπ∗(θ)RP∗(ρθ, ρπ

∗

B ) ≤ sup
π

∫
Θ
dπ(θ)RP∗(ρθ, ρπB),

=⇒
∫

Θ
dπ∗(θ)RP∗(ρθ, ρπ

∗

B ) = sup
π

∫
Θ
dπ(θ)RP∗(ρθ, ρπB).

Thus, π∗ is a least favourable prior for a spherical 2-design in C2.

Theorem 5.1. Any spherical 2-design for C2 is a minimax POVM.

Proof. Recalling Definition F.2 of a minimax POVM and the fact that the Bayes estimator mini-
mizes the average risk, we have:

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) = inf

P
inf
ρ̂

sup
π

∫
Θ
dπ(θ)RP (ρθ, ρ̂)

≥ inf
P

sup
π

∫
Θ
dπ(θ)RP (ρθ, ρπB)

≥ inf
P

∫
Θ
dπ∗(θ)RP (ρθ, ρπ

∗

B ).

Now, Lemma 5.2 and Lemma 5.3 together imply that the average risk with respect to π∗ is
minimized by the POVM P ∗, i.e.

inf
P

∫
Θ
dπ∗(θ)RP (ρθ, ρπ

∗

B ) =
∫

Θ
dπ∗(θ)RP∗(ρθ, ρπ

∗

B ).

Also, by Lemma 5.4, π∗ is a least favourable prior which means that ρπ∗B is a minimax estimator.
Therefore, we have∫

Θ
dπ∗(θ)RP∗(ρθ, ρπ

∗

B ) = sup
θ
RP∗(ρθ, ρπ

∗

B ) = inf
ρ̂

sup
θ
RP∗(ρθ, ρ̂).
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Thus, we obtain

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) ≥ inf

ρ̂
sup
θ
RP∗(ρθ, ρ̂).

The other direction of the inequality above holds trivially, i.e.

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) ≤ inf

ρ̂
sup
θ
RP∗(ρθ, ρ̂)

Hence, we have proved that P ∗, a spherical 2-design is a minimax POVM, i.e.

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) = inf

ρ̂
sup
θ
RP∗(ρθ, ρ̂).

6 Discussion & Future work
To summarize, we extended the work done in reference [14] on minimax analysis to Bregman
divergences. Moreover, by re-formulating Holevo’s theorem [15, pg. 171] for the covariant state
estimation problem in terms of estimators, we found that a covariant POVM is, in fact, minimax
with Bregman divergence as the distance-measure. In addition to that, we found that it suffices that
a measurement be covariant only under a subgroup H of G such that the unitary representation
of H forms a unitary 2-design for it to be minimax. Finally, in order to understand the problem
of finding a minimax POVM for an arbitrary quantum state, we studied the problem for a qubit
observing that a spherical 2-design defines a minimax POVM for a qubit.

In the covariant state estimation problem, we assume that the underlying group G is compact.
It is natural to ask if these results can be extended to infinite-dimensional systems, or equivalently,
non-compact groups. The natural system that comes to mind when one thinks of an infinite-
dimensional system is the set of coherent states of a Harmonic oscillator. The underlying group
is the translation group T acting on the complex plane. The projective unitary representation of
which is the Weyl-Heisenberg translation operator {D(α) | α ∈ C}. Now, the translation group
is non-compact. This means that one cannot define a normalisable measure on the group. Our
derivation of the main result on covariant state estimation, Theorem 4.3, to obtain a minimax
measurement uses a Bayesian approach. Recall that a minimax measurement is the one that
minimizes the worst-case risk of a minimax estimator. Thus, we are interested in the following
expression :

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂).

The very first step of the proof involves re-writing the supremum over θ as a supremum over the
probability distributions on Θ, i.e.

inf
P

inf
ρ̂

sup
θ
RP (ρθ, ρ̂) = inf

P
inf
ρ̂

sup
π

∫
Θ
dπ(θ)RP (ρθ, ρ̂).

Obviously, we cannot do so in the case of the translation group T that acts on the complex plane.
So, our approach will not apply to the most general problem of estimating coherent states generated
by the Weyl-Heisenberg translation operator {D(α) | α ∈ C}. Indeed, a more general theorem
for the case of locally compact groups [23, 24] shows that covariant measurements minimize the
worst-case risk (average risk cannot be defined for non-compact groups). However, the formalism
considered in [23] does not include estimators. It would be interesting to extend the same to our
setting and, moreover, to come up with an appropriate definition of a Bayesian estimator for such
cases.

