Real Randomized Benchmarking

A. K. Hashagen1, S. T. Flammia2,3, D. Gross4, and J. J. Wallman5

1Department of Mathematics, Technical University of Munich, Germany
2Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, Australia
3Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
4Institute for Theoretical Physics, University of Cologne, Germany
5Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Canada

Randomized benchmarking provides a tool for obtaining precise quantitative estimates of the average error rate of a physical quantum channel. Here we define real randomized benchmarking, which enables a separate determination of the average error rate in the real and complex parts of the channel. This provides more fine-grained information about average error rates with approximately the same cost as the standard protocol. The protocol requires only averaging over the real Clifford group, a subgroup of the full complex Clifford group, and makes use of the fact that it forms an orthogonal 2-design. It therefore allows benchmarking of fault-tolerant gates for an encoding which does not contain the full Clifford group transversally. Furthermore, our results are especially useful when considering quantum computations on rebits (or real encodings of complex computations), in which case the real Clifford group now plays the role of the complex Clifford group when studying stabilizer circuits.

► BibTeX data

► References

[1] S. Asaad, C. Dickel, N. K. Langford, S. Poletto, A. Bruno, M. A. Rol, D. Deurloo, and L. DiCarlo. Independent, extensible control of same-frequency superconducting qubits by selective broadcasting. npj Quantum Inf., 2: 16029, Aug 2016. 10.1038/​npjqi.2016.29.
https://doi.org/10.1038/npjqi.2016.29

[2] M. Aschbacher. Finite group theory, volume 10. Cambridge University Press, 2000. 10.1017/​CBO9781139175319.
https://doi.org/10.1017/CBO9781139175319

[3] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508: 500-503, Apr 2014. 10.1038/​nature13171.
https://doi.org/10.1038/nature13171

[4] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus, A. M. Meier, E. Knill, D. Leibfried, and D. J. Wineland. Single-qubit-gate error below ${\mathbf{10}}^{{-}\mathbf{4}}$ in a trapped ion. Phys. Rev. A, 84: 030303, Sep 2011. 10.1103/​PhysRevA.84.030303.
https://doi.org/10.1103/PhysRevA.84.030303

[5] W. G. Brown and B. Eastin. Randomized benchmarking with restricted gate sets. Phys. Rev. A, 97: 062323, 2018. 10.1103/​PhysRevA.97.062323.
https://doi.org/10.1103/PhysRevA.97.062323

[6] A. R. Calderbank, P. J. Cameron, W. M. Kantor, and J. J. Seidel. Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. In Proceedings of the London Mathematical Society, volume 75, pages 436-480. Cambridge University Press, 1997a. 10.1112/​S0024611597000403.
https://doi.org/10.1112/S0024611597000403

[7] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum error correction and orthogonal geometry. Phys. Rev. Lett., 78: 405-408, Jan 1997b. 10.1103/​PhysRevLett.78.405.
https://doi.org/10.1103/PhysRevLett.78.405

[8] A. Carignan-Dugas, J. J. Wallman, and J. Emerson. Characterizing universal gate sets via dihedral benchmarking. Phys. Rev. A, 92: 060302, Dec 2015. 10.1103/​PhysRevA.92.060302.
https://doi.org/10.1103/PhysRevA.92.060302

[9] J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A. Houck, B. R. Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Randomized benchmarking and process tomography for gate errors in a solid-state qubit. Phys. Rev. Lett., 102: 090502, Mar 2009. 10.1103/​PhysRevLett.102.090502.
https://doi.org/10.1103/PhysRevLett.102.090502

[10] A. W. Cross, E. Magesan, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Scalable randomized benchmarking of non-Clifford gates. npj Quantum Inf., 2: 16012, Apr 2016. 10.1038/​npjqi.2016.12.
https://doi.org/10.1038/npjqi.2016.12

[11] C. Dankert, R. Cleve, J. Emerson, and E. Livine. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A, 80: 012304, Jul 2009. 10.1103/​PhysRevA.80.012304.
https://doi.org/10.1103/PhysRevA.80.012304

