In situ upgrade of quantum simulators to universal computers
1Department of Physics, Imperial College, SW7 2AZ London, UK
2Institute of Mathematics, Physics and Computer Science, Aberystwyth University, SY23 3FL Aberystwyth, UK
Published: | 2018-08-08, volume 2, page 80 |
Eprint: | arXiv:1701.01723v4 |
Doi: | https://doi.org/10.22331/q-2018-08-08-80 |
Citation: | Quantum 2, 80 (2018). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Quantum simulators, machines that can replicate the dynamics of quantum systems, are being built as useful devices and are seen as a stepping stone to universal quantum computers. A key difference between the two is that computers have the ability to perform the logic gates that make up algorithms. We propose a method for learning how to construct these gates efficiently by using the simulator to perform optimal control on itself. This bypasses two major problems of purely classical approaches to the control problem: the need to have an accurate model of the system, and a classical computer more powerful than the quantum one to carry out the required simulations. Strong evidence that the scheme scales polynomially in the number of qubits, for systems of up to 9 qubits with Ising interactions, is presented from numerical simulations carried out in different topologies. This suggests that this in situ approach is a practical way of upgrading quantum simulators to computers.

Featured image: A classical computer finds a control pulse which enables a quantum simulator to perform logic
gates. It does this in an iterative process by applying a control pulse to the simulator and then improving it based on the result of measurements.
► BibTeX data
► References
[1] J. I. Cirac and Peter Zoller. Goals and opportunities in quantum simulation. Nat. Phys., 8: 264, apr 2012. 10.1038/nphys2275.
https://doi.org/10.1038/nphys2275
[2] Tomi H. Johnson, Stephen R. Clark, and Dieter Jaksch. What is a quantum simulator? EPJ Quantum Technol., 1: 1, 2014. 10.1140/epjqt10.
https://doi.org/10.1140/epjqt10
[3] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86: 153, mar 2014. 10.1103/RevModPhys.86.153.
https://doi.org/10.1103/RevModPhys.86.153
[4] David P. DiVincenzo and IBM. The Physical Implementation of Quantum Computation. arXiv:quant-ph/0002077, feb 2000. 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
arXiv:quant-ph/0002077
[5] Seth Lloyd. Almost Any Quantum Logic Gate is Universal. Phys. Rev. Lett., 75: 346, 1995. 10.1103/PhysRevLett.75.346.
https://doi.org/10.1103/PhysRevLett.75.346
[6] Jennifer L. Dodd, Michael A. Nielsen, Michael J. Bremner, et al. Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries. Phys. Rev. A, 65: 040301, 2002. 10.1103/PhysRevA.65.040301.
https://doi.org/10.1103/PhysRevA.65.040301
[7] Daniel Burgarth, Sougato Bose, Christoph Bruder, et al. Local controllability of quantum networks. Phys. Rev. A, 79: 060305(R), 2009. 10.1103/PhysRevA.79.060305.
https://doi.org/10.1103/PhysRevA.79.060305
[8] Shai Machnes, U. Sander, Steffen J. Glaser, et al. Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework. Phys. Rev. A, 84: 022305, 2011. 10.1103/PhysRevA.84.022305.
https://doi.org/10.1103/PhysRevA.84.022305
[9] Steffen J. Glaser, Ugo Boscain, Tommaso Calarco, et al. Training Schrodinger's cat: Quantum optimal control: Strategic report on current status, visions and goals for research in Europe. Eur. Phys. J. D, 69: 279, 2015. 10.1140/epjd/e2015-60464-1.
https://doi.org/10.1140/epjd/e2015-60464-1
[10] D. J. Egger and Frank K. Wilhelm. Adaptive hybrid optimal quantum control for imprecisely characterized systems. Phys. Rev. Lett., 112: 240503, 2014. 10.1103/PhysRevLett.112.240503.
https://doi.org/10.1103/PhysRevLett.112.240503
[11] J. Kelly, R. Barends, B. Campbell, et al. Optimal quantum control using randomized benchmarking. Phys. Rev. Lett., 112: 240504, 2014. 10.1103/PhysRevLett.112.240504.