The next obvious extension of this work is to find minimax POVMs for an arbitrary quantum
state. It would be interesting to see if some kind of a t-design comes out as a solution. However, this
requires a more generalized approach than mere brute-force calculations which become tedious in
higher dimensions. Moreover, one could also generalize this result to arbitrary distance-measures
such as Fidelity and Renyi divergences. The authors of reference [25] have derived the Bayes
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estimator for distance-measures based on Bhattacharya distance. Partial results [26] are known
for fidelity as the distance-measure, but the Bayes estimator remains unknown for a general state
with fidelity as the distance-measure. But, these generalizations are not so straight forward either
and require a different technique.
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A Quantum Bayes estimator for Bregman divergence
Theorem A.1. If the loss function is Bregman divergence, see Definition 3.3, then

EθEX|θ[Df (ρθ, ρ̂(X))−Df (ρθ, ρ̂B(X))] ≥ 0,

for all states θ ∈ Θ and estimators ρ̂, where ρ̂B is the Bayes estimator, see Equation(3).

Proof.

EθEX|θ[Df (ρθ, ρ̂(X))−Df (ρθ, ρ̂B(X))] =
∫

Θ
dπ(θ)

∫
X
dp(x|θ) tr

[
f(ρθ)− f(ρ̂(x))−

f ′(ρ̂(x))(ρθ − ρ̂(x))− f(ρθ) + f(ρ̂B(x)) + f ′(ρ̂B(x))(ρθ − ρ̂B(x))
]

=
∫

Θ
dπ(θ)

∫
X
dp(x|θ) tr

[
f(ρ̂B(x))− f(ρ̂(x))− f ′(ρ̂(x))(ρθ − ρ̂(x))+

f ′(ρ̂B(x))(ρθ − ρ̂B(x))
]

=
∫
X
dpπ(x) tr

[
f(ρ̂B(x))− f(ρ̂(x))− f ′(ρ̂(x))(ρ̂B(x)− ρ̂(x))

]
+∫

X
dpπ(x) tr

[
f ′(ρ̂B(x))(ρ̂B(x)− ρ̂B(x))

]
=
∫
X
dpπ(x)Df (ρ̂B(x), ρ̂(x)) ≥ 0.

The last inequality follows from the non-negativity of Bregman divergence.

Corollary A.1.1. For all a-priori probability distributions πΘ(θ) over the parameter space ΩΘ,

r(π, ρ̂) ≥ r(π, ρ̂B),

i.e. the Bayes estimator minimizes the average risk for Bregman divergence.

B Proof of Lemma 3.1
We first present the Radon-Nikodym theorem for operator-valued measures [27], without proof, as
stated in [15, pg. 167].

Proposition B.1 (Radon-Nikodym theorem for operator-valued measures). Let (X ,Σ) be a mea-
surable space and let {M(B); B ∈ Σ} be an additive operator-valued function dominated by a
measure {m(B); B ∈ Σ} in the sense that

|〈φ|M(B)|ψ〉| ≤ m(B)‖φ‖ ‖ψ‖, B ∈ Σ,

for all φ, ψ ∈ H. Then, there exists an operator-valued function P(.) defined uniquely for m-
almost all x ∈ X (i.e. for all x except for a set of zero m-measure), satisfying ‖P (x)‖ ≤ 1 such
that

〈φ|M(B)|ψ〉 =
∫
B

〈φ|P (x)|ψ〉m(dx), B ∈ Σ

for all φ, ψ ∈ H. If M(B) ≥ 0 for all B ∈ Σ, then P (x) ≥ 0 for m-almost all x ∈ X .

Lemma 3.1 (Existence of a POVM density). Every P ∈ P admits a density, i.e. for any POVM
P there exists a finite measure µ(dx) over X such that µ(X ) = 1 and

P (B) =
∫
B

dµ(x)M(x), (6)

with M(x) ≥ 0, and Tr[M(x)] = d µ−almost everywhere.
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Proof. Define µ(B) = tr[P (B)], then

〈φ|P (B)|φ〉 ≤ µ(B), ∀ |φ〉 ∈ H.

By Cauchy-Schwarz inequality,

|〈φ|P (B)|ψ〉| ≤ µ(B), ∀|φ〉, |ψ〉 ∈ H.

Thus, P(B) is dominated by µ(B). By the Radon-Nikodym theorem, it admits a density M(x)
defined uniquely µ− almost everywhere:

P (B) =
∫
B

µ(dx)M(x).

