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The quantum strategy (or quantum combs) framework is a useful tool for rea-
soning about interactions among entities that process and exchange quantum in-
formation over the course of multiple turns. We prove a time-reversal property
for a class of linear functions, defined on quantum strategy representations within
this framework, that corresponds to the set of rank-one positive semidefinite op-
erators on a certain space. This time-reversal property states that the maximum
value obtained by such a function over all valid quantum strategies is also ob-
tained when the direction of time for the function is reversed, despite the fact that
the strategies themselves are generally not time reversible. An application of this
fact is an alternative proof of a known relationship between the conditional min-
and max-entropy of bipartite quantum states, along with generalizations of this
relationship.

1 The quantum strategy framework
The quantum strategy framework [9], which is also known as the quantum combs framework
[2, 4], provides a useful framework for reasoning about networks of quantum channels. It may
be used to model scenarios in which two or more entities, which we will call players, process
and exchange quantum information over the course of multiple rounds of communication; and
it is particularly useful when one wishes to consider an optimization over all possible behaviors
of one player, for any given specification of the other player or players. Various developments,
applications, and variants of the quantum strategy framework can be found in [1, 3, 5, 8, 10],
for instance, and in a number of other sources.

In the discussion of the quantum strategy framework that follows, as well as in the subse-
quent sections of this paper, we assume that the reader is familiar with quantum information
theory and semidefinite programming. References on this material include [11, 13, 15, 16] as
well as [14], which we follow closely with respect to notation and terminology. In particular,
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Figure 1: A six message interaction between Alice and Bob, after which Bob produces a measurement
outcome.

we denote quantum registers by capital sans serif letters such as X, Y, and Z (sometimes with
natural number subscripts), while the same letters (with matching subscripts) in a scripted
font, such as X , Y, and Z denote the complex Euclidean spaces (i.e., finite-dimensional com-
plex Hilbert spaces) associated with the corresponding registers. The set L(X ,Y) denotes the
set of all linear operators from X to Y; L(X ) is a shorthand for L(X ,X ); Herm(X ), Pos(X ),
D(X ), and U(X ) denote the sets of all Hermitian operators, positive semidefinite operators,
density operators, and unitary operators acting on X ; C(X ,Y) denotes the set of all channels
(i.e., completely positive and trace-preserving maps) mapping L(X ) to L(Y); and C(X ) is a
shorthand for C(X ,X ). The adjoint of an operator A is denoted A∗, the entry-wise complex
conjugate is denoted A, and the transpose is denoted AT. A similar notation is used for the
adjoint and transpose of a channel Φ (the meaning of which, in the case of the transpose, will
be clarified later). The (Hilbert-Schmidt) inner-product is defined as 〈A,B〉 = Tr(A∗B) for all
operators A,B ∈ L(X ). Some additional notation will be introduced as it is used.

An example of a six-message interaction
To explain the aspects of the quantum strategy framework that are relevant to this paper,
we will begin by discussing an example of an interaction structure involving six messages
exchanged between two players, Alice and Bob. We have chosen to describe a six-message
interaction because it is simple and concrete, but nevertheless clearly suggests the underlying
structure of an interaction having any finite number of message exchanges. Our main result
holds in the general case, which will be considered later, where an arbitrary finite number of
message exchanges may take place.

Figure 1 illustrates an interaction between Alice and Bob. In this figure, time proceeds
from left to right, and the arrows represent registers either being sent from one player to the
other (as is the case for the registers X1, Y1, X2, Y2, X3, and Y3), or momentarily stored by
one of the two players (as is the case for Z1 and Z2, stored by Alice, and W1, W2, W3, W4,
stored by Bob). Alice’s actions are represented by the channels Φ1, Φ2, and Φ3, and Bob’s
actions are represented by the channels Ψ1, Ψ2, Ψ3, and Ψ4, as well as a final measurement,
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Figure 2: The channel Ξ3 that describes Alice’s actions in the interaction illustrated in Figure 1.

which is not given a name in the figure.
Suppose that Bob’s specification has been fixed, including his choices for the channels Ψ1,

Ψ2, Ψ3, and Ψ4, as well as his final measurement, and suppose further that one of Bob’s
possible measurement outcomes is to be viewed as desirable to Alice. It is then natural to
consider an optimization over Alice’s possible actions, maximizing the probability that Bob’s
measurement produces the outcome Alice desires. The quantum strategy framework reveals
that this optimization problem can be expressed as a semidefinite program, in the manner
that will now be described.

