Quantum repeaters with individual rare-earth ions at telecommunication wavelengths

F. Kimiaee Asadi, N. Lauk, S. Wein, N. Sinclair, C. O'Brien, and C. Simon

Institute for Quantum Science and Technology, and Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We present a quantum repeater scheme that is based on individual erbium and europium ions. Erbium ions are attractive because they emit photons at telecommunication wavelength, while europium ions offer exceptional spin coherence for long-term storage. Entanglement between distant erbium ions is created by photon detection. The photon emission rate of each erbium ion is enhanced by a microcavity with high Purcell factor, as has recently been demonstrated. Entanglement is then transferred to nearby europium ions for storage. Gate operations between nearby ions are performed using dynamically controlled electric-dipole coupling. These gate operations allow entanglement swapping to be employed in order to extend the distance over which entanglement is distributed. The deterministic character of the gate operations allows improved entanglement distribution rates in comparison to atomic ensemble-based protocols. We also propose an approach that utilizes multiplexing in order to enhance the entanglement distribution rate.

► BibTeX data

► References

[1] T. Jennewein and B. Higgins, Physics World 26, 52 (2013).

[2] P. Komar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, Nat. Phys. 10, 582 (2014).

[3] D. Gottesman, T. Jennewein, and S. Croke, Phys. Rev. Lett. 109, 070503 (2012).

[4] H. J. Kimble, Nature 453, 1023 (2008).

[5] C. Simon, Nat. Photonics 11, 678– (2017).

[6] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).

[7] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod. Phys. 83, 33 (2011).

[8] W. P. Grice, Phys. Rev. A 84, 042331 (2011).

[9] S. Wein, K. Heshami, C. A. Fuchs, H. Krovi, Z. Dutton, W. Tittel, and C. Simon, Phys. Rev. A 94, 032332 (2016).

[10] N. Sangouard, R. Dubessy, and C. Simon, Phys. Rev. A 79, 042340 (2009).

[11] S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, Nature 484, 195 (2012).

[12] A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).

[13] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. Blok, L. Robledo, T. Taminiau, M. Markham, D. Twitchen, L. Childress, et al., Nature 497, 86 (2013).

[14] B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Nature 526, 682 (2015).

[15] D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe, Nature 449, 68 (2007).

[16] L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, Phys. Rev. Lett. 110, 083603 (2013).

[17] K. J. Morse, R. J. Abraham, A. DeAbreu, C. Bowness, T. S. Richards, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, M. L. Thewalt, et al., Science advances 3, e1700930 (2017).

[18] A. Delteil, Z. Sun, W. Gao, E. Togan, S. Faelt, and A. Imamoglu, Nat. Phys. 12, 218 (2016).

[19] R. Stockill, M. J. Stanley, L. Huthmacher, E. Clarke, M. Hugues, A. J. Miller, C. Matthiesen, C. Le Gall, and M. Atatüre, Phys. Rev. Lett. 119, 010503 (2017).

[20] W. Tittel, M. Afzelius, T. Chaneliere, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, Laser & Photonics Rev. 4, 244 (2010).

[21] F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, J. Mod. Opt. 60, 1519 (2013).

[22] S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, Proc. Natl. Acad. Sci. 106, 10917 (2009).

[23] Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, Nano Letters 14, 1982 (2014).

[24] D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Science 325, 70 (2009).

[25] R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, Phys. Rev. Lett. 85, 3301 (2000).

[26] R. de Sousa and S. Das Sarma, Phys. Rev. B 68, 115322 (2003).

[27] K. Xia, R. Kolesov, Y. Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, Phys. Rev. Lett. 115, 093602 (2015).

[28] B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, Phys. Rev. Lett. 104, 080502 (2010).

[29] M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. De Riedmatten, N. Gisin, et al., Phys. Rev. Lett. 104, 040503 (2010).

[30] G. Heinze, C. Hubrich, and T. Halfmann, Phys. Rev. Lett. 111, 033601 (2013).

[31] C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, Phys. Rev. Lett. 118, 210501 (2017).

[32] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517, 177 (2015a).

[33] T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, et al., arXiv preprint arXiv:1803.07520 (2018).

[34] A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, Phys. Rev. Lett. 120, 243601 (2018).

[35] R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. Hemmer, and J. Wrachtrup, Nat. Commun. 3, 1029 (2012).

