Quantum Computing in the NISQ era and beyond
Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA
Published: | 2018-08-06, volume 2, page 79 |
Eprint: | arXiv:1801.00862v3 |
Doi: | https://doi.org/10.22331/q-2018-08-06-79 |
Citation: | Quantum 2, 79 (2018). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.
► BibTeX data
► References
[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41, 303-332 (1999), 10.1137/S0036144598347011.
https://doi.org/10.1137/S0036144598347011
[2] A. P. Lund, M. J. Bremner, and T. C. Ralph, Quantum sampling problems, BosonSampling, and quantum supremacy, npj Quantum Information 3: 15 (2017), arXiv:1702.03061, 10.1038/s41534-017-0018-2.
https://doi.org/10.1038/s41534-017-0018-2
arXiv:1702.03061
[3] A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549, 203-209 (2017), 10.1038/nature23458.
https://doi.org/10.1038/nature23458
[4] S. P. Jordan, Quantum algorithm zoo, http://math.nist.gov/quantum/zoo/.
http://math.nist.gov/quantum/zoo/
[5] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information, 15023 (2016), arXiv:1511.04206, 10.1038/npjqi.2015.23.
https://doi.org/10.1038/npjqi.2015.23
arXiv:1511.04206
[6] L. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325 (1997), arXiv:quant-ph/9706033, 10.1103/PhysRevLett.79.325.
https://doi.org/10.1103/PhysRevLett.79.325
arXiv:quant-ph/9706033
[7] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26, 1510-1523 (1997), arXiv:quant-ph/9701001, 10.1137/S0097539796300933.
https://doi.org/10.1137/S0097539796300933
arXiv:quant-ph/9701001
[8] R. B. Laughlin and D. Pines, The theory of everything, PNAS 97, 28-31 (2000), 10.1073/pnas.97.1.28.
https://doi.org/10.1073/pnas.97.1.28
[9] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Physics 21, 467-488 (1982).
[10] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Proceedings of Symposia in Applied Matthematics 68 (2010), arXiv:0904.2557.
arXiv:0904.2557
[11] S. Boixo, S. V. Isakov, V. N. Smelyansky, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nature Physics 14, 595-600 (2018), arXiv:1608.00263 (2016), 10.1038/s41567-018-0124-x.
https://doi.org/10.1038/s41567-018-0124-x
arXiv:1608.00263
[12] S. Aaronson and L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, arXiv:1612.05903 (2017).
arXiv:1612.05903
[13] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, and R. Wisnieff, Breaking the 49-qubit barrier in the simulation of quantum circuits, arXiv:1710.05867 (2017).
arXiv:1710.05867
[14] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits, Phys. Rev. Lett. 117, 060504 (2016), arXiv:1512.04600, 10.1103/PhysRevLett.117.060504.
https://doi.org/10.1103/PhysRevLett.117.060504
arXiv:1512.04600
[15] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508, 500-503 (2014), arXiv:1402.4848, 10.1038/nature13171.
https://doi.org/10.1038/nature13171
arXiv:1402.4848
[16] D. J. Bernstein, J. Buchmann, E. Dahmen, editors, Post-Quantum Cryptography, Springer (2009), 10.1007/978-3-540-88702-7.
https://doi.org/10.1007/978-3-540-88702-7
[17] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, and A. Zeilinger, Using quantum key distribution for cryptographic purposes: a survey, Theoretical Computer Science 560, 62-81 (2014), arXiv:quant-ph/0701168, 10.1016/j.tcs.2014.09.018.
https://doi.org/10.1016/j.tcs.2014.09.018
arXiv:quant-ph/0701168
[18] S. Muralidharan, L. Li, J. Kim, N Lütkenhaus, M. D. Lukin, and L. Jiang, Efficient long distance quantum communication, Scientific Reports 6, 20463 (2016), arXiv:1509.08435, 10.1038/srep20463.
https://doi.org/10.1038/srep20463
arXiv:1509.08435
[19] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, M. J. Stevens, and L. K. Shalm, Experimentally generated randomness certified by the impossibility of superluminal signals, Nature 556, 223-226 (2018), arXiv:1803.06219, 10.1038/s41586-018-0019-0.
https://doi.org/10.1038/s41586-018-0019-0
arXiv:1803.06219
[20] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick, Certifiable randomness from a single quantum device, arXiv:1804.00640 (2018).
arXiv:1804.00640
[21] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017), arXiv:1611.04691, 10.1103/RevModPhys.89.035002.
https://doi.org/10.1103/RevModPhys.89.035002
arXiv:1611.04691
[22] J. Preskill, Quantum computing and the entanglement frontier, 25th Solvay Conference on Physics (2011), arXiv:1203.5813.
arXiv:1203.5813
[23] S. Khot, Hardness of approximation, Proceedings of the International Congress of Mathematicians (2014).
[24] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028 (2014).
arXiv:1411.4028
[25] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms, New J. Phys. 18, 023023 (2016), arXiv:1509.04279, 10.1038/ncomms5213.
https://doi.org/10.1038/ncomms5213
arXiv:1509.04279
[26] D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, Journal of the ACM 51, 385-463 (2004), arXiv:cs/0111050, 10.1145/990308.990310.
https://doi.org/10.1145/990308.990310
arXiv:cs/0111050
[27] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436-444 (2015), 10.1038/nature14539.
https://doi.org/10.1038/nature14539
[28] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining and detecting quantum speedup, Science 345, 420-424 (2014), 10.1126/science.1252319.
https://doi.org/10.1126/science.1252319
[29] S. Mandrà, H. G. Katzgraber, and C. Thomas, The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again), Quantum Sci. Technol. 2, 038501 (2017), arXiv:1703.00622, 10.1088/2058-9565/aa7877.
https://doi.org/10.1088/2058-9565/aa7877
arXiv:1703.00622
[30] T. Albash and D. A. Lidar, Adiabatic quantum computing, Rev. Mod. Phys. 90, 015002 (2018), arXiv:1611.04471, 10.1103/RevModPhys.90.015002.
https://doi.org/10.1103/RevModPhys.90.015002
arXiv:1611.04471
[31] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, SIAM Rev. 50, 755-787 (2008), arXiv:quant-ph/0405098.
arXiv:quant-ph/0405098
[32] S. Bravyi, D. DiVincenzo, R. I. Oliveira, and B. M. Terhal, The complexity of stoquastic local Hamiltonian problems, Quant. Inf. Comp. 8, 0361-0385 (2008), arXiv:quant-ph/0606140.
arXiv:quant-ph/0606140
[33] M. Jarret, S. P. Jordan, and B. Lackey, Adiabatic optimization versus diffusion Monte Carlo, Phys. Rev. A 94, 042318 (2016), arXiv:1607.03389, 10.1103/PhysRevA.94.042318.