As P (B) ≥ 0,M(x) ≥ 0. Taking trace on both sides of the above equation implies tr[M(x)] = d
µ− almost everywhere.

C Lower semi-continuity of Bregman divergence
Before proving the lower semi-continuity of Df , we state the following lemma which will be used
in the proof.

Lemma C.1. The map ρ 7→ tr f(ρ) is continuous on Ω = [0, 1].

Proof. Consider a sequence of density operators (ρn)n that weakly converge to a density operator
ρ, i.e. tr ρna→ tr ρa for all a ∈ B(H), where H is a finite dimensional Hilbert space. By choosing
[a] = |i〉〈j|, where |i〉〈j| is a basis in B(H), we obtain element-wise convergence of ρn to ρ, which
in turn implies the convergence of the corresponding eigenvalues.

Now, tr f(ρn) =
∑rk(ρn)
j=1 f(λnj ) where {λnj }

rk(ρn)
j=1 are the eigenvalues of ρn. But, as f is

continuous on [0,1], f(λnj ) → f(λj), where {λj}rk(ρ)
j=1 are the eigenvalues of ρ. Thus, the sum

tr f(ρn) =
∑rk(ρn)
j=1 f(λnj ) also converges to tr f(ρ) =

∑rk(ρ)
j=1 f(λj), and this proves the continuity

of ρ 7→ tr f(ρ) on [0,1].

Theorem C.1. Bregman divergence Df (., .) is lower semi-continuous.

Proof. We generalize the proof of lower semi-continuity of relative entropy as given in reference
[19]. To begin with, we show that there exists a representation of df in which the argument of
trace does not contain a product of two non-commuting operators. In order to do so, let us define
a quantity Dλ

f as

Dλ
f (ρ, σ) = 1

λ
tr
(
λf(ρ) + (1− λ)f(σ)− f(λρ+ (1− λ)σ)

)
,

where λ ∈ (0, 1). It is straightforward to verify that the map λ 7→ λDλ
f is concave on the interval

(0, 1). Note that d
dλ (λDλ

f )
∣∣
λ=0 = Df . Thus, as the map λ 7→ λDλ

f is concave on (0,1), the slope

at λ = 0 will always be greater than the differences λDλf−0.Dλf
λ for all λ ∈ (0, 1). Assuming that

0.D0
f = 0, we have

λDλ
f ≤ λDf ⇔ Dλ

f ≤ Df , ∀λ ∈ (0, 1).

As lim
λ→0

Dλ
f = Df , we have

sup
λ
Dλ
f (ρ, σ) = Df (ρ, σ).

Let ρn ⇒ ρ and σn ⇒ σ be given. Then, by Lemma C.1, the map (ρ, σ) 7→ Dλ
f (ρ, σ) is

continuous. Therefore,

Df (ρ, σ) = sup
λ
Dλ
f (ρ, σ)
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= sup
λ

lim
n→∞

Dλ
f (ρn, σn)

≤ lim inf
n→∞

sup
λ
Dλ
f (ρn, σn)

= lim inf
n→∞

Df (ρn, σn).

But, Df (ρ, σ) ≤ lim inf
n→∞

Df (ρn, σn) defines a lower semi-continuous function.

D Why the Bayes estimator is discontinuous.
For the Bayes estimator to be continuous in the prior, it should hold that for any convergent
sequence (πn)n,

lim
n→∞

ρ̂πnB (x) = ρ̂
lim
n→∞

πn

B (x), ∀x ∈ X .

Below is an example that shows that the above is not true in general.

Example 4. Let us assume that we are doing a σz measurement, thus, X = {0, 1}. Now, consider
a sequence of priors (πn)n that converges to µ(θ) = δ(θ− θ0) where θ0 corresponds to |0〉〈0| and let
each element of the sequence be defined as below:

πn(θ) =
(
1− 1

n

)
δ(θ − θ0) + 1

n
δ(θ − θ1),

with θ1 corresponding to |1〉〈1|. Then, the Bayes estimator, see Equation (14), for each element of
the sequence is

ρ̂πnB (x) =
(
1− 1

n

) p(x|θ0)ρθ0

(1− 1
n )p(x|θ0) + 1

np(x|θ1)
+ 1
n

p(x|θ1)ρθ1

(1− 1
n )p(x|θ0) + 1

np(x|θ1)
,

which in the limiting case reduces to

lim
n→∞

ρ̂πnB (x) =
{
ρθ0 if x=0,
ρθ1 if x=1.

But, the Bayes estimator for the limit µ of the sequence (πn)n is

ρ̂µB(x) =
{
ρθ0 if x=0,
not defined if x=1.