[36] C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, Nature 497, 91 (2013).

[37] T. Utikal, E. Eichhammer, L. Petersen, A. Renn, S. Götzinger, and V. Sandoghdar, Nat. Commun. 5, 3627 (2014).

[38] T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, Nat. Commun. 6, 8206 (2015b).

[39] T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, Science 357, 1392 (2017).

[40] J. J. Longdell and M. J. Sellars, Phys. Rev. A 69, 032307 (2004).

[41] J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 93, 130503 (2004).

[42] A. Reiserer, N. Kalb, M. S. Blok, K. J. van Bemmelen, T. H. Taminiau, R. Hanson, D. J. Twitchen, and M. Markham, Phys. Rev. X 6, 021040 (2016).

[43] S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310 (2005).

[44] G. Liu and B. Jacquier, Spectroscopic properties of rare earths in optical materials, Vol. 83 (Springer Science & Business Media, 2006).

[45] D. McAuslan, J. J. Longdell, and M. Sellars, Phys. Rev. A 80, 062307 (2009).

[46] N. Ohlsson, R. K. Mohan, and S. Kröll, Opt. Commun. 201, 71 (2002).

[47] S. Altner, G. Zumofen, U. Wild, and M. Mitsunaga, Phys. Rev. B 54, 17493 (1996).

[48] C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 98, 190503 (2007).

[49] O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007).

[50] N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, Phys. Rev. Lett. 113, 053603 (2014).

[51] L.-M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).

[52] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat. Commun. 8 (2017).

[53] C. W. Thiel, W. R. Babbitt, and R. L. Cone, Phys. Rev. B 85, 174302 (2012).

[54] T. Kornher, K. Xia, R. Kolesov, N. Kukharchyk, R. Reuter, P. Siyushev, R. Stöhr, M. Schreck, H. W. Becker, B. Villa, A. D. Wieck, and J. Wrachtrup, Appl. Phys. Lett. 108, 053108 (2016).

[55] M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, Nat. Commun. 8, 889 (2017).

[56] E. Murray, D. J. P. Ellis, T. Meany, F. F. Floether, J. P. Lee, J. P. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, A. J. Bennett, and A. J. Shields, Appl. Phys. Lett. 107, 171108 (2015).

[57] J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, Nano Letters 17, 7394 (2017).

[58] S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, Phys. Rev. B 78, 085410 (2008).

[59] T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, Phys. Rev. B 73, 075101 (2006).

[60] S. Probst, H. Rotzinger, A. V. Ustinov, and P. A. Bushev, Phys. Rev. B 92, 014421 (2015).

[61] O. Guillot-Noël, H. Vezin, P. Goldner, F. Beaudoux, J. Vincent, J. Lejay, and I. Lorgeré, Phys. Rev. B 76, 180408 (2007).

[62] E. Fraval, M. J. Sellars, A. Morrison, and A. Ferris, J. Lumin. 107, 347 (2004).

[63] R. M. Macfarlane and R. M. Shelby, Spectroscopy of Solids Containing Rare Earth Ions, edited by A. A. Kaplyanskii and R. M. Macfarlane (North Holland, Amsterdam, 1987).

[64] P. Siyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang, C. Duan, N. Kukharchyk, A. Wieck, R. Kolesov, et al., Nat. Commun. 5 (2014).

[65] B. Lauritzen, S. R. Hastings-Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, Phys. Rev. A 78, 043402 (2008).

[66] J. Minář™, B. Lauritzen, H. de Riedmatten, M. Afzelius, C. Simon, and N. Gisin, New J. Phys. 11, 113019 (2009).

[67] R. M. Macfarlane, J. Lumin. 125, 156 (2007), festschrift in Honor of Academician Alexander A. Kaplyanskii.

[68] J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, Phys. Rev. A 75, 012304 (2007).

[69] Y. Sun, T. Böttger, C. W. Thiel, and R. L. Cone, Phys. Rev. B 77, 085124 (2008).

[70] F. M. Pichanick, P. G. H. Sandars, and G. K. Woodgate, Proc. Royal Soc. A 257, 277 (1960).

[71] C. O'Brien, T. Zhong, A. Faraon, and C. Simon, Phys. Rev. A 94, 043807 (2016).

[72] T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gérard, P. Senellart, and A. Auffèves, Phys. Rev. Lett. 114, 193601 (2015).