https://doi.org/10.1103/PhysRevA.94.042318
arXiv:1607.03389
[34] A. D. King, J. Carrasquilla, I. Ozfidan, J. Raymond, E. Andriyash, A. Berkley, M. Reis, T. M. Lanting, R. Harris, G. Poulin-Lamarre, A. Yu. Smirnov, C. Rich, F. Altomare, P. Bunyk, J. Whittaker, L. Swenson, E. Hoskinson, Y. Sato, M. Volkmann, E. Ladizinsky, M. Johnson, J. Hilton, and M. H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits, arXiv:1803.02047 (2018).
arXiv:1803.02047
[35] I. H. Kim, Noise-resilient preparation of quantum many-body ground states, arXiv:1703.00032 (2017).
arXiv:1703.00032
[36] I. H. Kim and B. Swingle, Robust entanglement renormalization on a noisy quantum computer, arXiv:1711.07500 (2017).
arXiv:1711.07500
[37] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549, 195-202 (2017), arXiv:1611.09347, 10.1038/nature23474.
https://doi.org/10.1038/nature23474
arXiv:1611.09347
[38] S. Aaronson, Read the fine print, Nature Physics 11, 291-293 (2015), 10.1038/nphys3272.
https://doi.org/10.1038/nphys3272
[39] X. Gao, Z. Zhang, and L. Duan, An efficient quantum algorithm for generative machine learning, arXiv:1711.02038 (2017).
arXiv:1711.02038
[40] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009), arXiv:0811.3171, 10.1103/PhysRevLett.103.150502.
https://doi.org/10.1103/PhysRevLett.103.150502
arXiv:0811.3171
[41] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Preconditioned quantum linear system algorithm, Phys. Rev. Lett. 110, 250504 (2013), arXiv:1301.2340, 10.1103/PhysRevLett.110.250504.
https://doi.org/10.1103/PhysRevLett.110.250504
arXiv:1301.2340
[42] A. Montanaro and S. Pallister, Quantum algorithms and the finite element method, Phys. Rev. A 93, 032324 (2016), arXiv:1512.05903, 10.1103/PhysRevA.93.032324.
https://doi.org/10.1103/PhysRevA.93.032324
arXiv:1512.05903
[43] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum algorithm for simulating the wave equation, arXiv:1711.05394 (2017).
arXiv:1711.05394
[44] I. Kerenidis and A. Prakash, Quantum recommendation systems, arXiv:1603.08675 (2016).
arXiv:1603.08675
[45] E. Tang, A quantum-inspired classical algorithm for recommendation systems, Electronic Colloquium on Computational Complexity, TR18-12 (2018).
[46] F. G. S. L. Brandão and K. Svore, Quantum speed-ups for semidefinite programming, Proceedings of FOCS 2017, arXiv:1609.05537 (2017).
arXiv:1609.05537
[47] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and X. Wu, Exponential quantum speed-ups for semidefinite programming with applications to quantum learning, arXiv:1710.02581 (2017).
arXiv:1710.02581
[48] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction mechanisms on quantum computers, PNAS 117, 7555-7560 (2017), arXiv:1605.03590, 10.1073/pnas.1619152114.
https://doi.org/10.1073/pnas.1619152114
arXiv:1605.03590
[49] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer, Solving strongly correlated electron models on a quantum computer, Phys. Rev. A 92, 062310 (2015), arXiv:1506.05135, 10.1103/PhysRevA.92.062318.
https://doi.org/10.1103/PhysRevA.92.062318
arXiv:1506.05135
[50] J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, A. Aspuru-Guzik, Quantum information and computation for chemistry, NSF Workshop Report, arXiv:1706.05413 (2017).
arXiv:1706.05413
[51] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V Vuletić, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551, 579-584 (2017), arXiv:1707.04344, 10.1038/nature24622.
https://doi.org/10.1038/nature24622
arXiv:1707.04344
[52] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, arXiv:1708.01044 (2017), 10.1038/nature24654.
https://doi.org/10.1038/nature24654
arXiv:1708.01044
[53] E. T. Campbell, B. M. Terhal, and C. Vuillot, The steep road towards robust and universal quantum computation, arXiv:1612.07330 (2016).
arXiv:1612.07330
[54] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A 94, 052325 (2016), arXiv:1512:01098, 10.1103/PhysRevA.94.052325.
https://doi.org/10.1103/PhysRevA.94.052325
arXiv:1512
[55] J. Combes, C. Granade, C. Ferrie, and S. T. Flammia, Logical randomized benchmarking, arXiv:1702.03688 (2017).
arXiv:1702.03688
[56] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012), arXiv:1208.0928, 10.1103/PhysRevA.86.032324.
https://doi.org/10.1103/PhysRevA.86.032324
arXiv:1208.0928
[57] S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1, 15001 (2015), arXiv:1501.02813, 10.1038/npjqi.2015.1.
https://doi.org/10.1038/npjqi.2015.1
arXiv:1501.02813
Cited by
[1] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven, "Barren plateaus in quantum neural network training landscapes", Nature Communications 9, 4812 (2018).
[2] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta, "Error mitigation extends the computational reach of a noisy quantum processor", Nature 567 7749, 491 (2019).
[3] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta, "Supervised learning with quantum-enhanced feature spaces", Nature 567 7747, 209 (2019).
[4] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta, "Validating quantum computers using randomized model circuits", Physical Review A 100 3, 032328 (2019).
[5] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, "An adaptive variational algorithm for exact molecular simulations on a quantum computer", Nature Communications 10, 3007 (2019).
[6] Victor V. Albert, Kyungjoo Noh, Kasper Duivenvoorden, Dylan J. Young, R. T. Brierley, Philip Reinhold, Christophe Vuillot, Linshu Li, Chao Shen, S. M. Girvin, Barbara M. Terhal, and Liang Jiang, "Performance and structure of single-mode bosonic codes", Physical Review A 97 3, 032346 (2018).
[7] Andrew D. King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, Kelly Boothby, Paul I. Bunyk, Colin Enderud, Alexandre Fréchette, Emile Hoskinson, Nicolas Ladizinsky, Travis Oh, Gabriel Poulin-Lamarre, Christopher Rich, Yuki Sato, Anatoly Yu. Smirnov, Loren J. Swenson, Mark H. Volkmann, Jed Whittaker, Jason Yao, Eric Ladizinsky, Mark W. Johnson, Jeremy Hilton, and Mohammad H. Amin, "Observation of topological phenomena in a programmable lattice of 1,800 qubits", Nature 560 7719, 456 (2018).
[8] Seth Lloyd and Christian Weedbrook, "Quantum Generative Adversarial Learning", Physical Review Letters 121 4, 040502 (2018).
[9] William A. Borders, Ahmed Z. Pervaiz, Shunsuke Fukami, Kerem Y. Camsari, Hideo Ohno, and Supriyo Datta, "Integer factorization using stochastic magnetic tunnel junctions", Nature 573 7774, 390 (2019).
[10] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio Mezzacapo, Stefan Filipp, and Ivano Tavernelli, "Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions", Physical Review A 98 2, 022322 (2018).
[11] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini, "Hierarchical quantum classifiers", npj Quantum Information 4, 65 (2018).