[12] P. De Groen and B. De Moor. The fit of a sum of exponentials to noisy data. J. Comput. Appl. Math., 20: 175-187, 1987. 10.1016/​0377-0427(87)90135-X.
https://doi.org/10.1016/0377-0427(87)90135-X

[13] J. Dehaene and B. De Moor. Clifford group, stabilizer states, and linear and quadratic operations over GF(2). Phys. Rev. A, 68: 042318, Oct 2003. 10.1103/​PhysRevA.68.042318.
https://doi.org/10.1103/PhysRevA.68.042318

[14] J. Emerson, R. Alicki, and K. Zyczkowski. Scalable noise estimation with random unitary operators. J. Opt. B, 7 (10): S347, 2005. 10.1088/​1464-4266/​7/​10/​021.
https://doi.org/10.1088/1464-4266/7/10/021

[15] J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest, J. Baugh, D. G. Cory, and R. Laflamme. Symmetrized characterization of noisy quantum processes. Science, 317 (5846): 1893-1896, 2007. 10.1126/​science.1145699.
https://doi.org/10.1126/science.1145699

[16] J. M. Epstein, A. W. Cross, E. Magesan, and J. M. Gambetta. Investigating the limits of randomized benchmarking protocols. Phys. Rev. A, 89 (6): 062321, Jun 2014. 10.1103/​PhysRevA.89.062321.
https://doi.org/10.1103/PhysRevA.89.062321

[17] S. T. Flammia, D. Gross, Y. Liu, and J. Eisert. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys., 14 (9): 095022, 2012. 10.1088/​1367-2630/​14/​9/​095022.
https://doi.org/10.1088/1367-2630/14/9/095022

[18] M. A. Fogarty, M. Veldhorst, R. Harper, C. H. Yang, S. D. Bartlett, S. T. Flammia, and A. S. Dzurak. Nonexponential fidelity decay in randomized benchmarking with low-frequency noise. Phys. Rev. A, 92: 022326, Aug 2015. 10.1103/​PhysRevA.92.022326.
https://doi.org/10.1103/PhysRevA.92.022326

[19] J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland. Randomized benchmarking of multiqubit gates. Phys. Rev. Lett., 108: 260503, Jun 2012. 10.1103/​PhysRevLett.108.260503.
https://doi.org/10.1103/PhysRevLett.108.260503

[20] J. M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R. Johnson, J. A. Smolin, J. M. Chow, C. A. Ryan, C. Rigetti, S. Poletto, T. A. Ohki, M. B. Ketchen, and M. Steffen. Characterization of addressability by simultaneous randomized benchmarking. Phys. Rev. Lett., 109: 240504, Dec 2012. 10.1103/​PhysRevLett.109.240504.
https://doi.org/10.1103/PhysRevLett.109.240504

[21] D. Gottesman. The Heisenberg representation of quantum computers. In S. P. Corney, R. Delbourgo, and P. D. Jarvis, editors, Proceedings of the XXII International Colloquium on Group theoretical methods in physics, pages 32-43. Cambridge, MA, International Press, 1999.

[22] C. Granade. Learning multiexponential models with QInfer. http:/​/​www.cgranade.com/​blog/​2016/​10/​07/​rb-multiexponential.html, Oct 2016.
http:/​/​www.cgranade.com/​blog/​2016/​10/​07/​rb-multiexponential.html

[23] C. Granade, C. Ferrie, and D. G. Cory. Accelerated randomized benchmarking. New J. Phys., 17 (1): 013042, Jan 2015. 10.1088/​1367-2630/​17/​1/​013042.
https://doi.org/10.1088/1367-2630/17/1/013042

[24] C. Granade, C. Ferrie, I. Hincks, S. Casagrande, T. Alexander, J. Gross, M. Kononenko, and Y. Sanders. QInfer: Statistical inference software for quantum applications. Quantum, 1: 5, Apr 2017. ISSN 2521-327X. 10.22331/​q-2017-04-25-5.
https://doi.org/10.22331/q-2017-04-25-5