First, a single channel Ξ3 that transforms (X1,X2,X3) to (Y1,Y2,Y3) is associated with
any given choice for Alice’s actions. That is, the channel Ξ3 takes the form

Ξ3 ∈ C(X1 ⊗X2 ⊗X3,Y1 ⊗ Y2 ⊗ Y3), (1)

and for a particular selection of Φ1, Φ2, and Φ3 may be expressed as

Ξ3 =
(
1L(Y1⊗Y2) ⊗ Φ3

)(
1L(Y1) ⊗ Φ2 ⊗ 1L(X3)

)(
Φ1 ⊗ 1L(X2⊗X3)

)
. (2)

Formally speaking, this composition requires that we view Φ1, Φ2, and Φ3 as channels of the
form Φ1 ∈ C(X1,Y1⊗Z1), Φ2 ∈ C(Z1⊗X2,Y2⊗Z2), and Φ3 ∈ C(Z2⊗X3,Y3), as opposed to
the forms Φ1 ∈ C(X1,Z1⊗Y1), Φ2 ∈ C(Z1⊗X2,Z2⊗Y2), and Φ3 ∈ C(Z2⊗X3,Y3) suggested
by Figure 1, so that the ordering of the tensor factors of the various input and output spaces
is consistent with the composition. Similar re-orderings of tensor factors should be assumed
implicitly throughout this paper as needed. This understanding should not be a source of
confusion because we always assign distinct names to distinct registers (and their associated
spaces). Figure 2 illustrates the action of the channel Ξ3, which in words may be described as
the channel obtained if all three of the registers (X1,X2,X3) are provided initially, and then
Alice’s actions are composed in the natural way to produce (Y1,Y2,Y3) as output registers.

It may appear that by considering the channel Ξ3, one is ignoring the possibility that Bob’s
actions could, for instance, allow the contents of Y1 or Y2 to influence what is input into X2
or X3. Despite this appearance, the influence that Alice’s actions have from the viewpoint of
Bob, including the probability for each of his measurement outcomes to appear, is uniquely
determined by the channel Ξ3.

Naturally, not all channels of the form (1) will arise from a composition of channels Φ1,
Φ2, and Φ3 as in (2); the fact that Φ1 is effectively performed first, Φ2 is performed second,
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and Φ3 is performed third imposes constraints on the channels Ξ3 that can be obtained. In
particular, consider the channel that results when Ξ3 is performed and then the partial trace
is performed on Y3. As Φ3 is a channel, discarding its output is equivalent to discarding its
inputs, from which it follows that

TrY3 ◦ Ξ3 = Ξ2 ◦ TrX3 , (3)

where the circles represent channel compositions and Ξ2 ∈ C(X1⊗X2,Y1⊗Y2) is the channel
defined as

Ξ2 =
(
1L(Y1) ⊗ (TrZ2 ◦ Φ2)

)(
Φ1 ⊗ 1L(X2)

)
. (4)

That is, Ξ2 is the channel obtained from Φ1 and Φ2, followed by the partial trace over Z2, by
a similar process to the one used to obtain Ξ3. By similar reasoning, one finds that

TrY2 ◦ Ξ2 = Ξ1 ◦ TrX2 , (5)

where Ξ1 ∈ C(X1,Y1) is the channel given by Ξ1 = TrZ1 ◦ Φ1.
Somewhat remarkably, this is not only a necessary condition on the channel Ξ3, but also a

sufficient one, for it to be obtained from a composition of channels Φ1, Φ2, and Φ3 as described
above. That is, given any channel

Ξ3 ∈ C(X1 ⊗X2 ⊗X3,Y1 ⊗ Y2 ⊗ Y3) (6)

satisfying (3) and (5), for some choice of channels

Ξ2 ∈ C(X1 ⊗X2,Y1 ⊗ Y2),
Ξ1 ∈ C(X1,Y1),

(7)

there must exist channels
Φ1 ∈ C(X1,Y1 ⊗Z1),

Φ2 ∈ C(Z1 ⊗X2,Y2 ⊗Z2),
Φ3 ∈ C(Z2 ⊗X3,Y3),

(8)

for spaces Z1 and Z2 having sufficiently large dimension, so that (2) holds. This fact is proved
in [2, 4, 9], and we note that a key idea through which this equivalence is proved may be found
in [7].

The next step toward an expression of the optimization problem suggested above as a
semidefinite program makes use of the Choi representation of channels. The Choi representa-
tion of the channel Ξ3 takes the form

J(Ξ3) ∈ Pos(Y1 ⊗ Y2 ⊗ Y3 ⊗X1 ⊗X2 ⊗X3), (9)

as the complete positivity of Φ1, Φ2, and Φ3 implies that Ξ3 is also completely positive, and
therefore J(Ξ3) is positive semidefinite. The constraints on the channel Ξ3 described previously
correspond (conveniently) to linear constraints; one has that (3) and (5) hold, for some choice
of channels Ξ2 and Ξ1, if and only if the Choi representation X3 = J(Ξ3) of Ξ3 satisfies

TrY3(X3) = X2 ⊗ 1X3 ,

TrY2(X2) = X1 ⊗ 1X2 ,

TrY1(X1) = 1X1 ,

(10)
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for some choice of operators

X2 ∈ Pos(Y1 ⊗ Y2 ⊗X1 ⊗X2),
X1 ∈ Pos(Y1 ⊗X1).