https://doi.org/10.1103/PhysRevLett.112.240504
[12] Herschel Rabitz, Regina de Vivie-Riedle, Marcus Motzkus, et al. Whither the Future of Controlling Quantum Phenomena? Science, 288: 824, 2016. 10.1126/science.288.5467.824.
https://doi.org/10.1126/science.288.5467.824
[13] Christopher Ferrie and Osama Moussa. Robust and efficient in situ quantum control. Phys. Rev. A, 91 (5): 052306, 2015. 10.1103/PhysRevA.91.052306.
https://doi.org/10.1103/PhysRevA.91.052306
[14] J. Kelly, R. Barends, A. G. Fowler, et al. Scalable in-situ qubit calibration during repetitive error detection. Phys. Rev. A, 94: 032321, 2016. 10.1103/PhysRevA.94.032321.
https://doi.org/10.1103/PhysRevA.94.032321
[15] Jun Li, Xiaodong Yang, Xin Hua Peng, et al. Hybrid Quantum-Classical Approach to Quantum Optimal Control. Phys. Rev. Lett., 118: 150503, 2017. 10.1103/PhysRevLett.118.150503.
https://doi.org/10.1103/PhysRevLett.118.150503
[16] Patrick Rebentrost, Maria Schuld, Leonard Wossnig, et al. Quantum gradient descent and Newton's method for constrained polynomial optimization. arxiv:1612.01789, 2016. URL http://arxiv.org/abs/1612.01789.
arXiv:1612.01789
[17] Dawei Lu, Keren Li, Jun Li, et al. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. njp Quantum Inf., 3: 45, 2017. 10.1038/s41534-017-0045-z.
https://doi.org/10.1038/s41534-017-0045-z
[18] Michael Johanning, Andrés F. Varón, and Christof Wunderlich. Quantum simulations with cold trapped ions. J. Phys. B, 42: 154009, 2009. 10.1088/0953-4075/42/15/154009.
https://doi.org/10.1088/0953-4075/42/15/154009
[19] B. P. Lanyon, C. Hempel, Daniel Nigg, et al. Universal Digital Quantum SImulation with Trapped Ions. Science, 334: 57, 2011. 10.1126/science.1208001.
https://doi.org/10.1126/science.1208001
[20] Rainer Blatt and Christian F. Roos. Quantum simulations with trapped ions. Nat. Phys., 8: 277, 2012. 10.1038/nphys2252.
https://doi.org/10.1038/nphys2252
[21] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène. Quantum simulations with ultracold quantum gases. Nat. Phys., 8: 267, 2012. 10.1038/nphys2259.
https://doi.org/10.1038/nphys2259
[22] Henning Labuhn, Daniel Barredo, Sylvain Ravets, et al. Realizing quantum Ising models in tunable two-dimensional arrays of single Rydberg atoms. Nature, 534: 667, 2016. 10.1038/nature18274.
https://doi.org/10.1038/nature18274
[23] Xin Hua Peng and Dieter Suter. Spin qubits for quantum simulations. Front. Phys. China, 5: 1, 2010. 10.1007/s11467-009-0067-x.
https://doi.org/10.1007/s11467-009-0067-x
[24] J. Cai, A. Retzker, Fedor Jelezko, et al. A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys., 9: 168, 2013. 10.1038/nphys2519.
https://doi.org/10.1038/nphys2519
[25] Isabela A. Silva, Alexandre M. Souza, Thomas R. Bromley, et al. Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett., 117: 160402, 2016. 10.1103/PhysRevLett.117.160402.
https://doi.org/10.1103/PhysRevLett.117.160402
[26] Andrew A. Houck, Hakan E. Türeci, and Jens Koch. On-chip quantum simulation with superconducting circuits. Nat. Phys., 8: 292, 2012. 10.1038/nphys2251.
https://doi.org/10.1038/nphys2251
[27] P. J. J. O'Malley, Ryan Babbush, I. D. Kivlichan, et al. Scalable Quantum Simulation of Molecular Energies. Phys. Rev. X, 6: 031007, 2016. 10.1103/PhysRevX.6.031007.
https://doi.org/10.1103/PhysRevX.6.031007
[28] P. L. McMahon, Alireza Marandi, Yoshitaka Haribara, et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science, 354: 614, 2016. 10.1126/science.aah5178.