[25] D. Gross, K. Audenaert, and J. Eisert. Evenly distributed unitaries: On the structure of unitary designs. J. Math. Phys., 48 (5): 052104, 2007. 10.1063/​1.2716992.
https://doi.org/10.1063/1.2716992

[26] D. Gross, Y. Liu, S. T. Flammia, S. Becker, and J. Eisert. Quantum state tomography via compressed sensing. Phys. Rev. Lett., 105: 150401, Oct 2010. 10.1103/​PhysRevLett.105.150401.
https://doi.org/10.1103/PhysRevLett.105.150401

[27] D. Gross, S. Nezami, and M. Walter. Schur-Weyl duality for the Clifford group with applications: Property testing, a robust Hudson Theorem, and de Finetti representations. ArXiv e-prints: arXiv:1712.08628 [quant-ph], 2017.
arXiv:1712.08628

[28] R. Harper and S. Flammia. Fault tolerance in the IBM Q Experience. ArXiv e-prints: arXiv:1806.02359 [quant-ph], 2018.
arXiv:1806.02359

[29] T. Heinosaari and M. Ziman. The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement. Cambridge University Press, 2012. 10.1017/​CBO9781139031103.
https://doi.org/10.1017/CBO9781139031103

[30] J. Helsen, J. J. Wallman, S. T. Flammia, and S. Wehner. Multi-qubit randomized benchmarking using few samples. ArXiv e-prints: arXiv:1701.04299 [quant-ph], Jan 2017.
arXiv:1701.04299

[31] J. Helsen, J. J. Wallman, and S. Wehner. Representations of the multi-qubit Clifford group. J. Math. Phys., 59, 2018. 10.1063/​1.4997688.
https://doi.org/10.1063/1.4997688

[32] E. Hostens, J. Dehaene, and B. De Moor. Stabilizer states and Clifford operations for systems of arbitrary dimensions and modular arithmetic. Phys. Rev. A, 71: 042315, Apr 2005. 10.1103/​PhysRevA.71.042315.
https://doi.org/10.1103/PhysRevA.71.042315

[33] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys., 3: 275-278, Dec 1972. 10.1016/​0034-4877(72)90011-0.
https://doi.org/10.1016/0034-4877(72)90011-0

[34] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. Randomized benchmarking of quantum gates. Phys. Rev. A, 77: 012307, Jan 2008. 10.1103/​PhysRevA.77.012307.
https://doi.org/10.1103/PhysRevA.77.012307

[35] R. Koenig and J. A. Smolin. How to efficiently select an arbitrary Clifford group element. J. Math. Phys., 55 (12): 122202, 2014. 10.1063/​1.4903507.
https://doi.org/10.1063/1.4903507

[36] R. Kueng and D. Gross. Qubit stabilizer states are complex projective 3-designs. ArXiv e-prints: arXiv:1510.02767 [quant-ph], 2015.
arXiv:1510.02767

[37] B. Lévi, C. C. López, J. Emerson, and D. G. Cory. Efficient error characterization in quantum information processing. Phys. Rev. A, 75: 022314, Feb 2007. 10.1103/​PhysRevA.75.022314.
https://doi.org/10.1103/PhysRevA.75.022314

[38] E. Magesan, J. M. Gambetta, and J. Emerson. Robust randomized benchmarking of quantum processes. Phys. Rev. Lett., 106: 180504, 2011. 10.1103/​PhysRevLett.106.180504.
https://doi.org/10.1103/PhysRevLett.106.180504

[39] E. Magesan, J. M. Gambetta, and J. Emerson. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A, 85: 042311, Apr 2012. 10.1103/​PhysRevA.85.042311.
https://doi.org/10.1103/PhysRevA.85.042311

[40] C. B. Mendl and M. M. Wolf. Unital quantum channels - convex structure and revivals of Birkhoff's theorem. Commun. Math. Phys., 289 (3): 1057-1086, 2009. 10.1007/​s00220-009-0824-2.
https://doi.org/10.1007/s00220-009-0824-2

[41] S. T. Merkel, E. J. Pritchett, and B. H. Fong. Randomized benchmarking as convolution: Fourier analysis of gate dependent errors. ArXiv e-prints: arXiv:1804.05951 [quant-ph], 2018.
arXiv:1804.05951