(11)

These operators correspond to the Choi representations X2 = J(Ξ2) and X1 = J(Ξ1).
Finally, the probability that Bob’s measurement produces a given outcome is a linear

function of the channel Ξ3, and is therefore a linear function of the Choi representation X3 =
J(Ξ3). Although this process is not relevant to the main result of this paper, we note that
it is possible to obtain an explicit description of this linear function given a specification of
Bob’s actions, including his final measurement. In somewhat vague terms, the linear function
describing Bob’s probability to produce a particular measurement outcome is given by 〈P,X3〉,
where

P ∈ Pos(Y1 ⊗ Y2 ⊗ Y3 ⊗X1 ⊗X2 ⊗X3) (12)

is an operator that is obtained from Ψ1, Ψ2, Ψ3, Ψ4, and the measurement operator corre-
sponding to the outcome being considered by a process very similar to the one through which
X3 is obtained from Φ1, Φ2, and Φ3. The reader is again referred to [2, 4, 9] for further details.

More generally, an arbitrary real-valued linear function of the operatorX3 may be expressed
as 〈H,X3〉 for some choice of a Hermitian operator

H ∈ Herm(Y1 ⊗ Y2 ⊗ Y3 ⊗X1 ⊗X2 ⊗X3), (13)

which need not represent the probability with which a particular measurement outcome is ob-
tained for channels Ψ1, . . . ,Ψ4 followed by a measurement. Such a function could, for instance,
represent an expected payoff for Alice’s actions, under the assumption that a real-valued payoff
is associated with each of Bob’s measurement outcomes.

General semidefinite programming formulation
As mentioned previously, the six-message example just described generalizes to any finite
number of message exchanges. If the number of message exchanges is equal to n, the input
registers to Alice (the player whose actions are being optimized) are X1, . . . ,Xn, and the
output registers of Alice are Y1, . . . ,Yn, then the possible strategies for Alice are represented
by channels of the form

Ξn ∈ C(X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn) (14)

that obey constraints that generalize (3) and (5). Specifically, there must exist channels

Ξn−1 ∈ C(X1 ⊗ · · · ⊗ Xn−1,Y1 ⊗ · · · ⊗ Yn−1)
...

Ξ1 ∈ C(X1,Y1)

(15)

such that
TrYk

◦ Ξk = Ξk−1 ◦ TrXk
(16)
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Primal problem

maximize: 〈H,Xn〉
subject to: TrYn(Xn) = Xn−1 ⊗ 1Xn ,

...
TrY2(X2) = X1 ⊗ 1X2 ,

TrY1(X1) = 1X1 ,

Xn ∈ Pos(Y1 ⊗ · · · ⊗ Yn ⊗X1 ⊗ · · · ⊗ Xn),
...

X2 ∈ Pos(Y1 ⊗ Y2 ⊗X1 ⊗X2),
X1 ∈ Pos(Y1 ⊗X1).

Dual problem

minimize: Tr(Y1)
subject to: Yn ⊗ 1Yn ≥ H,

Yn−1 ⊗ 1Yn−1 ≥ TrXn(Yn),
...

Y1 ⊗ 1Y1 ≥ TrX2(Y2),
Yn ∈ Herm(Y1 ⊗ · · · ⊗ Yn−1 ⊗X1 ⊗ · · · ⊗ Xn),
Yn−1 ∈ Herm(Y1 ⊗ · · · ⊗ Yn−2 ⊗X1 ⊗ · · · ⊗ Xn−1),

...
Y1 ∈ Herm(X1).

Figure 3: The semidefinite program representing a maximization of a linear function of an n-turn strategy.

for all k ∈ {2, . . . , n}. For the maximization of a real-valued linear function over all strategies
for Alice, represented by a Hermitian operator

H ∈ Herm(Y1 ⊗ · · · ⊗ Yn ⊗X1 ⊗ · · · ⊗ Xn), (17)

one obtains the semidefinite program described in Figure 3. The primal problem corresponds
to an optimization over all Choi representations of the channels Ξ1, . . . ,Ξn. This semidefinite
programming formulation is implicit in [9], and first appeared explicitly in [8]. It also appears
in [1], where it was used to define a generalized notion of min-entropy for quantum networks.

It may be noted that the general problem just formulated concerns interactions involving an
even number of register exchanges, where Alice (the player whose actions are being optimized)
always receives the first transmission, represented by X1, and sends the last transmission,
represented by Yn. However, one is free to take either or both of the registers X1 and Yn to
be trivial registers, so that correspondingly X1 = C and/or Yn = C. This is tantamount to
allowing either an odd number of register exchanges or an even number in the situation that
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Alice sends the first (nontrivial) register and receives the last.

2 Statement and proof of the main result
The main result of the current paper concerns the optimization problem described in the
previous section, as represented by the semidefinite program in Figure 3, in the case that
H = uu∗ is a rank one positive semidefinite operator. The result to be described does not hold
in general when H does not take this form.

