Quantum repeaters with individual rare-earth ions at telecommunication wavelengths

F. Kimiaee Asadi, N. Lauk, S. Wein, N. Sinclair, C. O'Brien, and C. Simon

Institute for Quantum Science and Technology, and Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We present a quantum repeater scheme that is based on individual erbium and europium ions. Erbium ions are attractive because they emit photons at telecommunication wavelength, while europium ions offer exceptional spin coherence for long-term storage. Entanglement between distant erbium ions is created by photon detection. The photon emission rate of each erbium ion is enhanced by a microcavity with high Purcell factor, as has recently been demonstrated. Entanglement is then transferred to nearby europium ions for storage. Gate operations between nearby ions are performed using dynamically controlled electric-dipole coupling. These gate operations allow entanglement swapping to be employed in order to extend the distance over which entanglement is distributed. The deterministic character of the gate operations allows improved entanglement distribution rates in comparison to atomic ensemble-based protocols. We also propose an approach that utilizes multiplexing in order to enhance the entanglement distribution rate.

► BibTeX data

► References

[1] T. Jennewein and B. Higgins, Physics World 26, 52 (2013).

[2] P. Komar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, Nat. Phys. 10, 582 (2014).

[3] D. Gottesman, T. Jennewein, and S. Croke, Phys. Rev. Lett. 109, 070503 (2012).

[4] H. J. Kimble, Nature 453, 1023 (2008).

[5] C. Simon, Nat. Photonics 11, 678– (2017).

[6] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).

[7] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod. Phys. 83, 33 (2011).

[8] W. P. Grice, Phys. Rev. A 84, 042331 (2011).

[9] S. Wein, K. Heshami, C. A. Fuchs, H. Krovi, Z. Dutton, W. Tittel, and C. Simon, Phys. Rev. A 94, 032332 (2016).

[10] N. Sangouard, R. Dubessy, and C. Simon, Phys. Rev. A 79, 042340 (2009).

[11] S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, Nature 484, 195 (2012).

[12] A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).

[13] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. Blok, L. Robledo, T. Taminiau, M. Markham, D. Twitchen, L. Childress, et al., Nature 497, 86 (2013).

[14] B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Nature 526, 682 (2015).

[15] D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, Nature 449, 68 (2007).

[16] L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, Phys. Rev. Lett. 110, 083603 (2013).

[17] K. J. Morse, R. J. Abraham, A. DeAbreu, C. Bowness, T. S. Richards, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, M. L. Thewalt, et al., Science advances 3, e1700930 (2017).

[18] A. Delteil, Z. Sun, W. Gao, E. Togan, S. Faelt, and A. Imamoglu, Nat. Phys. 12, 218 (2016).

[19] R. Stockill, M. J. Stanley, L. Huthmacher, E. Clarke, M. Hugues, A. J. Miller, C. Matthiesen, C. Le Gall, and M. Atatüre, Phys. Rev. Lett. 119, 010503 (2017).

[20] W. Tittel, M. Afzelius, T. Chaneliere, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, Laser & Photonics Rev. 4, 244 (2010).

[21] F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, J. Mod. Opt. 60, 1519 (2013).

[22] S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, Proc. Natl. Acad. Sci. 106, 10917 (2009).

[23] Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, Nano Letters 14, 1982 (2014).

[24] D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Science 325, 70 (2009).

[25] R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, Phys. Rev. Lett. 85, 3301 (2000).

[26] R. de Sousa and S. Das Sarma, Phys. Rev. B 68, 115322 (2003).

[27] K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, Phys. Rev. Lett. 115, 093602 (2015).

[28] B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, Phys. Rev. Lett. 104, 080502 (2010).

[29] M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. De Riedmatten, N. Gisin, et al., Phys. Rev. Lett. 104, 040503 (2010).

[30] G. Heinze, C. Hubrich, and T. Halfmann, Phys. Rev. Lett. 111, 033601 (2013).

[31] C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, Phys. Rev. Lett. 118, 210501 (2017).

[32] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517, 177 (2015a).

[33] T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, et al., arXiv preprint arXiv:1803.07520 (2018).

[34] A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, Phys. Rev. Lett. 120, 243601 (2018).

[35] R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. Hemmer, and J. Wrachtrup, Nat. Commun. 3, 1029 (2012).

[36] C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, Nature 497, 91 (2013).

[37] T. Utikal, E. Eichhammer, L. Petersen, A. Renn, S. Götzinger, and V. Sandoghdar, Nat. Commun. 5, 3627 (2014).