Since the Bayes estimator for µ is not defined at x = 1, we can define it to be

ρ̂µB(x = 1) = lim
n→∞

ρ̂πnB (x = 1).

However, for the Bayes estimator to be continuous in the prior the above should be true for all
sequences of priors that have the same limit point. Let us consider another sequence (µn)n that
converges to µ with each element defined as below:

µn(θ) =
(
1− 1

n

)
δ(θ − θ0) + 1

n
δ(θ − θ+),

where θ+ corresponds to |+〉〈+|. Then, the Bayes estimator for µn would be

ρ̂µnB (x) =
(
1− 1

n

) p(x|θ0)ρθ0

(1− 1
n )p(x|θ0) + 1

np(x|θ+)
+ 1
n

p(x|θ+)ρθ+

(1− 1
n )p(x|θ0) + 1

np(x|θ+)
,

which in the limiting case reduces to

lim
n→∞

ρ̂µnB (x) =
{
ρθ0 if x=0,
ρθ+ if x=1.

Now, if we again chose to define the Bayes estimator for µ at x = 1 as lim
n→∞

ρ̂µnB (x = 1), we would
run into a contradiction since lim

n→∞
ρ̂µnB (x = 1) 6= lim

n→∞
ρ̂πnB (x = 1).

The above example establishes that the Bayes estimator does not admit a continuous extension
on the null set (where it is not defined) of the given prior.
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E Additional lemma(s)
Lemma E.1. Given a self-adjoint operator A parametrized by u, the derivative of a function of
the operator with respect to the parameter at u = u0 is given by

d

du
tr
[
f
(
A(u)

)]∣∣∣∣∣
u=u0

= tr
[
A′(u)

∣∣∣
u=u0

f ′
(
A(u0)

)]
Proof. See reference [28].

Lemma E.2. Consider a continuous function F defined on a compact set B and closed subsets
Bx ⊆ B such that B1 ⊆ B2... ⊆ B. Then, assuming that the sequence (Bx)x is dense in B, the
following holds:

lim
x→∞

sup
Bx

F = sup
B

F .

Proof. As B1 ⊆ B2...B, it implies that

lim
x→∞

sup
Bx

F ≤ sup
B

F . (36)

Note that B is a compact set and hence

sup
B

F = max
B
F .

Let b := arg maxB F . Then, as the sequence of subsets (Bx)x is dense in B, it implies that there
exists a sequence (bx)x that converges to b such that bx ∈ Bx. Moreover, we know that

sup
Bx

F ≥ F (bx).

Thus,

lim
x→∞

sup
Bx

F ≥ lim
x→∞

F (bx).

As F is continuous, we get

lim
x→∞

sup
Bx

F ≥ F
(

lim
x→∞

bx
)

= F(b) = sup
B

F . (37)

Equations (36) and (37) imply the result.

Lemma E.3 ([15], Theorem 2.1). Let P0 be a positive operator in the representation space such
that [P0, Vg] = 0 ∀g ∈ G0, where G0 is the stationary subgroup of G, and satisfying:∫

G

VgP0V
†
g dµ(g) = I (38)

Then setting P (gθ0) = VgP0V
†
g , we get an operator-valued function of θ such that:

M(B) =
∫
B

P (θ)dν(θ), B ∈ A(Θ) (39)

is a covariant measurement with respect to g 7→ Vg. Conversely, for any covariant measurement
M(dθ) there is a unique operator P0 satisfying (38) such that M(B) can be expressed as in (39).
P0 is referred to as the seed of the covariant measurement.
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F Aside on t-designs
Definition F.1 (Unitary t-design). Consider the set of unitary matrices U(d) on a d-dimensional
Hilbert space H. A unitary t-design is a finite subset {Ui}Ni=1 ⊂ U(d), such that for all states
ρ ∈ S(H) the following holds:

1
N

N∑
i=1

U⊗ti ρ(U†i )⊗t =
∫
U(d)

dUU⊗tρ(U†)⊗t,

where ‘dU’ is the Haar measure on U(d).

Definition F.2 (Spherical t-design). Consider the unit sphere Sd−1 in the d-dimensional Euclidean
space Rd. A spherical t-design is a finite subset S ⊂ Sd−1, such that the average value of a
polynomial f of degree ≤ t on S equals its average on Sd−1:

1
|S|

∑
sn∈S

f(sn) =
∫
Sd−1

ds f(s),

where ‘ds’ is the Lebesgue measure on Sd−1.
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