https://doi.org/10.1126/science.aah5178
[29] J. F. Poyatos, J. I. Cirac, and Peter Zoller. Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate. Phys. Rev. Lett., 78: 390, 1997. 10.1103/PhysRevLett.78.390.
https://doi.org/10.1103/PhysRevLett.78.390
[30] Yoav Lahini, Gregory R. Steinbrecher, Adam D. Bookatz, et al. Quantum logic using correlated one-dimensional quantum walks. npj Quantum Inf., 4 (1), 2018. 10.1038/s41534-017-0050-2.
https://doi.org/10.1038/s41534-017-0050-2
[31] Alexei Gilchrist, Nathan K. Langford, and Michael A. Nielsen. Distance measures to compare real and ideal quantum processes. Phys. Rev. A, 71: 062310, 2005. 10.1103/PhysRevA.71.062310.
https://doi.org/10.1103/PhysRevA.71.062310
[32] Marcus P. Da Silva, Olivier Landon-Cardinal, and David Poulin. Practical characterization of quantum devices without tomography. Phys. Rev. Lett., 107: 210404, 2011. 10.1103/PhysRevLett.107.210404.
https://doi.org/10.1103/PhysRevLett.107.210404
[33] Marcus Cramer, Martin B. Plenio, Steven T. Flammia, et al. Efficient quantum state tomography. Nat. Commun., 1: 149, 2010. 10.1038/ncomms1147.
https://doi.org/10.1038/ncomms1147
[34] Navin Khaneja, Timo Reiss, Cindie Kehlet, et al. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson., 172: 296, 2005. 10.1016/j.jmr.2004.11.004.
https://doi.org/10.1016/j.jmr.2004.11.004
[35] J R Johansson, P D Nation, and Franco Nori. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 183 (8), 2012. 10.1016/j.cpc.2012.11.019.
https://doi.org/10.1016/j.cpc.2012.11.019
[36] J. R. Johansson, Paul D. Nation, and Franco Nori. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 184: 1234, 2013. 10.1016/j.cpc.2012.11.019.
https://doi.org/10.1016/j.cpc.2012.11.019
[37] Alexander Pitchford, Paul D. Nation, Robert Johansson, et al. www.qutip.org, 2018. URL http://qutip.org/.
http://qutip.org/
[38] Alexander Pitchford and Benjamin Dive. github.com/ajgpitch/quantum-in_situ_opt/, 2018. URL https://github.com/ajgpitch/quantum-in_situ_opt/.
https://github.com/ajgpitch/quantum-in_situ_opt/
[39] Tak-San Ho, Jason Dominy, and Herschel Rabitz. Landscape of unitary transformations in controlled quantum dynamics. Phys. Rev. A, 79: 013422, 2009. 10.1103/PhysRevA.79.013422.
https://doi.org/10.1103/PhysRevA.79.013422
[40] Alexander N. Pechen and David J. Tannor. Are there traps in quantum control landscapes? Phys. Rev. Lett., 106: 120402, 2011. 10.1103/PhysRevLett.106.120402.
https://doi.org/10.1103/PhysRevLett.106.120402
[41] Benjamin Russell, Herschel Rabitz, and Re-Bing Wu. Quantum Control Landscape Are Almost Always Trap Free. arxiv:1608.06198, 2016. URL http://arxiv.org/abs/1608.06198.
arXiv:1608.06198
[42] Björn Bartels and Florian Mintert. Smooth optimal control with Floquet theory. Phys. Rev. A, 88: 052315, 2013. 10.1103/PhysRevA.88.052315.
https://doi.org/10.1103/PhysRevA.88.052315
[43] Patrick Doria, Tommaso Calarco, and Simone Montangero. Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett., 106: 190501, 2011. 10.1103/PhysRevLett.106.190501.
https://doi.org/10.1103/PhysRevLett.106.190501
[44] Tommaso Caneva, Tommaso Calarco, and Simone Montangero. Chopped random-basis quantum optimization. Phys. Rev. A, 84: 022326, 2011. 10.1103/PhysRevA.84.022326.
https://doi.org/10.1103/PhysRevA.84.022326
[45] Shai Machnes, Elie Assémat, David Tannor, et al. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. Phys. Rev. Lett., 120: 150401, 2018. 10.1103/PhysRevLett.120.150401.