In order to explain the main result in precise terms, it will be helpful to introduce some
notation. Suppose that a positive integer n along with spaces X1, . . . ,Xn and Y1, . . . ,Yn have
been fixed. For each k ∈ {1, . . . , n}, let

Sk(X1, . . . ,Xk;Y1, . . . ,Yk) ⊂ Pos(Y1 ⊗ · · · ⊗ Yk ⊗X1 ⊗ · · · ⊗ Xk) (18)

denote the primal-feasible choices for the operator Xk in the semidefinite program specified in
Figure 3. That is, we define

S1(X1;Y1) =
{
X1 ∈ Pos(Y1 ⊗X1) : TrY1(X1) = 1X1

}
(19)

(which is the set of all Choi operators of channels of the form Ξ1 ∈ C(X1,Y1)), and

Sk(X1, . . . ,Xk;Y1, . . . ,Yk)
=
{
Xk ∈ Pos(Y1 ⊗ · · · ⊗ Yk ⊗X1 ⊗ · · · ⊗ Xk) : TrYk

(Xk) = Xk−1 ⊗ 1Xk

for some Xk−1 ∈ Sk−1(X1, . . . ,Xk−1;Y1, . . . ,Yk−1)
} (20)

for k ∈ {2, . . . , n}. The primal form of the semidefinite program described in Figure 3 can
therefore be expressed succinctly as

maximize: 〈H,X〉
subject to: X ∈ Sn(X1, . . . ,Xn;Y1, . . . ,Yn).

(21)

We will refer to operators in the sets defined above as strategy operators, as they represent
n-turn strategies with respect to the quantum strategy framework.

Let us also define an isometry

W ∈ U(Y1 ⊗ · · · ⊗ Yn ⊗X1 ⊗ · · · ⊗ Xn,Xn ⊗ · · · ⊗ X1 ⊗ Yn ⊗ · · · ⊗ Y1) (22)

by the action

W (y1 ⊗ · · · ⊗ yn ⊗ x1 ⊗ · · · ⊗ xn) = xn ⊗ · · · ⊗ x1 ⊗ yn ⊗ · · · ⊗ y1 (23)

for all vectors x1 ∈ X1, . . . , xn ∈ Xn and y1 ∈ Y1, . . . , yn ∈ Yn. In words, W simply reverses
the order of the tensor factors of the space Y1 ⊗ · · · ⊗ Yn ⊗X1 ⊗ · · · ⊗ Xn, yielding a vector in
Xn ⊗ · · · ⊗ X1 ⊗ Yn ⊗ · · · ⊗ Y1 that, aside from this re-ordering of tensor factors, is the same
as its input vector.
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Statement of the main result
With the notation just introduced in hand, the main theorem may now be stated.

Theorem 1. Let X1, . . . ,Xn and Y1, . . . ,Yn be complex Euclidean spaces, for n a positive
integer, let

u ∈ Y1 ⊗ · · · ⊗ Yn ⊗X1 ⊗ · · · ⊗ Xn (24)

be a vector, and let
X ∈ Sn(X1, . . . ,Xn;Y1, . . . ,Yn) (25)

be a strategy operator. There exists a strategy operator

Y ∈ Sn(Yn, . . . ,Y1;Xn, . . . ,X1) (26)

such that
〈Wuu∗W ∗, Y 〉 ≥ 〈uu∗, X〉. (27)

If it is the case that dim(Y1 ⊗ · · · ⊗ Yn) ≤ dim(X1 ⊗ · · · ⊗ Xn), then the operator Y may be
chosen so that equality holds in (27).

Corollary 2. Let X1, . . . ,Xn and Y1, . . . ,Yn be complex Euclidean spaces, for n a positive
integer, and let

u ∈ Y1 ⊗ · · · ⊗ Yn ⊗X1 ⊗ · · · ⊗ Xn (28)

be a vector. The semidefinite optimization problems

maximize: 〈uu∗, X〉
subject to: X ∈ Sn(X1, . . . ,Xn;Y1, . . . ,Yn)

(29)

and
maximize: 〈Wuu∗W ∗, Y 〉
subject to: Y ∈ Sn(Yn, . . . ,Y1;Xn, . . . ,X1)

(30)

have the same optimum value.

Remark. Using the notation introduced in [1], which defines a quantum network generaliza-
tion of conditional min-entropy, the equivalence expressed by Corollary 2 may alternatively
be written

Hmin
(
Yn | X1,Y1, . . . ,Xn−1,Yn−1,Xn

)
uu∗

= Hmin
(
X1 | Yn,Xn, . . . ,Y2,X2,Y1

)
uu∗

(31)

for every vector u ∈ X1 ⊗ Y1 ⊗ · · · ⊗ Xn ⊗ Yn.

Interpretations of the main theorem
Theorem 1 establishes a time-reversal property of rank-one strategy functions. Intuitively
speaking, the linear function

Y 7→ 〈Wuu∗W ∗, Y 〉 (32)

defined on Sn(Yn, . . . ,Y1;Xn, . . . ,X1) represents the time-reversal of the linear function

X 7→ 〈uu∗, X〉 (33)
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defined on Sn(X1, . . . ,Xn;Y1, . . . ,Yn), in the sense that the two functions differ only in the
reversal of the ordering of the register exchanges: X1, Y1, . . ., Xn, Yn for the function corre-
sponding to uu∗ and Yn, Xn, . . ., Y1, X1 for the function corresponding to Wuu∗W ∗.