[12] N. M. Linke, S. Johri, C. Figgatt, K. A. Landsman, A. Y. Matsuura, and C. Monroe, "Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer", Physical Review A 98 5, 052334 (2018).
[13] Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun Shi, "Classical Simulation of Intermediate-Size Quantum Circuits", arXiv:1805.01450, (2018).
[14] Pierre-Luc Dallaire-Demers and Nathan Killoran, "Quantum generative adversarial networks", Physical Review A 98 1, 012324 (2018).
[15] Tameem Albash and Daniel A. Lidar, "Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing", Physical Review X 8 3, 031016 (2018).
[16] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo, "Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions", Physical Review Applied 9 4, 044036 (2018).
[17] Yanzhu Chen, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei, "Detector tomography on IBM quantum computers and mitigation of an imperfect measurement", Physical Review A 100 5, 052315 (2019).
[18] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao, "The Expressive Power of Parameterized Quantum Circuits", arXiv:1810.11922, (2018).
[19] Ling Hu, Shu-Hao Wu, Weizhou Cai, Yuwei Ma, Xianghao Mu, Yuan Xu, Haiyan Wang, Yipu Song, Dong-Ling Deng, Chang-Ling Zou, and Luyan Sun, "Quantum generative adversarial learning in a superconducting quantum circuit", Science Advances 5 1, eaav2761 (2019).
[20] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402, (2018).
[21] J. Preskill, "Simulating quantum field theory with a quantum computer", The 36th Annual International Symposium on Lattice Field Theory. 22-28 July 24 (2018).
[22] Oscar Higgott, Daochen Wang, and Stephen Brierley, "Variational Quantum Computation of Excited States", Quantum 3, 156 (2019).
[23] G. G. Guerreschi and A. Y. Matsuura, "QAOA for Max-Cut requires hundreds of qubits for quantum speed-up", Scientific Reports 9, 6903 (2019).
[24] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T. Sornborger, and Patrick J. Coles, "Quantum-assisted quantum compiling", Quantum 3, 140 (2019).
[25] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard, "Simulation of quantum circuits by low-rank stabilizer decompositions", Quantum 3, 181 (2019).
[26] Guillaume Verdon, Jason Pye, and Michael Broughton, "A Universal Training Algorithm for Quantum Deep Learning", arXiv:1806.09729, (2018).
[27] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook, "Strawberry Fields: A Software Platform for Photonic Quantum Computing", Quantum 3, 129 (2019).
[28] Aram Harrow and John Napp, "Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms", arXiv:1901.05374, (2019).
[29] Kübra Yeter-Aydeniz, Eugene F. Dumitrescu, Alex J. McCaskey, Ryan S. Bennink, Raphael C. Pooser, and George Siopsis, "Scalar quantum field theories as a benchmark for near-term quantum computers", Physical Review A 99 3, 032306 (2019).
[30] Kentaro Heya, Yasunari Suzuki, Yasunobu Nakamura, and Keisuke Fujii, "Variational Quantum Gate Optimization", arXiv:1810.12745, (2018).
[31] Jonathan Romero and Alan Aspuru-Guzik, "Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions", arXiv:1901.00848, (2019).
[32] Brian Swingle and Nicole Yunger Halpern, "Resilience of scrambling measurements", Physical Review A 97 6, 062113 (2018).
[33] Xun Gao and Luming Duan, "Efficient classical simulation of noisy quantum computation", arXiv:1810.03176, (2018).
[34] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", arXiv:1812.09976, (2018).
[35] Eric R. Anschuetz, Jonathan P. Olson, Alán Aspuru-Guzik, and Yudong Cao, "Variational Quantum Factoring", arXiv:1808.08927, (2018).
[36] Sebastien Piat, Nairi Usher, Simone Severini, Mark Herbster, Tommaso Mansi, and Peter Mountney, "Image classification with quantum pre-training and auto-encoders", International Journal of Quantum Information 16 8, 1840009-332 (2018).
[37] Marcello Benedetti, Edward Grant, Leonard Wossnig, and Simone Severini, "Adversarial quantum circuit learning for pure state approximation", New Journal of Physics 21 4, 043023 (2019).
[38] A. Garcia-Saez and J. I. Latorre, "Addressing hard classical problems with Adiabatically Assisted Variational Quantum Eigensolvers", arXiv:1806.02287, (2018).
[39] Juan Miguel Arrazola, Thomas R. Bromley, and Patrick Rebentrost, "Quantum approximate optimization with Gaussian boson sampling", Physical Review A 98 1, 012322 (2018).
[40] Mark Fingerhuth, Tomáš Babej, and Christopher Ing, "A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding", arXiv:1810.13411, (2018).
[41] Corentin Bertrand, Serge Florens, Olivier Parcollet, and Xavier Waintal, "Reconstructing Nonequilibrium Regimes of Quantum Many-Body Systems from the Analytical Structure of Perturbative Expansions", Physical Review X 9 4, 041008 (2019).
[42] Kazuki Ikeda, Yuma Nakamura, and Travis S. Humble, "Application of Quantum Annealing to Nurse Scheduling Problem", Scientific Reports 9, 12837 (2019).
[43] Swamit S. Tannu and Moinuddin K. Qureshi, "A Case for Variability-Aware Policies for NISQ-Era Quantum Computers", arXiv:1805.10224, (2018).
[44] Maria Schuld and Nathan Killoran, "Quantum machine learning in feature Hilbert spaces", arXiv:1803.07128, (2018).
[45] Gushu Li, Yufei Ding, and Yuan Xie, "Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices", arXiv:1809.02573, (2018).
[46] Zhang Jiang, Jarrod McClean, Ryan Babbush, and Hartmut Neven, "Majorana Loop Stabilizer Codes for Error Mitigation in Fermionic Quantum Simulations", Physical Review Applied 12 6, 064041 (2019).
[47] Zhong-Xiao Man, Yun-Jie Xia, and Rosario Lo Franco, "Temperature effects on quantum non-Markovianity via collision models", Physical Review A 97 6, 062104 (2018).
[48] Ian C. Cloët, Matthew R. Dietrich, John Arrington, Alexei Bazavov, Michael Bishof, Adam Freese, Alexey V. Gorshkov, Anna Grassellino, Kawtar Hafidi, Zubin Jacob, Michael McGuigan, Yannick Meurice, Zein-Eddine Meziani, Peter Mueller, Christine Muschik, James Osborn, Matthew Otten, Peter Petreczky, Tomas Polakovic, Alan Poon, Raphael Pooser, Alessandro Roggero, Mark Saffman, Brent VanDevender, Jiehang Zhang, and Erez Zohar, "Opportunities for Nuclear Physics & Quantum Information Science", arXiv:1903.05453, (2019).
[49] Ali Mortezapour and Rosario Lo Franco, "Protecting quantum resources via frequency modulation of qubits in leaky cavities", Scientific Reports 8, 14304 (2018).
[50] Javier Gil Vidal and Dirk Oliver Theis, "Calculus on parameterized quantum circuits", arXiv:1812.06323, (2018).