[38] T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, Nat. Commun. 6, 8206 (2015b).

[39] T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, Science 357, 1392 (2017).

[40] J. J. Longdell and M. J. Sellars, Phys. Rev. A 69, 032307 (2004).

[41] J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 93, 130503 (2004).

[42] A. Reiserer, N. Kalb, M. S. Blok, K. J. van Bemmelen, T. H. Taminiau, R. Hanson, D. J. Twitchen, and M. Markham, Phys. Rev. X 6, 021040 (2016).

[43] S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310 (2005).

[44] G. Liu and B. Jacquier, Spectroscopic properties of rare earths in optical materials, Vol. 83 (Springer Science & Business Media, 2006).

[45] D. McAuslan, J. J. Longdell, and M. Sellars, Phys. Rev. A 80, 062307 (2009).

[46] N. Ohlsson, R. K. Mohan, and S. Kröll, Opt. Commun. 201, 71 (2002).

[47] S. Altner, G. Zumofen, U. Wild, and M. Mitsunaga, Phys. Rev. B 54, 17493 (1996).

[48] C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 98, 190503 (2007).

[49] O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007).

[50] N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, Phys. Rev. Lett. 113, 053603 (2014).

[51] L.-M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).

[52] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat. Commun. 8 (2017).

[53] C. W. Thiel, W. R. Babbitt, and R. L. Cone, Phys. Rev. B 85, 174302 (2012).

[54] T. Kornher, K. Xia, R. Kolesov, N. Kukharchyk, R. Reuter, P. Siyushev, R. Stöhr, M. Schreck, H. W. Becker, B. Villa, A. D. Wieck, and J. Wrachtrup, Appl. Phys. Lett. 108, 053108 (2016).

[55] M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, Nat. Commun. 8, 889 (2017).

[56] E. Murray, D. J. P. Ellis, T. Meany, F. F. Floether, J. P. Lee, J. P. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, A. J. Bennett, and A. J. Shields, Appl. Phys. Lett. 107, 171108 (2015).

[57] J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, Nano Letters 17, 7394 (2017).

[58] S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, Phys. Rev. B 78, 085410 (2008).

[59] T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, Phys. Rev. B 73, 075101 (2006).

[60] S. Probst, H. Rotzinger, A. V. Ustinov, and P. A. Bushev, Phys. Rev. B 92, 014421 (2015).

[61] O. Guillot-Noël, H. Vezin, P. Goldner, F. Beaudoux, J. Vincent, J. Lejay, and I. Lorgeré, Phys. Rev. B 76, 180408 (2007).

[62] E. Fraval, M. J. Sellars, A. Morrison, and A. Ferris, J. Lumin. 107, 347 (2004).

[63] R. M. Macfarlane and R. M. Shelby, Spectroscopy of Solids Containing Rare Earth Ions, edited by A. A. Kaplyanskii and R. M. Macfarlane (North Holland, Amsterdam, 1987).

[64] P. Siyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang, C. Duan, N. Kukharchyk, A. Wieck, R. Kolesov, et al., Nat. Commun. 5 (2014).

[65] B. Lauritzen, S. R. Hastings-Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, Phys. Rev. A 78, 043402 (2008).

[66] J. Minář™, B. Lauritzen, H. de Riedmatten, M. Afzelius, C. Simon, and N. Gisin, New J. Phys. 11, 113019 (2009).

[67] R. M. Macfarlane, J. Lumin. 125, 156 (2007), festschrift in Honor of Academician Alexander A. Kaplyanskii.

[68] J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, Phys. Rev. A 75, 012304 (2007).

[69] Y. Sun, T. Böttger, C. W. Thiel, and R. L. Cone, Phys. Rev. B 77, 085124 (2008).

[70] F. M. Pichanick, P. G. H. Sandars, and G. K. Woodgate, Proc. Royal Soc. A 257, 277 (1960).

[71] C. O'Brien, T. Zhong, A. Faraon, and C. Simon, Phys. Rev. A 94, 043807 (2016).

[72] T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gérard, P. Senellart, and A. Auffèves, Phys. Rev. Lett. 114, 193601 (2015).

[73] T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, Phys. Rev. B 79, 115104 (2009).

[74] A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032 (2008).

[75] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, et al., Nat. Photonics 7, 210 (2013).

[76] J. G. Bartholomew, R. L. Ahlefeldt, and M. J. Sellars, Phys. Rev. B 93, 014401 (2016).

[77] M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, Phys. Rev. Lett. 119, 083601 (2017).

