Bell correlations at finite temperature
1Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
Published: | 2018-11-19, volume 2, page 107 |
Eprint: | arXiv:1805.00449v2 |
Doi: | https://doi.org/10.22331/q-2018-11-19-107 |
Citation: | Quantum 2, 107 (2018). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We show that spin systems with infinite-range interactions can violate at thermal equilibrium a multipartite Bell inequality, up to a finite critical temperature $T_c$. Our framework can be applied to a wide class of spin systems and Bell inequalities, to study whether nonlocality occurs naturally in quantum many-body systems close to the ground state. Moreover, we also show that the low-energy spectrum of the Bell operator associated to such systems can be well approximated by the one of a quantum harmonic oscillator, and that spin-squeezed states are optimal in displaying Bell correlations for such Bell inequalities.

Popular summary
► BibTeX data
► References
[1] J. S. Bell, Physics 1, 195 (1964).
[2] A. Fine, Phys. Rev. Lett. 48, 291 (1982).
https://doi.org/10.1103/PhysRevLett.48.291
[3] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014).
https://doi.org/10.1103/RevModPhys.86.419
[4] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
https://doi.org/10.1103/PhysRevLett.98.230501
[5] S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, New Journal of Physics 11, 045021 (2009).
https://doi.org/10.1088/1367-2630/11/4/045021
[6] R. Colbeck and R. Renner, Nature Physics 8, 450 (2012).
https://doi.org/10.1038/nphys2300
[7] S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Nature 464, 1021 (2010).
https://doi.org/10.1038/nature09008
[8] D. Mayers and A. Yao, Quantum Information & Computation 4, 273 (2004).
http://www.rintonpress.com/xqic4/qic-4-4/273-286.pdf
[9] A. Coladangelo, K. T. Goh, and V. Scarani, Nature Communications 8, 15485 (2017), article.
https://doi.org/10.1038/ncomms15485
[10] A. Salavrakos, R. Augusiak, J. Tura, P. Wittek, A. Acín, and S. Pironio, Phys. Rev. Lett. 119, 040402 (2017).
https://doi.org/10.1103/PhysRevLett.119.040402
[11] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
https://doi.org/10.1103/RevModPhys.81.865
[12] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
https://doi.org/10.1103/PhysRevA.40.4277
[13] R. Augusiak, M. Demianowicz, J. Tura, and A. Acín, Phys. Rev. Lett. 115, 030404 (2015).
https://doi.org/10.1103/PhysRevLett.115.030404
[14] J. Bowles, J. Francfort, M. Fillettaz, F. Hirsch, and N. Brunner, Phys. Rev. Lett. 116, 130401 (2016).
https://doi.org/10.1103/PhysRevLett.116.130401
[15] R. Augusiak, M. Demianowicz, and J. Tura, Phys. Rev. A 98, 012321 (2018).
https://doi.org/10.1103/PhysRevA.98.012321
[16] R. Augusiak, M. Demianowicz, and A. Acín, Journal of Physics A: Mathematical and Theoretical 47, 424002 (2014).
https://doi.org/10.1088/1751-8113/47/42/424002
[17] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).
https://doi.org/10.1103/RevModPhys.80.517
[18] M. Vojta, Reports on Progress in Physics 66, 2069 (2003).
https://doi.org/10.1088/0034-4885/66/12/R01
[19] D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988).
https://doi.org/10.1103/PhysRevLett.60.1973
[20] S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006).
https://doi.org/10.1103/PhysRevLett.96.181602
[21] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, Nature Chemistry 2, 106 (2010), article.
https://doi.org/10.1038/nchem.483
[22] S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schneider, and Örs Legeza, International Journal of Quantum Chemistry 115, 1342 (2015).
https://doi.org/10.1002/qua.24898
[23] F. Verstraete, V. Murg, and J. Cirac, Advances in Physics 57, 143 (2008).
https://doi.org/10.1080/14789940801912366
[24] D. Liu, S.-J. Ran, P. Wittek, C. Peng, R. B. García, G. Su, and M. Lewenstein, ``Machine learning by two-dimensional hierarchical tensor networks: A quantum information theoretic perspective on deep architectures,'' (2017), arXiv:1710.04833.
arXiv:arXiv:1710.04833
[25] I. Pitowsky, Quantum Probability – Quantum Logic, Lecture Notes in Physics (Springer-Verlag Berlin Heidelberg, 1989).
https://doi.org/10.1007/BFb0021186
[26] L. Babai, L. Fortnow, and C. Lund, computational complexity 1, 3 (1991).