[51] Alwin Zulehner and Robert Wille, "Compiling SU(4) Quantum Circuits to IBM QX Architectures", arXiv:1808.05661, (2018).
[52] Chungwei Lin, Yebin Wang, Grigory Kolesov, and Uroš Kalabić, "Application of Pontryagin's minimum principle to Grover's quantum search problem", Physical Review A 100 2, 022327 (2019).
[53] C. M. Wilson, J. S. Otterbach, N. Tezak, R. S. Smith, A. M. Polloreno, Peter J. Karalekas, S. Heidel, M. Sohaib Alam, G. E. Crooks, and M. P. da Silva, "Quantum Kitchen Sinks: An algorithm for machine learning on near-term quantum computers", arXiv:1806.08321, (2018).
[54] Alexander McCaskey, Eugene Dumitrescu, Mengsu Chen, Dmitry Lyakh, and Travis Humble, "Validating quantum-classical programming models with tensor network simulations", PLoS ONE 13 12, e0206704 (2018).
[55] Jiayin Chen and Hendra I. Nurdin, "Learning nonlinear input-output maps with dissipative quantum systems", Quantum Information Processing 18 7, 198 (2019).
[56] Aniruddha Bapat and Stephen Jordan, "Bang-bang control as a design principle for classical and quantum optimization algorithms", arXiv:1812.02746, (2018).
[57] Wolfgang Lechner, "Quantum Approximate Optimization with Parallelizable Gates", arXiv:1802.01157, (2018).
[58] Ramis Movassagh, "Efficient unitary paths and quantum computational supremacy: A proof of average-case hardness of Random Circuit Sampling", arXiv:1810.04681, (2018).
[59] Kostyantyn Kechedzhi, Vadim Smelyanskiy, Jarrod R. McClean, Vasil S. Denchev, Masoud Mohseni, Sergei Isakov, Sergio Boixo, Boris Altshuler, and Hartmut Neven, "Efficient population transfer via non-ergodic extended states in quantum spin glass", arXiv:1807.04792, (2018).
[60] Guglielmo Mazzola, Pauline J. Ollitrault, Panagiotis Kl. Barkoutsos, and Ivano Tavernelli, "Nonunitary Operations for Ground-State Calculations in Near-Term Quantum Computers", Physical Review Letters 123 13, 130501 (2019).
[61] Xi Chen, Bin Cheng, Zhaokai Li, Xinfang Nie, Nengkun Yu, Man-Hong Yung, and Xinhua Peng, "Experimental Cryptographic Verification for Near-Term Quantum Cloud Computing", arXiv:1808.07375, (2018).
[62] Tameem Albash, Victor Martin-Mayor, and Itay Hen, "Analog errors in Ising machines", Quantum Science and Technology 4 2, 02LT03 (2019).
[63] Tony J. G. Apollaro, Guilherme M. A. Almeida, Salvatore Lorenzo, Alessandro Ferraro, and Simone Paganelli, "Spin chains for two-qubit teleportation", Physical Review A 100 5, 052308 (2019).
[64] Andreas Hartmann and Wolfgang Lechner, "Quantum phase transition with inhomogeneous driving in the Lechner-Hauke-Zoller model", Physical Review A 100 3, 032110 (2019).
[65] Jin-Guo Liu and Lei Wang, "Differentiable Learning of Quantum Circuit Born Machine", arXiv:1804.04168, (2018).
[66] Mingxia Huo and Ying Li, "Self-consistent tomography of temporally correlated errors", arXiv:1811.02734, (2018).
[67] Taewan Kim and Byung-Soo Choi, "Efficient decomposition methods for controlled-R<SUB>n</SUB> using a single ancillary qubit", Scientific Reports 8, 5445 (2018).
[68] Cupjin Huang, Michael Newman, and Mario Szegedy, "Explicit lower bounds on strong quantum simulation", arXiv:1804.10368, (2018).
[69] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in Hamiltonian simulation", arXiv:1808.03623, (2018).
[70] Wolfgang Niedenzu, Marcus Huber, and Erez Boukobza, "Concepts of work in autonomous quantum heat engines", Quantum 3, 195 (2019).
[71] Eric R. Anschuetz and Cristian Zanoci, "Near-term quantum-classical associative adversarial networks", Physical Review A 100 5, 052327 (2019).
[72] James Stokes and John Terilla, "Probabilistic Modeling with Matrix Product States", Entropy 21 12, 1236 (2019).
[73] Pablo Andrés-Martínez and Chris Heunen, "Automated distribution of quantum circuits via hypergraph partitioning", Physical Review A 100 3, 032308 (2019).
[74] Zhenyu Cai and Simon C. Benjamin, "Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels", Scientific Reports 9, 11281 (2019).
[75] Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang, "Quantum-inspired sublinear algorithm for solving low-rank semidefinite programming", arXiv:1901.03254, (2019).
[76] Juan Carrasquilla, Giacomo Torlai, Roger G. Melko, and Leandro Aolita, "Reconstructing quantum states with generative models", arXiv:1810.10584, (2018).
[77] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo, "Quantum algorithms to simulate many-body physics of correlated fermions", arXiv:1711.05395, (2017).
[78] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev, "Community Detection Across Emerging Quantum Architectures", arXiv:1810.07765, (2018).
[79] Stefan Krastanov, Victor V. Albert, and Liang Jiang, "Optimized Entanglement Purification", Quantum 3, 123 (2019).
[80] Keisuke Fujii, "Quantum speedup in stoquastic adiabatic quantum computation", arXiv:1803.09954, (2018).
[81] Kyle Cormier, Riccardo Di Sipio, and Peter Wittek, "Unfolding measurement distributions via quantum annealing", Journal of High Energy Physics 2019 11, 128 (2019).
[82] Frederic Bapst, Wahid Bhimji, Paolo Calafiura, Heather Gray, Wim Lavrijsen, and Lucy Linder, "A pattern recognition algorithm for quantum annealers", arXiv:1902.08324, (2019).
[83] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, "eQASM: An Executable Quantum Instruction Set Architecture", arXiv:1808.02449, (2018).
[84] Sergey Novikov, Robert Hinkey, Steven Disseler, James I. Basham, Tameem Albash, Andrew Risinger, David Ferguson, Daniel A. Lidar, and Kenneth M. Zick, "Exploring More-Coherent Quantum Annealing", arXiv:1809.04485, (2018).
[85] Daniel C. Murphy and Kenneth R. Brown, "Controlling error orientation to improve quantum algorithm success rates", Physical Review A 99 3, 032318 (2019).
[86] Cristian S. Calude and Elena Calude, "The Road to Quantum Computational Supremacy", arXiv:1712.01356, (2017).
[87] David P. Franke, James S. Clarke, Lieven M. K. Vandersypen, and Menno Veldhorst, "Rent's rule and extensibility in quantum computing", arXiv:1806.02145, (2018).
[88] Hai-Jin Ding and Re-Bing Wu, "Robust quantum control against clock noises in multiqubit systems", Physical Review A 100 2, 022302 (2019).