For a given choice of X ∈ Sn(X1, . . . ,Xn;Y1, . . . ,Yn), it is generally not the case that
W ∗XW ∈ Sn(Yn, . . . ,Y1;Xn, . . . ,X1). It may not even be the case that W ∗XW is the Choi
representation of a channel, and in the case that W ∗XW is the Choi representation of a chan-
nel, it will generally not be the case that this channel obeys the constraints necessary for it to be
a valid strategy operator. When combined with the observation that Sn(X1, . . . ,Xn;Y1, . . . ,Yn)
and Sn(Yn, . . . ,Y1;Xn, . . . ,X1) are compact and convex sets, this fact implies that the main
theorem cannot possibly hold for all Hermitian operators H by the separating hyperplane
theorem. For small values of n and for spaces having small dimensions, simple examples of
operators H for which the main theorem fails may also easily be obtained through random
selections.

In Section 4 we discuss another interpretation of Theorem 1, which concerns multiple round
entanglement manipulation.

Proof of Theorem 1
We will now prove Theorem 1. The first step is to express the strategy represented by X
as a sequence of channels corresponding to invertible isometries (i.e., unitary operators for
which the input and output spaces have different names but necessarily the same dimension),
assuming an auxiliary input space initialized to a pure state is made available.

Through the repeated application of the Stinespring dilation theorem, together with the
result of [2, 4, 9] establishing that X = J(Ξn) is the Choi representation of a channel Ξn
arising from a valid n-turn strategy, one finds that there must exist complex Euclidean spaces
Z0, . . . ,Zn satisfying dim(Zk−1 ⊗ Xk) = dim(Zk ⊗ Yk) for all k ∈ {1, . . . , n}, a unit vector
v ∈ Z0, and invertible isometries U1, . . . , Un of the form

Uk ∈ U(Zk−1 ⊗Xk,Yk ⊗Zk) (34)

such that
Ξn(Z) = TrZn

(
U(vv∗ ⊗ Z

)
U∗
)

(35)

for all Z ∈ L(X1 ⊗ · · · ⊗ Xn), where

U = (1Y1⊗···⊗Yn−1 ⊗ Un) · · · (U1 ⊗ 1X2⊗···⊗Xn)
∈ U(Z0 ⊗X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn ⊗Zn).

(36)

In words, the strategy represented by the operator X is implemented by first initializing a
register Z0 to the pure state v, then applying the invertible isometric channels corresponding
to U1, . . . , Un, and finally discarding Zn after the interaction has finished. (The top picture in
Figure 4 illustrates this for the case n = 3.)

The vector u may be expressed as

u =
∑

a1,...,an
b1,...,bn

u(b1, . . . , bn, a1, . . . , an)|b1〉 · · · |bn〉|a1〉 · · · |an〉, (37)
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v
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Y1 Y2 Y3X1 X2 X3

w
UT

3 UT
2 UT

1
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X3 X2 X1Y3 Y2 Y1

Figure 4: An arbitrary strategy may be implemented by initializing a register Z0 to a pure state v, followed
by the application of an invertible isometric channel on each turn, and finally by discarding the last memory
register Zn (which is Z3 in the picture). The time-reversed strategy whose existence is implied by the main
theorem is obtained by setting the register Zn (Z3 in the picture) to an appropriate choice of a pure state w,
followed by the application of invertible isometric channels obtained by transposing the original isometries,
and finally by discarding the memory register Z0.

where the sum is over all standard basis states |a1〉, . . . , |an〉 of X1, . . . ,Xn and |b1〉, . . . , |bn〉 of
Y1, . . . ,Yn, respectively. Based on this expression, define an operator A ∈ L(Z0,Zn) as

A =
∑

a1,...,an
b1,...,bn

u(b1, . . . , bn, a1, . . . , an)(〈bn| ⊗ 1Zn)Un(1Zn−1 ⊗ |an〉)

· · · (〈b1| ⊗ 1Z1)U1(1Z0 ⊗ |a1〉).
(38)

By considering the action of the strategy represented by v and U1, . . . , Un, then performing
the required operator-vector multiplications required to evaluate the expression 〈uu∗, X〉 when
X = J(Ξn) for Ξn given by (35), one concludes that

〈uu∗, X〉 = ‖Av‖2 = 〈vv∗, A∗A〉. (39)

Next we turn to the reversed interaction. To obtain a strategy operator Y satisfying the
requirements of the theorem, we consider the strategy obtained by initializing the register
Zn to a particular choice of a pure state w, which will be selected later, then applying in
sequence the invertible isometric channels corresponding to the operators UT

n, . . . , U
T
1 . (The

bottom picture in Figure 4 illustrates this for the case n = 3.) That is, for

V = (1Xn⊗···⊗X2 ⊗ UT
1 ) · · · (UT

n ⊗ 1Yn−1⊗···⊗Y1)
∈ U(Zn ⊗ Yn ⊗ · · · ⊗ Y1,Z0 ⊗Xn ⊗ · · · ⊗ X1),

(40)

we consider the channel Θn ∈ C(Yn ⊗ · · · ⊗ Y1,Xn ⊗ · · · ⊗ X1) defined as

Θn(Z) = TrZ0

(
V (ww∗ ⊗ Z)V ∗

)
(41)
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for all Z ∈ L(Yn⊗ · · ·⊗Y1). It is evident from the specification of this channel, irrespective of
the choice of the pure state w, that Y = J(Θn) ∈ Sn(Yn, . . . ,Y1;Xn, . . . ,X1). By considering
the action of this strategy, a similar calculation to the one above reveals that