https://doi.org/10.1007/BF01200056
[27] N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).
https://doi.org/10.1103/PhysRevLett.65.1838
[28] R. F. Werner and M. M. Wolf, Phys. Rev. A 64, 032112 (2001).
https://doi.org/10.1103/PhysRevA.64.032112
[29] M. Żukowski and i. c. v. Brukner, Phys. Rev. Lett. 88, 210401 (2002).
https://doi.org/10.1103/PhysRevLett.88.210401
[30] J.-D. Bancal, N. Brunner, N. Gisin, and Y.-C. Liang, Phys. Rev. Lett. 106, 020405 (2011).
https://doi.org/10.1103/PhysRevLett.106.020405
[31] J.-L. Chen, D.-L. Deng, H.-Y. Su, C. Wu, and C. H. Oh, Phys. Rev. A 83, 022316 (2011).
https://doi.org/10.1103/PhysRevA.83.022316
[32] O. Gühne, G. Tóth, P. Hyllus, and H. J. Briegel, Phys. Rev. Lett. 95, 120405 (2005).
https://doi.org/10.1103/PhysRevLett.95.120405
[33] G. Tóth, O. Gühne, and H. J. Briegel, Phys. Rev. A 73, 022303 (2006).
https://doi.org/10.1103/PhysRevA.73.022303
[34] E. G. Cavalcanti, C. J. Foster, M. D. Reid, and P. D. Drummond, Phys. Rev. Lett. 99, 210405 (2007).
https://doi.org/10.1103/PhysRevLett.99.210405
[35] Q. Y. He, E. G. Cavalcanti, M. D. Reid, and P. D. Drummond, Phys. Rev. Lett. 103, 180402 (2009).
https://doi.org/10.1103/PhysRevLett.103.180402
[36] Q. Y. He, E. G. Cavalcanti, M. D. Reid, and P. D. Drummond, Phys. Rev. A 81, 062106 (2010).
https://doi.org/10.1103/PhysRevA.81.062106
[37] A. Salles, D. Cavalcanti, A. Acin, D. Perez-Garcia, and M. M. Wolf, Quantum Information and Computation 10, 0703 (2010).
http://www.rintonpress.com/xxqic10/qic-10-78/0703-0719.pdf
[38] J. Tura, R. Augusiak, A. B. Sainz, T. Vértesi, M. Lewenstein, and A. Acín, Science 344, 1256 (2014a).
https://doi.org/10.1126/science.1247715
[39] J. Tura, R. Augusiak, A. Sainz, B. Lücke, C. Klempt, M. Lewenstein, and A. Acín, Annals of Physics 362, 370 (2015).
https://doi.org/10.1016/j.aop.2015.07.021
[40] M. Fadel and J. Tura, Phys. Rev. Lett. 119, 230402 (2017).
https://doi.org/10.1103/PhysRevLett.119.230402
[41] S. Wagner, R. Schmied, M. Fadel, P. Treutlein, N. Sangouard, and J.-D. Bancal, Phys. Rev. Lett. 119, 170403 (2017).
https://doi.org/10.1103/PhysRevLett.119.170403
[42] J. Tura, G. De las Cuevas, R. Augusiak, M. Lewenstein, A. Acín, and J. I. Cirac, Phys. Rev. X 7, 021005 (2017).
https://doi.org/10.1103/PhysRevX.7.021005
[43] J. Tura, A. B. Sainz, T. Vértesi, A. Acín, M. Lewenstein, and R. Augusiak, Journal of Physics A: Mathematical and Theoretical 47, 424024 (2014b).
https://doi.org/10.1088/1751-8113/47/42/424024
[44] Z. Wang, S. Singh, and M. Navascués, Phys. Rev. Lett. 118, 230401 (2017).
https://doi.org/10.1103/PhysRevLett.118.230401
[45] Z. Wang and M. Navascués, Proceedings of the Royal Society of London A 474 (2018).
https://doi.org/10.1098/rspa.2017.0822
[46] F. Baccari, D. Cavalcanti, P. Wittek, and A. Acín, Phys. Rev. X 7, 021042 (2017).
https://doi.org/10.1103/PhysRevX.7.021042
[47] A. Sorensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Nature 409, 63 (2001).
https://doi.org/10.1038/35051038
[48] K. Eckert, O. Romero-Isart, M. Rodriguez, M. Lewenstein, E. S. Polzik, and A. Sanpera, Nat Phys 4, 50 (2008).