[89] Valentin Torggler, Philipp Aumann, Helmut Ritsch, and Wolfgang Lechner, "A Quantum N-Queens Solver", Quantum 3, 149 (2019).
[90] Mohammad H. Ansari, "Exact quantization of superconducting circuits", arXiv:1807.00792, (2018).
[91] Ciarán Ryan-Anderson, "Quantum Algorithms, Architecture, and Error Correction", arXiv:1812.04735, (2018).
[92] Seth Lloyd and Reevu Maity, "Efficient implementation of unitary transformations", arXiv:1901.03431, (2019).
[93] Karthik Chinni, Pablo Poggi, and Ivan Deutsch, "Reliable Analog Quantum Simulation and Quantum Complexity", APS March Meeting Abstracts 2019, C42.011 (2019).
[94] Siddhartha Das, "Bipartite Quantum Interactions: Entangling and Information Processing Abilities", arXiv:1901.05895, (2019).
[95] Dorit Aharonov and Leo Zhou, "Hamiltonian sparsification and gap-simulations", arXiv:1804.11084, (2018).
[96] Koen Groenland and Kareljan Schoutens, "Quantum gates by resonantly driving many-body eigenstates, with a focus on Polychronakos’ model", Journal of Statistical Mechanics: Theory and Experiment 7 7, 073103 (2019).
[97] Neal Solmeyer, Norbert M. Linke, Caroline Figgatt, Kevin A. Landsman, Radhakrishnan Balu, George Siopsis, and C. Monroe, "Demonstration of a Bayesian quantum game on an ion-trap quantum computer", Quantum Science and Technology 3 4, 045002 (2018).
[98] Eyal Bairey, Itai Arad, and Netanel H. Lindner, "Learning a local Hamiltonian from local measurements", arXiv:1807.04564, (2018).
[99] Ning Bao and Junyu Liu, "Quantum algorithms for conformal bootstrap", Nuclear Physics B 946, 114702 (2019).
[100] Clemens Dlaska, Lukas M. Sieberer, and Wolfgang Lechner, "Designing ground states of Hopfield networks for quantum state preparation", Physical Review A 99 3, 032342 (2019).
[101] Jacob D. Biamonte, Pavel Dorozhkin, and Igor Zacharov, "Keep quantum computing global and open", Nature 573 7773, 190 (2019).
[102] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev, "Network Community Detection On Small Quantum Computers", arXiv:1810.12484, (2018).
[103] Marina Radulaski, Jingyuan Linda Zhang, Yan-Kai Tzeng, Konstantinos G. Lagoudakis, Hitoshi Ishiwata, Constantin Dory, Kevin A. Fischer, Yousif A. Kelaita, Shuo Sun, Peter C. Maurer, Kassem Alassaad, Gabriel Ferro, Zhi-Xun Shen, Nicholas Melosh, Steven Chu, and Jelena Vučković, "Nanodiamond integration with photonic devices", arXiv:1610.03183, (2016).
[104] Quntao Zhuang and Zheshen Zhang, "Physical-Layer Supervised Learning Assisted by an Entangled Sensor Network", Physical Review X 9 4, 041023 (2019).
[105] Stefan Krastanov, Victor V. Albert, and Liang Jiang, "Optimized Entanglement Purification", arXiv:1712.09762, (2017).
[106] Mark B. Ritter, "Near-term Quantum Algorithms for Quantum Many-body Systems", Journal of Physics Conference Series 1290 1, 012003 (2019).
[107] Zhi-Yuan Li, Hai-Feng Yu, Xin-Sheng Tan, Shi-Ping Zhao, and Yang Yu, "Manipulation of superconducting qubit with direct digital synthesis", Chinese Physics B 28 9, 098505 (2019).
[108] R. C. Wiersema and H. J. Kappen, "Implementing perceptron models with qubits", Physical Review A 100 2, 020301 (2019).
[109] Yuxuan Du, Tongliang Liu, and Dacheng Tao, "Bayesian Quantum Circuit", arXiv:1805.11089, (2018).
[110] Yosi Atia, Yonathan Oren, and Nadav Katz, "Robust Diabatic Grover Search by Landau-Zener-Stückelberg Oscillations", Entropy 21 10, 937 (2019).
[111] V. E. Zobov and I. S. Pichkovskiy, "Sequences of selective rotation operators to engineer interactions for quantum annealing on three qutrits", International Conference on Micro- and Nano-Electronics 2018 11022, 110222V (2019).
[112] Alexandru Paler, "SurfBraid: A concept tool for preparing and resource estimating quantum circuits protected by the surface code", arXiv:1902.02417, (2019).
[113] Prakash Murali, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi, "Formal Constraint-based Compilation for Noisy Intermediate-Scale Quantum Systems", arXiv:1903.03276, (2019).
[114] V. O. Shkolnikov and Guido Burkard, "Effective Hamiltonian theory of the geometric evolution of quantum systems", arXiv:1810.00193, (2018).
[115] Xavier Waintal, "What determines the ultimate precision of a quantum computer?", arXiv:1702.07688, (2017).
[116] Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic T. Chong, "Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures", arXiv:1809.01302, (2018).
[117] F. Tacchino, A. Chiesa, M. D. LaHaye, I. Tavernelli, S. Carretta, and D. Gerace, "Digital Quantum Simulations of Spin Models on Hybrid Platform and Near-Term Quantum Processors", arXiv:1902.04971, (2019).
[118] Patrick Rall, "Simulating Quantum Circuits by Shuffling Paulis", arXiv:1804.05404, (2018).
[119] Hammam Qassim, Joel J. Wallman, and Joseph Emerson, "Clifford recompilation for faster classical simulation of quantum circuits", Quantum 3, 170 (2019).
[120] Damian S. Steiger, Thomas Häner, and Matthias Troyer, "Advantages of a modular high-level quantum programming framework", arXiv:1806.01861, (2018).
[121] Stefano Gandolfi, "Cloud Quantum Computing Tackles Simple Nucleus", Physics Online Journal 11, 51 (2018).
[122] Shusen Liu, Yinan Li, and Runyao Duan, "Distinguishing Unitary Gates on the IBM Quantum Processor", arXiv:1807.00429, (2018).
[123] Ruslan Shaydulin, Caleb Thomas, and Paige Rodeghero, "Making Quantum Computing Open: Lessons from Open-Source Projects", arXiv:1902.00991, (2019).
[124] Ryan Bennink, Ajay Jasra, Kody J. H. Law, and Pavel Lougovski, "Estimation and uncertainty quantification for the output from quantum simulators", arXiv:1903.02964, (2019).
[125] Johannes S. Otterbach, "Optimizing Variational Quantum Circuits using Evolution Strategies", arXiv:1806.04344, (2018).
[126] Maria Schuld, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe, "Circuit-centric quantum classifiers", Physical Review A 101 3, 032308 (2020).
[127] Hsin-Yuan Huang, Richard Kueng, and John Preskill, "Predicting many properties of a quantum system from very few measurements", Nature Physics 16 10, 1050 (2020).