〈Wuu∗W ∗, Y 〉 = ‖ATw‖2 =
〈
ww∗, AAT〉. (42)

The nonzero eigenvalues of A∗A and AAT are equal, and therefore by choosing w to be an
eigenvector corresponding to the largest eigenvalue of AAT one obtains

〈Wuu∗W ∗, Y 〉 =
〈
ww∗, AAT〉 ≥ 〈vv∗, A∗A〉 = 〈uu∗, X〉. (43)

If it holds that dim(Y1 ⊗ · · · ⊗ Yn) ≤ dim(X1 ⊗ · · · ⊗ Xn), then dim(Z0) ≤ dim(Zn), which
implies that the inequality in (43) may be taken as an equality for an appropriate choice of a
pure state w. This completes the proof.

3 Application to min- and max-entropy
In this section we connect the main result proved in the previous section to the conditional
min- and max-entropy functions. These function, which were first introduced in [6], may be
defined as follows. First, one defines the max- and min-relative entropy of P with respect to
Q, for positive semidefinite operators P and Q (acting on the same space), as follows:

Dmax(P ‖Q) = log
(
min{λ ≥ 0 : P ≤ λQ}

)
, (44)

Dmin(P ‖Q) = − log
(
F(P,Q)2). (45)

Then, with respect to a given state ρ ∈ D(X ⊗ Y) of a pair of registers (X,Y), one defines

Hmin(X|Y) = − inf
σ∈D(Y)

Dmax
(
ρ
∥∥1X ⊗ σ), (46)

Hmax(X|Y) = − inf
σ∈D(Y)

Dmin
(
ρ
∥∥1X ⊗ σ). (47)

It is known that these two quantities are related in the following way: with respect to any pure
state uu∗ of a triple of registers (X,Y,Z), one has that

Hmin(X|Y) = −Hmax(X|Z). (48)

(Indeed, in [12] the conditional max-relative entropy of a state of (X,Z) is defined by the
equation (48), which does not depend on which purification of this state is chosen, and is then
proved to agree with the definition stated previously.)

Consider any unit vector u ∈ X ⊗ Y ⊗ Z, which defines a pure state uu∗ of a triple of
registers (X,Y,Z). We will consider two optimization problems defined by u, the first of which
is as follows:

maximize:
〈
uu∗, X

〉
subject to: X ∈ S2(Y,Z;X ,C).

(49)

This optimization problem is illustrated in Figure 5. In this case, the channel Φ2 takes registers
Z and W as input and outputs nothing (which is equivalent to outputting the unique state
1 ∈ D(C) of a one-dimensional system). That is, Φ2 must be the trace mapping. One may
therefore simplify this problem, obtaining the following semidefinite program:
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uu∗

Φ1 Φ2

Y ZX

W

Figure 5: The optimization problem (49) corresponds to a maximization of the linear functions defined by
uu∗ over all strategies given by channels Φ1 and Φ2, for an arbitrary choice of a register W.

Wuu∗W ∗

Ψ1 Ψ2

XZ Y

W

Figure 6: The optimization problem (51) corresponds to a maximization of the linear functions defined by
Wuu∗W ∗ over all strategies given by channels Ψ1 and Ψ2, for an arbitrary choice of a register W.

Primal problem

maximize: 〈TrZ(uu∗), X〉
subject to: TrX (X) = 1Y ,

X ∈ Pos(X ⊗ Y).

Dual problem

minimize: Tr(Y )
subject to: 1X ⊗ Y ≥ TrZ(uu∗),

Y ∈ Herm(X ).

By examining the dual problem, one sees that the optimal value of this semidefinite program
is

2−Hmin(X|Y) (50)

with respect to the state uu∗ of (X,Y,Z). König, Renner, and Schaffner [12] observed that the
primal problem coincides with the value represented by the expression (50), which is consistent
with the observation that strong duality always holds for this semidefinite program (which may
be verified through Slater’s theorem, for instance).

The second optimization problem we consider is the time-reversal of the first, and may be
stated as follows:

maximize:
〈
Wuu∗W ∗, Y

〉
subject to: Y ∈ S2(C,X ;Z,Y).