https://doi.org/10.1038/nphys776
[49] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P. Treutlein, and N. Sangouard, Science 352, 441 (2016).
https://doi.org/10.1126/science.aad8665
[50] N. J. Engelsen, R. Krishnakumar, O. Hosten, and M. A. Kasevich, Phys. Rev. Lett. 118, 140401 (2017).
https://doi.org/10.1103/PhysRevLett.118.140401
[51] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, Nature 455, 1216 (2008).
https://doi.org/10.1038/nature07332
[52] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler, Nature 464, 1165 (2010).
https://doi.org/10.1038/nature08919
[53] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and P. Treutlein, Nature 464, 1170 (2010).
https://doi.org/10.1038/nature08988
[54] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Phys. Rev. Lett. 104, 073602 (2010).
https://doi.org/10.1103/PhysRevLett.104.073602
[55] J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, Nature 484, 489 (2012).
https://doi.org/10.1038/nature10981
[56] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297 (2016).
https://doi.org/10.1126/science.aad9958
[57] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
https://doi.org/10.1103/PhysRev.58.1098
[58] N. N. Bogoljubov, Il Nuovo Cimento (1955-1965) 7, 794 (1958).
https://doi.org/10.1007/BF02745585
[59] J. G. Valatin, Il Nuovo Cimento (1955-1965) 7, 843 (1958).
https://doi.org/10.1007/BF02745589
[60] T. Moroder, P. Hyllus, G. Tóth, C. Schwemmer, A. Niggebaum, S. Gaile, O. Gühne, and H. Weinfurter, New Journal of Physics 14, 105001 (2012).
https://doi.org/10.1088/1367-2630/14/10/105001
[61] J. T. i Brugués, Characterizing Entanglement and Quantum Correlations Constrained by Symmetry (Springer International Publishing, 2017).
https://doi.org/10.1007/978-3-319-49571-2
[62] M. Christandl, The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography, Ph.D. thesis, University of Cambridge (2006).
arXiv:quant-ph/0604183
[63] A. Harrow, Applications of coherent classical communication and the Schur transform to quantum information theory, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2005).
https://dspace.mit.edu/handle/1721.1/34973
[64] K. Audenaert, ``A digest on representation theory of the symmetric group,'' (2006).
https://pdfs.semanticscholar.org/78bd/f436a0df9dd59bad52db9572de9c1aae008f.pdf
[65] B. Toner and F. Verstraete, ``Monogamy of bell correlations and tsirelson's bound,'' (2006), arXiv:quant-ph/0611001.
arXiv:arXiv:quant-ph/0611001
Cited by
[1] Bradley Longstaff and Jonatan Bohr Brask, "Persistent nonlocality in an ultracold-atom environment", Quantum 7, 907 (2023).
[2] Dongkeun Lee, Adel Sohbi, and Wonmin Son, "Detection of a quantum phase transition in a spin-1 chain through multipartite high-order correlations", Physical Review A 106 4, 042432 (2022).
[3] F. Baccari, J. Tura, M. Fadel, A. Aloy, J.-D. Bancal, N. Sangouard, M. Lewenstein, A. Acín, and R. Augusiak, "Bell correlation depth in many-body systems", Physical Review A 100 2, 022121 (2019).
[4] Carlo Marconi, Andreu Riera-Campeny, Anna Sanpera, and Albert Aloy, "Robustness of nonlocality in many-body open quantum systems", Physical Review A 105 6, L060201 (2022).
[5] Albert Aloy, Matteo Fadel, and Jordi Tura, "The quantum marginal problem for symmetric states: applications to variational optimization, nonlocality and self-testing", New Journal of Physics 23 3, 033026 (2021).
[6] Matteo Fadel, Quantum Science and Technology 151 (2021) ISBN:978-3-030-85471-3.
[7] A. Niezgoda, J. Chwedeńczuk, L. Pezzé, and A. Smerzi, "Detection of Bell correlations at finite temperature from matter-wave interference fringes", Physical Review A 99 6, 062115 (2019).
[8] J. Tura, A. Aloy, F. Baccari, A. Acín, M. Lewenstein, and R. Augusiak, "Optimization of device-independent witnesses of entanglement depth from two-body correlators", Physical Review A 100 3, 032307 (2019).
The above citations are from Crossref's cited-by service (last updated successfully 2023-05-29 22:24:06) and SAO/NASA ADS (last updated successfully 2023-05-29 22:24:07). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.
Pingback: Weekly Papers on Quantum Foundations (47)