[128] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J. Martinez, Jae Hyeon Yoo, Sergei V. Isakov, Philip Massey, Ramin Halavati, Murphy Yuezhen Niu, Alexander Zlokapa, Evan Peters, Owen Lockwood, Andrea Skolik, Sofiene Jerbi, Vedran Dunjko, Martin Leib, Michael Streif, David Von Dollen, Hongxiang Chen, Shuxiang Cao, Roeland Wiersema, Hsin-Yuan Huang, Jarrod R. McClean, Ryan Babbush, Sergio Boixo, Dave Bacon, Alan K. Ho, Hartmut Neven, and Masoud Mohseni, "TensorFlow Quantum: A Software Framework for Quantum Machine Learning", arXiv:2003.02989, (2020).
[129] Guillaume Verdon, Michael Broughton, Jarrod R. McClean, Kevin J. Sung, Ryan Babbush, Zhang Jiang, Hartmut Neven, and Masoud Mohseni, "Learning to learn with quantum neural networks via classical neural networks", arXiv:1907.05415, (2019).
[130] Gavin E. Crooks, "Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition", arXiv:1905.13311, (2019).
[131] Ken X. Wei, Isaac Lauer, Srikanth Srinivasan, Neereja Sundaresan, Douglas T. McClure, David Toyli, David C. McKay, Jay M. Gambetta, and Sarah Sheldon, "Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences", Physical Review A 101 3, 032343 (2020).
[132] Andrew Zhao, Andrew Tranter, William M. Kirby, Shu Fay Ung, Akimasa Miyake, and Peter J. Love, "Measurement reduction in variational quantum algorithms", Physical Review A 101 6, 062322 (2020).
[133] Danijela Marković and Julie Grollier, "Quantum neuromorphic computing", Applied Physics Letters 117 15, 150501 (2020).
[134] James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo, "Quantum Natural Gradient", Quantum 4, 269 (2020).
[135] Andre He, Benjamin Nachman, Wibe A. de Jong, and Christian W. Bauer, "Zero-noise extrapolation for quantum-gate error mitigation with identity insertions", Physical Review A 102 1, 012426 (2020).
[136] D. Chivilikhin, A. Samarin, V. Ulyantsev, I. Iorsh, A. R. Oganov, and O. Kyriienko, "MoG-VQE: Multiobjective genetic variational quantum eigensolver", arXiv:2007.04424, (2020).
[137] Andreas Elben, Benoît Vermersch, Rick van Bijnen, Christian Kokail, Tiff Brydges, Christine Maier, Manoj K. Joshi, Rainer Blatt, Christian F. Roos, and Peter Zoller, "Cross-Platform Verification of Intermediate Scale Quantum Devices", Physical Review Letters 124 1, 010504 (2020).
[138] Bryan O'Gorman, William J. Huggins, Eleanor G. Rieffel, and K. Birgitta Whaley, "Generalized swap networks for near-term quantum computing", arXiv:1905.05118, (2019).
[139] Sabrina S. Hong, Alexander T. Papageorge, Prasahnt Sivarajah, Genya Crossman, Nicolas Didier, Anthony M. Polloreno, Eyob A. Sete, Stefan W. Turkowski, Marcus P. da Silva, and Blake R. Johnson, "Demonstration of a parametrically activated entangling gate protected from flux noise", Physical Review A 101 1, 012302 (2020).
[140] Ryan LaRose and Brian Coyle, "Robust data encodings for quantum classifiers", Physical Review A 102 3, 032420 (2020).
[141] Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria Schuld, Paul K. Faehrmann, Barthélémy Meynard-Piganeau, and Jens Eisert, "Stochastic gradient descent for hybrid quantum-classical optimization", Quantum 4, 314 (2020).
[142] Ramis Movassagh, "Quantum supremacy and random circuits", arXiv:1909.06210, (2019).
[143] Natalie Klco and Martin J. Savage, "Minimally entangled state preparation of localized wave functions on quantum computers", Physical Review A 102 1, 012612 (2020).
[144] P. Magnard, S. Storz, P. Kurpiers, J. Schär, F. Marxer, J. Lütolf, T. Walter, J. -C. Besse, M. Gabureac, K. Reuer, A. Akin, B. Royer, A. Blais, and A. Wallraff, "Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems", Physical Review Letters 125 26, 260502 (2020).
[145] Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond, and Christophe Jurczak, "Quantum computing with neutral atoms", Quantum 4, 327 (2020).
[146] Casper Gyurik, Chris Cade, and Vedran Dunjko, "Towards quantum advantage via topological data analysis", arXiv:2005.02607, (2020).
[147] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout, "Detecting crosstalk errors in quantum information processors", Quantum 4, 321 (2020).
[148] Kyle Poland, Kerstin Beer, and Tobias J. Osborne, "No Free Lunch for Quantum Machine Learning", arXiv:2003.14103, (2020).
[149] Kun Zhang and Vladimir E. Korepin, "Depth optimization of quantum search algorithms beyond Grover's algorithm", Physical Review A 101 3, 032346 (2020).
[150] Carlos Bravo-Prieto, Diego García-Martín, and José I. Latorre, "Quantum singular value decomposer", Physical Review A 101 6, 062310 (2020).
[151] Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran, "Transfer learning in hybrid classical-quantum neural networks", Quantum 4, 340 (2020).
[152] Mark Hodson, Brendan Ruck, Hugh Ong, David Garvin, and Stefan Dulman, "Portfolio rebalancing experiments using the Quantum Alternating Operator Ansatz", arXiv:1911.05296, (2019).
[153] Matthew Otten and Stephen K. Gray, "Accounting for errors in quantum algorithms via individual error reduction", npj Quantum Information 5, 11 (2019).
[154] Rui Chao, Dawei Ding, Andras Gilyen, Cupjin Huang, and Mario Szegedy, "Finding Angles for Quantum Signal Processing with Machine Precision", arXiv:2003.02831, (2020).
[155] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang, "Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design", Quantum 4, 341 (2020).
[156] Jonas M. Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J. Coles, "An Adaptive Optimizer for Measurement-Frugal Variational Algorithms", Quantum 4, 263 (2020).
[157] A. Roggero, "Spectral-density estimation with the Gaussian integral transform", Physical Review A 102 2, 022409 (2020).
[158] Di Luo, Jiayu Shen, Michael Highman, Bryan K. Clark, Brian DeMarco, Aida X. El-Khadra, and Bryce Gadway, "Framework for simulating gauge theories with dipolar spin systems", Physical Review A 102 3, 032617 (2020).
[159] Salonik Resch and Ulya R. Karpuzcu, "Quantum Computing: An Overview Across the System Stack", arXiv:1905.07240, (2019).
[160] Amritesh Sharma and Ashwin A. Tulapurkar, "Generation of n -qubit W states using spin torque", Physical Review A 101 6, 062330 (2020).
[161] Kyungjoo Noh, Liang Jiang, and Bill Fefferman, "Efficient classical simulation of noisy random quantum circuits in one dimension", Quantum 4, 318 (2020).