[73] T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, Phys. Rev. B 79, 115104 (2009).

[74] A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032 (2008).

[75] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, et al., Nat. Photonics 7, 210 (2013).

[76] J. G. Bartholomew, R. L. Ahlefeldt, and M. J. Sellars, Phys. Rev. B 93, 014401 (2016).

[77] M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, Phys. Rev. Lett. 119, 083601 (2017).

[78] K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, Nat. Photonics 12, 297 (2018).

[79] M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, Nat. Phys. (2017), 10.1038/​nphys4254.

[80] B. Car, L. Veissier, A. Louchet-Chauvet, J.-L. Le Gouët, and T. Chanelière, Phys. Rev. Lett. 120, 197401 (2018).

Cited by

[1] F. Kimiaee Asadi, S. C. Wein, and C. Simon, "Cavity-assisted controlled phase-flip gates", Physical Review A 102 1, 013703 (2020).

[2] Sumeet Khatri, Corey T. Matyas, Aliza U. Siddiqui, and Jonathan P. Dowling, "Practical figures of merit and thresholds for entanglement distribution in quantum networks", Physical Review Research 1 2, 023032 (2019).

[3] Kenneth Sharman, Faezeh Kimiaee Asadi, Stephen C Wein, and Christoph Simon, "Quantum repeaters based on individual electron spins and nuclear-spin-ensemble memories in quantum dots", Quantum 5, 570 (2021).

[4] Stephen C. Wein, Jia-Wei Ji, Yu-Feng Wu, Faezeh Kimiaee Asadi, Roohollah Ghobadi, and Christoph Simon, "Analyzing photon-count heralded entanglement generation between solid-state spin qubits by decomposing the master-equation dynamics", Physical Review A 102 3, 033701 (2020).

[5] Tim Coopmans, Robert Knegjens, Axel Dahlberg, David Maier, Loek Nijsten, Julio de Oliveira Filho, Martijn Papendrecht, Julian Rabbie, Filip Rozpędek, Matthew Skrzypczyk, Leon Wubben, Walter de Jong, Damian Podareanu, Ariana Torres-Knoop, David Elkouss, and Stephanie Wehner, "NetSquid, a NETwork Simulator for QUantum Information using Discrete events", Communications Physics 4 1, 164 (2021).

[6] Amirhossein Alizadehkhaledi, Adriaan L. Frencken, Frank C. J. M. van Veggel, and Reuven Gordon, "Isolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength", Nano Letters 20 2, 1018 (2020).

[7] Jacob P. Covey, Alp Sipahigil, Szilard Szoke, Neil Sinclair, Manuel Endres, and Oskar Painter, "Telecom-Band Quantum Optics with Ytterbium Atoms and Silicon Nanophotonics", Physical Review Applied 11 3, 034044 (2019).

[8] Koji Azuma, Stefan Bäuml, Tim Coopmans, David Elkouss, and Boxi Li, "Tools for quantum network design", AVS Quantum Science 3 1, 014101 (2021).

[9] Sourabh Kumar, Nikolai Lauk, and Christoph Simon, "Towards long-distance quantum networks with superconducting processors and optical links", Quantum Science and Technology 4 4, 045003 (2019).

[10] Bernardo Casabone, Chetan Deshmukh, Shuping Liu, Diana Serrano, Alban Ferrier, Thomas Hümmer, Philippe Goldner, David Hunger, and Hugues de Riedmatten, "Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles", Nature Communications 12 1, 3570 (2021).

[11] E. Shchukin, F. Schmidt, and P. van Loock, "Waiting time in quantum repeaters with probabilistic entanglement swapping", Physical Review A 100 3, 032322 (2019).

[12] F Kimiaee Asadi, S C Wein, and C Simon, "Protocols for long-distance quantum communication with single 167Er ions", Quantum Science and Technology 5 4, 045015 (2020).

[13] Saptarshi Roy, Tamoghna Das, Debmalya Das, Aditi Sen(De), and Ujjwal Sen, "How efficient is transport of quantum cargo through multiple highways?", Annals of Physics 422, 168281 (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2021-12-08 04:38:14) and SAO/NASA ADS (last updated successfully 2021-12-08 04:38:15). The list may be incomplete as not all publishers provide suitable and complete citation data.