https://doi.org/10.1103/PhysRevLett.120.150401
[46] Pantita Palittapongarnpim, Peter Wittek, Ehsan Zahedinejad, et al. Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics. Neurocomputing, 0: 1, 2016. 10.1016/j.neucom.2016.12.087.
https://doi.org/10.1016/j.neucom.2016.12.087
[47] D. Daems, A. Ruschhaupt, D. Sugny, et al. Robust quantum control by a single-shot shaped pulse. Phys. Rev. Lett., 111 (5): 050404, 2013. 10.1103/PhysRevLett.111.050404.
https://doi.org/10.1103/PhysRevLett.111.050404
[48] Edwin Barnes, Xin Wang, and S. Das Sarma. Robust quantum control using smooth pulses and topological winding. Sci. Rep., 5: 12685, 2015. 10.1038/srep12685.
https://doi.org/10.1038/srep12685
[49] Benjamin Dive. Controlling Open Quantum Systems. Phd thesis, Imperial College London, 2017. URL http://hdl.handle.net/10044/1/56626.
http://hdl.handle.net/10044/1/56626
Cited by
[1] Rick Mukherjee, Frédéric Sauvage, Harry Xie, Robert Löw, and Florian Mintert, "Preparation of ordered states in ultra-cold gases using Bayesian optimization", New Journal of Physics 22 7, 075001 (2020).
[2] Dawei Lu, Keren Li, Jun Li, Hemant Katiyar, Annie Jihyun Park, Guanru Feng, Tao Xin, Hang Li, Guilu Long, Aharon Brodutch, Jonathan Baugh, Bei Zeng, and Raymond Laflamme, "Enhancing quantum control by bootstrapping a quantum processor of 12 qubits", npj Quantum Information 3 1, 45 (2017).
[3] Rick Mukherjee, Harry Xie, and Florian Mintert, "Bayesian Optimal Control of Greenberger-Horne-Zeilinger States in Rydberg Lattices", Physical Review Letters 125 20, 203603 (2020).
[4] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T. Sornborger, and Patrick J. Coles, "Quantum-assisted quantum compiling", Quantum 3, 140 (2019).
[5] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).
[6] Qi-Ming Chen, Xiaodong Yang, Christian Arenz, Re-Bing Wu, Xinhua Peng, István Pelczer, and Herschel Rabitz, "Combining the synergistic control capabilities of modeling and experiments: Illustration of finding a minimum-time quantum objective", Physical Review A 101 3, 032313 (2020).
[7] Guru-Vamsi Policharla and Sai Vinjanampathy, "Algorithmic Primitives for Quantum-Assisted Quantum Control", Physical Review Letters 127 22, 220504 (2021).
[8] Frédéric Sauvage and Florian Mintert, "Optimal Quantum Control with Poor Statistics", PRX Quantum 1 2, 020322 (2020).
[9] Christian Arenz and Herschel Rabitz, "Controlling Qubit Networks in Polynomial Time", Physical Review Letters 120 22, 220503 (2018).
[10] Alexander Pitchford, Andrey A. Rakhubovsky, Rick Mukherjee, Darren W. Moore, Frédéric Sauvage, Daniel Burgarth, Radim Filip, and Florian Mintert, "Optimal non-classical correlations of light with a levitated nano-sphere", arXiv:2006.15050, (2020).
[11] Kwok Chung Matthew Cheung and Florian Mintert, "High Fidelity Quantum Gates beyond spectral selection", arXiv:1711.06142, (2017).
[12] Qi-Ming Chen, Xiaodong Yang, Christian Arenz, Re-Bing Wu, Xinhua Peng, István Pelczer, and Herschel Rabitz, "Combining the synergistic control capabilities of modelling and experiments: illustration of finding a minimum time quantum objective", arXiv:1812.05042, (2018).
[13] Aharon Brodutch, Ryan Marchildon, and Amr S. Helmy, "Dynamically reconfigurable sources for arbitrary Gaussian states in integrated photonics circuits", Optics Express 26 13, 17635 (2018).
The above citations are from Crossref's cited-by service (last updated successfully 2023-06-06 15:12:28) and SAO/NASA ADS (last updated successfully 2023-06-06 15:12:29). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.