[162] Sumsam Ullah Khan, Ahsan Javed Awan, and Gemma Vall-Llosera, "K-Means Clustering on Noisy Intermediate Scale Quantum Computers", arXiv:1909.12183, (2019).
[163] Ahmed Abid Moueddene, Nader Khammassi, Koen Bertels, and Carmen G. Almudever, "Realistic simulation of quantum computation using unitary and measurement channels", Physical Review A 102 5, 052608 (2020).
[164] Laura Gentini, Alessandro Cuccoli, Stefano Pirandola, Paola Verrucchi, and Leonardo Banchi, "Noise-resilient variational hybrid quantum-classical optimization", Physical Review A 102 5, 052414 (2020).
[165] Matteo G. Pozzi, Steven J. Herbert, Akash Sengupta, and Robert D. Mullins, "Using Reinforcement Learning to Perform Qubit Routing in Quantum Compilers", arXiv:2007.15957, (2020).
[166] Deanna M. Abrams, Nicolas Didier, Blake R. Johnson, Marcus P. da Silva, and Colm A. Ryan, "Implementation of the XY interaction family with calibration of a single pulse", arXiv:1912.04424, (2019).
[167] Michel Fabrice Serret, Bertrand Marchand, and Thomas Ayral, "Solving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarks", Physical Review A 102 5, 052617 (2020).
[168] Natalie Klco and Martin J. Savage, "Systematically localizable operators for quantum simulations of quantum field theories", Physical Review A 102 1, 012619 (2020).
[169] Miroslav Urbanek, Benjamin Nachman, and Wibe A. de Jong, "Error detection on quantum computers improving the accuracy of chemical calculations", Physical Review A 102 2, 022427 (2020).
[170] Bhupesh Bishnoi, "Quantum Computation", arXiv:2006.02799, (2020).
[171] Nana Liu and Peter Wittek, "Vulnerability of quantum classification to adversarial perturbations", Physical Review A 101 6, 062331 (2020).
[172] Carlos Bravo-Prieto, Josep Lumbreras-Zarapico, Luca Tagliacozzo, and José I. Latorre, "Scaling of variational quantum circuit depth for condensed matter systems", Quantum 4, 272 (2020).
[173] Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Meter, "Extracting Success from IBM's 20-Qubit Machines Using Error-Aware Compilation", arXiv:1903.10963, (2019).
[174] Dan-Bo Zhang and Tao Yin, "Collective optimization for variational quantum eigensolvers", Physical Review A 101 3, 032311 (2020).
[175] Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang, "Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning", arXiv:1910.06151, (2019).
[176] Shilu Yan, Hongsheng Qi, and Wei Cui, "Nonlinear quantum neuron: A fundamental building block for quantum neural networks", Physical Review A 102 5, 052421 (2020).
[177] Prakash Murali, David C. McKay, Margaret Martonosi, and Ali Javadi-Abhari, "Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers", arXiv:2001.02826, (2020).
[178] Hyeokjea Kwon and Joonwoo Bae, "A hybrid quantum-classical approach to mitigating measurement errors", arXiv:2003.12314, (2020).
[179] Laszlo Gyongyosi and Sandor Imre, "Optimizing High-Efficiency Quantum Memory with Quantum Machine Learning for Near-Term Quantum Devices", Scientific Reports 10, 135 (2020).
[180] Shouvanik Chakrabarti, Yiming Huang, Tongyang Li, Soheil Feizi, and Xiaodi Wu, "Quantum Wasserstein Generative Adversarial Networks", arXiv:1911.00111, (2019).
[181] Jin-Min Liang, Shu-Qian Shen, Ming Li, and Lei Li, "Variational quantum algorithms for dimensionality reduction and classification", Physical Review A 101 3, 032323 (2020).
[182] Kanav Setia, Richard Chen, Julia E. Rice, Antonio Mezzacapo, Marco Pistoia, and James Whitfield, "Reducing qubit requirements for quantum simulation using molecular point group symmetries", arXiv:1910.14644, (2019).
[183] Lingling Lao and Carmen G. Almudever, "Fault-tolerant quantum error correction on near-term quantum processors using flag and bridge qubits", Physical Review A 101 3, 032333 (2020).
[184] Jelmer J. Renema, "Simulability of partially distinguishable superposition and Gaussian boson sampling", Physical Review A 101 6, 063840 (2020).
[185] J. J. García-Ripoll, A. Ruiz-Chamorro, and E. Torrontegui, "Quantum Control of Frequency-Tunable Transmon Superconducting Qubits", Physical Review Applied 14 4, 044035 (2020).
[186] Young-Hyun Oh, Hamed Mohammadbagherpoor, Patrick Dreher, Anand Singh, Xianqing Yu, and Andy J. Rindos, "Solving Multi-Coloring Combinatorial Optimization Problems Using Hybrid Quantum Algorithms", arXiv:1911.00595, (2019).
[187] Omar Shehab, Isaac H. Kim, Nhung H. Nguyen, Kevin Landsman, Cinthia H. Alderete, Daiwei Zhu, C. Monroe, and Norbert M. Linke, "Noise reduction using past causal cones in variational quantum algorithms", arXiv:1906.00476, (2019).
[188] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete, "Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights", arXiv:1905.11349, (2019).
[189] Andrey Kardashin, Alexey Uvarov, Dmitry Yudin, and Jacob Biamonte, "Certified variational quantum algorithms for eigenstate preparation", Physical Review A 102 5, 052610 (2020).
[190] Yuxuan Du, Min-Hsiu Hsieh, and Dacheng Tao, "Efficient Online Quantum Generative Adversarial Learning Algorithms with Applications", arXiv:1904.09602, (2019).
[191] Minsung Kim, Davide Venturelli, and Kyle Jamieson, "Leveraging Quantum Annealing for Large MIMO Processing in Centralized Radio Access Networks", arXiv:2001.04014, (2020).
[192] Loïc Henriet, "Robustness to spontaneous emission of a variational quantum algorithm", Physical Review A 101 1, 012335 (2020).
[193] Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu, "Sublinear quantum algorithms for training linear and kernel-based classifiers", arXiv:1904.02276, (2019).
[194] Abdullah Ash Saki, Mahabubul Alam, and Swaroop Ghosh, "Study of Decoherence in Quantum Computers: A Circuit-Design Perspective", arXiv:1904.04323, (2019).
[195] Takahiro Tsunoda, Gaurav Bhole, Stephen A. Jones, Jonathan A. Jones, and Peter J. Leek, "Efficient Hamiltonian programming in qubit arrays with nearest-neighbor couplings", Physical Review A 102 3, 032405 (2020).
[196] Srinivasan Arunachalam and Reevu Maity, "Quantum Boosting", arXiv:2002.05056, (2020).
[197] V. S. Shchesnovich, "On the classical complexity of sampling from quantum interference of indistinguishable bosons", International Journal of Quantum Information 18 7, 2050044-458 (2020).
[198] Hamed Mohammadbagherpoor, Young-Hyun Oh, Patrick Dreher, Anand Singh, Xianqing Yu, and Andy J. Rindos, "An Improved Implementation Approach for Quantum Phase Estimation on Quantum Computers", arXiv:1910.11696, (2019).