[78] K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, Nat. Photonics 12, 297 (2018).

[79] M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, Nat. Phys. (2017), 10.1038/​nphys4254.

[80] B. Car, L. Veissier, A. Louchet-Chauvet, J.-L. Le Gouët, and T. Chanelière, Phys. Rev. Lett. 120, 197401 (2018).

Cited by

[1] Sumeet Khatri, Corey T. Matyas, Aliza U. Siddiqui, and Jonathan P. Dowling, "Practical figures of merit and thresholds for entanglement distribution in quantum networks", Physical Review Research 1 2, 023032 (2019).

[2] Kenneth Sharman, Faezeh Kimiaee Asadi, Stephen C Wein, and Christoph Simon, "Quantum repeaters based on individual electron spins and nuclear-spin-ensemble memories in quantum dots", Quantum 5, 570 (2021).

[3] Jia-Wei Ji, Faezeh Kimiaee Asadi, Khabat Heshami, and Christoph Simon, "Noncryogenic Quantum Repeaters with hot Hybrid Alkali-Noble Gases", Physical Review Applied 19 5, 054063 (2023).

[4] Sourabh Kumar, Nikolai Lauk, and Christoph Simon, "Towards long-distance quantum networks with superconducting processors and optical links", Quantum Science and Technology 4 4, 045003 (2019).

[5] Jia-Wei Ji, Yu-Feng Wu, Stephen C. Wein, Faezeh Kimiaee Asadi, Roohollah Ghobadi, and Christoph Simon, "Proposal for room-temperature quantum repeaters with nitrogen-vacancy centers and optomechanics", Quantum 6, 669 (2022).

[6] Guus Avis, Francisco Ferreira da Silva, Tim Coopmans, Axel Dahlberg, Hana Jirovská, David Maier, Julian Rabbie, Ariana Torres-Knoop, and Stephanie Wehner, "Requirements for a processing-node quantum repeater on a real-world fiber grid", npj Quantum Information 9 1, 100 (2023).

[7] F Kimiaee Asadi, S C Wein, and C Simon, "Protocols for long-distance quantum communication with single 167Er ions", Quantum Science and Technology 5 4, 045015 (2020).

[8] Tim Coopmans, Robert Knegjens, Axel Dahlberg, David Maier, Loek Nijsten, Julio de Oliveira Filho, Martijn Papendrecht, Julian Rabbie, Filip Rozpędek, Matthew Skrzypczyk, Leon Wubben, Walter de Jong, Damian Podareanu, Ariana Torres-Knoop, David Elkouss, and Stephanie Wehner, "NetSquid, a NETwork Simulator for QUantum Information using Discrete events", Communications Physics 4 1, 164 (2021).

[9] Koji Azuma, Stefan Bäuml, Tim Coopmans, David Elkouss, and Boxi Li, "Tools for quantum network design", AVS Quantum Science 3 1, 014101 (2021).

[10] Faezeh Kimiaee Asadi, Jia-Wei Ji, and Christoph Simon, "Proposal for transduction between microwave and optical photons using Er167 -doped yttrium orthosilicate", Physical Review A 105 6, 062608 (2022).

[11] Chetan Deshmukh, Eduardo Beattie, Bernardo Casabone, Samuele Grandi, Diana Serrano, Alban Ferrier, Philippe Goldner, David Hunger, and Hugues de Riedmatten, "Detection of single ions in a nanoparticle coupled to a fiber cavity", Optica 10 10, 1339 (2023).

[12] Bernardo Casabone, Chetan Deshmukh, Shuping Liu, Diana Serrano, Alban Ferrier, Thomas Hümmer, Philippe Goldner, David Hunger, and Hugues de Riedmatten, "Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles", Nature Communications 12 1, 3570 (2021).

[13] E. Shchukin, F. Schmidt, and P. van Loock, "Waiting time in quantum repeaters with probabilistic entanglement swapping", Physical Review A 100 3, 032322 (2019).

[14] Yisheng Lei, Faezeh Kimiaee Asadi, Tian Zhong, Alex Kuzmich, Christoph Simon, and Mahdi Hosseini, "Quantum optical memory for entanglement distribution", Optica 10 11, 1511 (2023).

[15] Jingyi Lu, Shunan Zhao, Fangfang Wei, and Keith Man‐Chung Wong, "Design, Synthesis and Photophysical Studies of Luminescent Rhodium(III) Complexes in Near‐Infrared Region", European Journal of Inorganic Chemistry 26 11, e202200792 (2023).