(51)

Figure 6 illustrates the interaction corresponding to this optimization problem. The inclusion
X ∈ S2(C,X ;Z,Y), for a given operator X ∈ Pos(Z ⊗ Y ⊗X ), is equivalent to the condition
that TrY(X) = σ ⊗ 1X for some σ ∈ D(Z). After re-ordering tensor factors, we obtain the
following semidefinite program:
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uu∗

Φ1 Φ2

Y ZX W

Figure 7: Maximizing the linear function defined by uu∗ over all four-message strategies of the form depicted
yields the left-hand side of (54). By reversing time, the right-hand side of that equation is obtained, and
the equality of the two is implied by the main theorem.

Primal problem

maximize: 〈uu∗, X〉
subject to: TrY(X) = 1X ⊗ σ,

X ∈ Pos(X ⊗ Y ⊗ Z),
σ ∈ D(Z).

Dual problem

minimize: λ

subject to: Y ⊗ 1Y ≥ uu∗,
λ1Z ≥ TrX (Y ),
Y ∈ Herm(X ⊗ Z),
λ ∈ R.

An examination of the primal problem reveals (through Uhlmann’s theorem) that the optimal
value of this semidefinite program is

2Hmax(X|Z). (52)

By our main theorem, it follows that the two optimization problems have the same optimal
value, and therefore we obtain an alternative proof that with respect to every pure state of a
triple or registers (X,Y,Z) one has

Hmin(X|Y) = −Hmax(X|Z). (53)

It is natural to ask if the connections among min-entropy, max-entropy, and optimization
problems involving three-message strategies have interesting implications or generalizations for
interactions involving four or more messages. As a partial answer to this question, we observe
that when our main result is applied to the four-message interaction depicted in Figure 7, it
reveals the identity

max
Φ∈C(Y,X )

F
(
TrW(uu∗), J(Φ)⊗ 1Z

)
= max

Ψ∈C(W,Z)
F
(
TrX (uu∗),1Y ⊗ J(Ψ)

)
(54)

for all vectors u ∈ X ⊗Y ⊗Z ⊗W. This identity is appealing in its simplicity and symmetry,
and by takingW = C (or Y = C) a statement equivalent to (53) for all pure states of (X,Y,Z)
is obtained. We do not know, however, if the quantity represented by either side of the identity
has any direct operational significance.

Other identities may be obtained through a similar methodology, although they become
increasingly complex as the number of messages is increased.
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4 Online pure state entanglement manipulation
The following three statements are equivalent for a given operator X ∈ L(Y ⊗ X ):

1. X ∈ S1(X ;Y). (Equivalently, X ∈ Pos(Y ⊗ X ) and TrY(X) = 1X .)

2. X = (Φ⊗ 1L(X ))(vec(1X ) vec(1X )∗) for some channel Φ ∈ C(X ,Y).

3. X = (1L(Y) ⊗ Ψ)(vec(1Y) vec(1Y)∗) for some completely positive and unital map Ψ ∈
CP(Y,X ).

(Here and throughout this section, vec refers to the vectorization mapping, which is the map-
ping obtained by extending the transformation |a〉〈b| 7→ |a〉|b〉 for standard basis states to
arbitrary operators by linearity. In particular, vec(1X ) is a non-normalized vector propor-
tional to the canonical maximally entangled pure state corresponding to two identical copies
of a system whose state space is X .) The maps Φ and Ψ uniquely determine one another,
and it is reasonable to view these maps as being related by transposition (with respect to the
standard basis): Ψ = ΦT and Φ = ΨT. To obtain a Kraus representation for Ψ, for instance,
one may simply take a Kraus representation of Φ and transpose each of the Kraus operators.
(The transpose of an arbitrary map can be defined in a manner that is consistent with these
statements, but it is sufficient for our needs to focus on channels and completely positive unital
maps.)

A generalization of the equivalence mentioned above to the quantum strategy framework
may also be verified. For an operator X ∈ L(Y1 ⊗ · · · ⊗ Yn ⊗ X1 ⊗ · · · ⊗ Xn), these three
statements are equivalent:

1. X ∈ Sn(X1, . . . ,Xn;Y1, . . . ,Yn).

2. There exist complex Euclidean spaces Z1, . . . ,Zn−1 (and Z0 = C and Zn = C), along
with channels Φ1, . . . ,Φn having the form

Φk ∈ C(Zk−1 ⊗Xk,Yk ⊗Zk), (55)

such that the channel Ξn ∈ C(X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn) defined as

Ξn =
(
1L(Y1⊗···⊗Yn−1) ⊗ Φn

)
· · ·
(
Φ1 ⊗ 1L(X2⊗···⊗Xn)

)
(56)

satisfies
X =

(
Ξn ⊗ 1L(X1⊗···⊗Xn)

)
(vec(1X1⊗···⊗Xn) vec(1X1⊗···⊗Xn)∗). (57)

3. There exist complex Euclidean spaces Z1, . . . ,Zn−1 (and Z0 = C and Zn = C), along
with completely positive and unital maps Ψ1, . . . ,Ψn having the form

Ψk ∈ C(Yk ⊗Zk,Zk−1 ⊗Xk), (58)

such that the unital map Λn ∈ CP(Y1 ⊗ · · · ⊗ Yn,X1 ⊗ · · · ⊗ Xn) defined as

Λn =
(
Ψ1 ⊗ 1L(X2⊗···⊗Xn)