[42] J. T. Muhonen, A. Laucht, S. Simmons, J. P. Dehollain, R. Kalra, F. E. Hudson, S. Freer, K. M. Itoh, D. N. Jamieson, J. C. McCallum, A. S. Dzurak, and A. Morello. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter, 27 (15): 154205, 2015. 10.1088/​0953-8984/​27/​15/​154205.
https://doi.org/10.1088/0953-8984/27/15/154205

[43] G. Nebe, E. M. Rains, and N. J. A. Sloane. The invariants of the Clifford group. Des. Codes Cryptogr., 24 (1): 99-122, Sep 2001. 10.1023/​A:1011233615437.
https://doi.org/10.1023/A:1011233615437

[44] G. Nebe, E. M. Rains, and N. J. A. Sloane. Self-Dual Codes and Invariant Theory. Algorithms and Computation in Mathematics. Springer Berlin Heidelberg, 2006. 10.1007/​3-540-30731-1.
https://doi.org/10.1007/3-540-30731-1

[45] S. Olmschenk, R. Chicireanu, K. D. Nelson, and J. V. Porto. Randomized benchmarking of atomic qubits in an optical lattice. New J. Phys., 12 (11): 113007, 2010. 10.1088/​1367-2630/​12/​11/​113007.
https://doi.org/10.1088/1367-2630/12/11/113007

[46] T. Rudolph and L. Grover. A 2 rebit gate universal for quantum computing. ArXiv e-prints: arXiv:quant-ph/​0210187, Oct 2002.
arXiv:quant-ph/0210187

[47] C. A. Ryan, M. Laforest, and R. Laflamme. Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing. New J. Phys., 11 (1): 013034, 2009. 10.1088/​1367-2630/​11/​1/​013034.
https://doi.org/10.1088/1367-2630/11/1/013034

[48] B. Simon. Representations of finite and compact groups, volume 10 of Graduate studies in mathematics. American Mathematical Society, 1996. 10.1090/​gsm/​010.
https://doi.org/10.1090/gsm/010

[49] K. G. H. Vollbrecht and R. F. Werner. Entanglement measures under symmetry. Phys. Rev. A, 64: 062307, Nov 2001. 10.1103/​PhysRevA.64.062307.
https://doi.org/10.1103/PhysRevA.64.062307

[50] J. J. Wallman. Randomized benchmarking with gate-dependent noise. Quantum, 2: 47, Jan 2018a. 10.22331/​q-2018-01-29-47.
https://doi.org/10.22331/q-2018-01-29-47

[51] J. J. Wallman and S. T. Flammia. Randomized benchmarking with confidence. New J. Phys., 16 (10): 103032, 2014. 10.1088/​1367-2630/​16/​10/​103032.
https://doi.org/10.1088/1367-2630/16/10/103032

[52] Joel Wallman. Randomized benchmarking with gate-dependent noise. Quantum, 2: 47, 2018b. 10.22331/​q-2018-01-29-47.
https://doi.org/10.22331/q-2018-01-29-47

[53] Z. Webb. The Clifford group forms a unitary 3-design. Quantum Inf. Comput., 16: 1379-1400, 2016. 10.26421/​QIC16.15-16.
https://doi.org/10.26421/QIC16.15-16

[54] T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz, L. Isenhower, and M. Saffman. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett., 114: 100503, Mar 2015. 10.1103/​PhysRevLett.114.100503.
https://doi.org/10.1103/PhysRevLett.114.100503

[55] H. Zhu. Multiqubit Clifford groups are unitary 3-designs. Phys. Rev. A, 96 (6): 062336, 2017. 10.1103/​PhysRevA.96.062336.
https://doi.org/10.1103/PhysRevA.96.062336

[56] H. Zhu, R. Kueng, M. Grassl, and D. Gross. The Clifford group fails gracefully to be a unitary 4-design. ArXiv e-prints: arXiv:1609.08172 [quant-ph], Sep 2016.
arXiv:1609.08172

► Cited by (beta)

Crossref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.