[16] F. Kimiaee Asadi, S. C. Wein, and C. Simon, "Cavity-assisted controlled phase-flip gates", Physical Review A 102 1, 013703 (2020).

[17] Robert M. Pettit, Farhang Hadad Farshi, Sean E. Sullivan, Álvaro Véliz-Osorio, and Manish Kumar Singh, "A perspective on the pathway to a scalable quantum internet using rare-earth ions", Applied Physics Reviews 10 3, 031307 (2023).

[18] Junyi Wang, Feifei Huang, JiaBo Li, Bingpeng Li, Ying Tian, and Shiqing Xu, "Broadband tunable infrared emission of Ni2+-doped ZnGa/AlO4 integrated transparent glass ceramics", Infrared Physics & Technology 133, 104805 (2023).

[19] Daniel B. Higginbottom, Faezeh Kimiaee Asadi, Camille Chartrand, Jia-Wei Ji, Laurent Bergeron, Michael L.W. Thewalt, Christoph Simon, and Stephanie Simmons, "Memory and Transduction Prospects for Silicon T Center Devices", PRX Quantum 4 2, 020308 (2023).

[20] Koji Azuma, Sophia E. Economou, David Elkouss, Paul Hilaire, Liang Jiang, Hoi-Kwong Lo, and Ilan Tzitrin, "Quantum repeaters: From quantum networks to the quantum internet", Reviews of Modern Physics 95 4, 045006 (2023).

[21] Mohammed K. Alqedra, Chetan Deshmukh, Shuping Liu, Diana Serrano, Sebastian P. Horvath, Safi Rafie-Zinedine, Abdullah Abdelatief, Lars Rippe, Stefan Kröll, Bernardo Casabone, Alban Ferrier, Alexandre Tallaire, Philippe Goldner, Hugues de Riedmatten, and Andreas Walther, "Optical coherence properties of Kramers' rare-earth ions at the nanoscale for quantum applications", Physical Review B 108 7, 075107 (2023).

[22] Ruo-Ran Meng, Xiao Liu, Ming Jin, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo, "Solid-state quantum nodes based on color centers and rare-earth ions coupled with fiber Fabry–Pérot microcavities", Chip 3 1, 100081 (2024).

[23] Shi‐Hai Wei, Bo Jing, Xue‐Ying Zhang, Jin‐Yu Liao, Chen‐Zhi Yuan, Bo‐Yu Fan, Chen Lyu, Dian‐Li Zhou, You Wang, Guang‐Wei Deng, Hai‐Zhi Song, Daniel Oblak, Guang‐Can Guo, and Qiang Zhou, "Towards Real‐World Quantum Networks: A Review", Laser & Photonics Reviews 16 3, 2100219 (2022).

[24] Stephen C. Wein, Jia-Wei Ji, Yu-Feng Wu, Faezeh Kimiaee Asadi, Roohollah Ghobadi, and Christoph Simon, "Analyzing photon-count heralded entanglement generation between solid-state spin qubits by decomposing the master-equation dynamics", Physical Review A 102 3, 033701 (2020).

[25] A. A. Kalachev, "Quantum Repeaters: Current Developments and Prospects", Bulletin of the Lebedev Physics Institute 50 S12, S1312 (2023).

[26] Amirhossein Alizadehkhaledi, Adriaan L. Frencken, Frank C. J. M. van Veggel, and Reuven Gordon, "Isolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength", Nano Letters 20 2, 1018 (2020).

[27] Jacob P. Covey, Alp Sipahigil, Szilard Szoke, Neil Sinclair, Manuel Endres, and Oskar Painter, "Telecom-Band Quantum Optics with Ytterbium Atoms and Silicon Nanophotonics", Physical Review Applied 11 3, 034044 (2019).

[28] Xu Feng, Liting Lin, Rui Duan, Jianrong Qiu, and Shifeng Zhou, "Transition metal ion activated near-infrared luminescent materials", Progress in Materials Science 129, 100973 (2022).

[29] Tim Coopmans, Sebastiaan Brand, and David Elkouss, "Improved analytical bounds on delivery times of long-distance entanglement", Physical Review A 105 1, 012608 (2022).

[30] Saptarshi Roy, Tamoghna Das, Debmalya Das, Aditi Sen(De), and Ujjwal Sen, "How efficient is transport of quantum cargo through multiple highways?", Annals of Physics 422, 168281 (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-19 10:07:00) and SAO/NASA ADS (last updated successfully 2024-04-19 10:07:01). The list may be incomplete as not all publishers provide suitable and complete citation data.