)
· · ·
(
1L(Y1⊗···⊗Yn−1) ⊗Ψn

)
(59)

satisfies
X =

(
1L(Y1⊗···⊗Yn) ⊗ Λn

)
(vec(1Y1⊗···⊗Yn) vec(1Y1⊗···⊗Yn)∗). (60)
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Through this equivalence, for a given state ρ ∈ D(Y1 ⊗ · · · ⊗ Yn ⊗ X1 ⊗ · · · ⊗ Xn), one
arrives at an alternative interpretation of the semidefinite program

maximize: 〈ρ,X〉
subject to: X ∈ Sn(X1, . . . ,Xn;Y1, . . . ,Yn)

(61)

that concerns an online variant of entanglement manipulation, as is explained shortly. The term
“online” in this context refers to a situation in which a quantum state must be manipulated in
multiple turns, where an output is required immediately after each input system arrives and
prior to the next input system being made available, similar to an online process.

By the equivalence of the third statement above to the first, a maximization over all
X ∈ Sn(X1, . . . ,Xn;Y1, . . . ,Yn) is equivalent to a maximization over all operators(

1L(Y1⊗···⊗Yn) ⊗ Λn
)
(vec(1Y1⊗···⊗Yn) vec(1Y1⊗···⊗Yn)∗) (62)

for
Λn =

(
Ψ1 ⊗ 1L(X2⊗···⊗Xn)

)
· · ·
(
1L(Y1⊗···⊗Yn−1) ⊗Ψn

)
(63)

and Ψ1, . . . ,Ψn being completely positive and unital maps of the form

Ψk ∈ C(Yk ⊗Zk,Zk−1 ⊗Xk). (64)

The value of the objective function 〈ρ,X〉 may therefore be expressed as〈
(1L(Y1⊗···⊗Yn) ⊗ Λ∗n)(ρ), vec(1Y1⊗···⊗Yn) vec(1Y1⊗···⊗Yn)∗

〉
, (65)

which is dim(Y1⊗ · · · ⊗Yn) times the squared fidelity between the maximally entangled state
τ ∈ D(Y1 ⊗ · · · ⊗ Yn ⊗ Y1 ⊗ · · · ⊗ Yn) given by

τ = vec(1Y1⊗···⊗Yn) vec(1Y1⊗···⊗Yn)∗

dim(Y1 ⊗ · · · ⊗ Yn) (66)

and the state obtained by applying the channel Λ∗n to the portion of ρ corresponding to
the spaces X1, . . . ,Xn. In the case that n = 1, König, Renner, and Schaffner [12] refer to this
quantity as the quantum correlation. This situation is illustrated for the case n = 3 in Figure 8.

By Theorem 1, one finds that when ρ is pure, the same optimal value is achieved when
the ordering of the channels and the registers on which they act is reversed, as illustrated
in Figure 9 for the case n = 3. That is, when ρ is a pure state, the optimal value of the
semidefinite program (61) represents the value〈

(Ξn ⊗ 1L(X1⊗···⊗Xn))(ρ), vec(1X1⊗···⊗Xn) vec(1X1⊗···⊗Xn)∗
〉
, (67)

maximized over all channels Ξn ∈ C(Y1 ⊗ · · · ⊗ Yn,X1 ⊗ · · · ⊗ Xn) of the form

Ξn =
(
Φ1 ⊗ 1L(X2⊗···⊗Xn)

)
· · ·
(
1L(Y1⊗···⊗Yn−1) ⊗ Φn

)
(68)

for channels Φ1, . . . ,Φn taking the form

Φk ∈ C(Yk ⊗Zk,Zk−1 ⊗Xk) (69)

and for Z2, . . . ,Zn−1 arbitrary complex Euclidean spaces (along with Z0 = C and Zn = C).
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ρ

Ψ∗1
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Ψ∗3

X1

X2

X3

Y1

Y2
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Z1

Z2

Y1Y1

Y2Y2

Y3Y3

Figure 8: The channel Λ∗3 = (1L(Y1⊗Y2)⊗Ψ∗3)(1L(Y1)⊗Ψ∗2⊗1L(X3))(Ψ∗1⊗1L(X2⊗X3)) is applied to registers
(X1,X2,X3) of a state ρ ∈ D(Y1⊗Y2⊗Y3⊗X1⊗X2⊗X3) with the aim of maximizing the fidelity of the
output state with the canonical maximally entangled state.

ρ
Φ3

Φ2

Φ1

Y3

Y2

Y1

X3

X2

X1

Z2

Z1

X1X1

X2X2

X3X3

Figure 9: A similar process to the one illustrated in Figure 8, but with channels applied to Y3, Y2, Y1 rather
than X1, X2, X3.
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5 Conclusion
We have identified a time-reversal property for rank-one quantum strategy functions, explained
its connection to conditional min- and max-entropy, and described an alternative view of
this property through an online variant of pure state entanglement manipulation. An obvious
question arises: are there interesting applications or implications of this property beyond those
we have mentioned?
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