[199] Sumeru Hazra, Kishor V. Salunkhe, Anirban Bhattacharjee, Gaurav Bothara, Suman Kundu, Tanay Roy, Meghan P. Patankar, and R. Vijay, "Engineering cross resonance interaction in multi-modal quantum circuits", Applied Physics Letters 116 15, 152601 (2020).
[200] Gushu Li, Yufei Ding, and Yuan Xie, "SANQ: A Simulation Framework for Architecting Noisy Intermediate-Scale Quantum Computing System", arXiv:1904.11590, (2019).
[201] Narayanan Rengaswamy, Robert Calderbank, Swanand Kadhe, and Henry D. Pfister, "Logical Clifford Synthesis for Stabilizer Codes", arXiv:1907.00310, (2019).
[202] Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu, "On the Principles of Differentiable Quantum Programming Languages", arXiv:2004.01122, (2020).
[203] Evandro Chagas Ribeiro da Rosa and Bruno G. Taketani, "QSystem: bitwise representation for quantum circuit simulations", arXiv:2004.03560, (2020).
[204] Ruslan Shaydulin, Ilya Safro, and Jeffrey Larson, "Multistart Methods for Quantum Approximate Optimization", arXiv:1905.08768, (2019).
[205] Michael P. Kaicher, Simon B. Jäger, Pierre-Luc Dallaire-Demers, and Frank K. Wilhelm, "Roadmap for quantum simulation of the fractional quantum Hall effect", Physical Review A 102 2, 022607 (2020).
[206] Thomas Häner and Mathias Soeken, "Lowering the T-depth of Quantum Circuits By Reducing the Multiplicative Depth Of Logic Networks", arXiv:2006.03845, (2020).
[207] Kohdai Kuroiwa and Hayata Yamasaki, "General Quantum Resource Theories: Distillation, Formation and Consistent Resource Measures", Quantum 4, 355 (2020).
[208] Daan Camps and Roel Van Beeumen, "Approximate quantum circuit synthesis using block encodings", Physical Review A 102 5, 052411 (2020).
[209] William Cappelletti, Rebecca Erbanni, and Joaquín Keller, "Polyadic Quantum Classifier", arXiv:2007.14044, (2020).
[210] Harish J. Vallury, Michael A. Jones, Charles D. Hill, and Lloyd C. L. Hollenberg, "Quantum computed moments correction to variational estimates", Quantum 4, 373 (2020).
[211] Jasvith Raj Basani and Aranya B Bhattacherjee, "Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical Information", arXiv:2006.10927, (2020).
[212] Naeimeh Mohseni, Marek Narozniak, Alexey N. Pyrkov, Valentin Ivannikov, Jonathan P. Dowling, and Tim Byrnes, "Error suppression in adiabatic quantum computing with qubit ensembles", arXiv:1909.09947, (2019).
[213] Travis L. Scholten, Yi-Kai Liu, Kevin Young, and Robin Blume-Kohout, "Classifying single-qubit noise using machine learning", arXiv:1908.11762, (2019).
[214] Runyao Duan, "Quantum Adiabatic Theorem Revisited", arXiv:2003.03063, (2020).
[215] Chen Lin and GuoWu Yang, "Concatenated pieceable fault-tolerant scheme for universal quantum computation", Physical Review A 102 5, 052415 (2020).
[216] Mahmoud Mahdian and H. Davoodi Yeganeh, "Incoherent quantum algorithm dynamics of an open system with near-term devices", Quantum Information Processing 19 9, 285 (2020).
[217] Chungwei Lin, Dries Sels, Yanting Ma, and Yebin Wang, "Stochastic optimal control formalism for an open quantum system", Physical Review A 102 5, 052605 (2020).
[218] Akshaya Jayashankar, Anjala M. Babu, Hui Khoon Ng, and Prabha Mandayam, "Finding good quantum codes using the Cartan form", Physical Review A 101 4, 042307 (2020).
[219] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo, "Optimization of Quantum Circuit Mapping using Gate Transformation and Commutation", arXiv:1907.02686, (2019).
[220] William M. Kirby and Peter J. Love, "Classical simulation of noncontextual Pauli Hamiltonians", Physical Review A 102 3, 032418 (2020).
[221] P. A. M. Casares and M. A. Martin-Delgado, "A quantum interior-point predictor-corrector algorithm for linear programming", Journal of Physics A Mathematical General 53 44, 445305 (2020).
[222] Narayanan Rengaswamy, "Classical Coding Approaches to Quantum Applications", arXiv:2004.06834, (2020).
[223] Yuta Matsuzawa and Yuki Kurashige, "A Jastrow-type decomposition in quantum chemistry for low-depth quantum circuits", arXiv:1909.12410, (2019).
[224] Thomas Gabor, Leo Sünkel, Fabian Ritz, Thomy Phan, Lenz Belzner, Christoph Roch, Sebastian Feld, and Claudia Linnhoff-Popien, "The Holy Grail of Quantum Artificial Intelligence: Major Challenges in Accelerating the Machine Learning Pipeline", arXiv:2004.14035, (2020).
[225] K. Bertels, A. Sarkar, A. A. Mouedenne, T. Hubregtsen, A. Yadav, A. Krol, and I. Ashraf, "Quantum Computer Architecture: Towards Full-Stack Quantum Accelerators", arXiv:1903.09575, (2019).
[226] María García Díaz, Benjamin Desef, Matteo Rosati, Dario Egloff, John Calsamiglia, Andrea Smirne, Michaelis Skotiniotis, and Susana F. Huelga, "Accessible coherence in open quantum system dynamics", Quantum 4, 249 (2020).
[227] Juan Ignacio Cirac, "Quantum computing and simulation", Nanophotonics 10 1, 351 (2020).
[228] Wesley C. Campbell, "Certified quantum gates", Physical Review A 102 2, 022426 (2020).
[229] V. O. Shkolnikov and Guido Burkard, "Effective Hamiltonian theory of the geometric evolution of quantum systems", Physical Review A 101 4, 042101 (2020).
[230] Tanvi P. Gujarati, Tyler Takeshita, Andreas Hintennach, and Eunseok Lee, "A Heuristic Quantum-Classical Algorithm for Modeling Substitutionally Disordered Binary Crystalline Materials", arXiv:2004.00957, (2020).
[231] Joris Kattemölle and Jasper van Wezel, "Conditions for superdecoherence", Quantum 4, 265 (2020).
[232] Mark Hodson, Brendan Ruck, Hugh Ong, Stefan Dulman, and David Garvin, "Finding the optimal Nash equilibrium in a discrete Rosenthal congestion game using the Quantum Alternating Operator Ansatz", arXiv:2008.09505, (2020).
[233] Inés de Vega, "The quantum dynamical map of the spin boson model", arXiv:2001.04236, (2020).
[234] Jelmer J. Renema, "Simulability of Imperfect Gaussian and Superposition Boson Sampling", arXiv:1911.10112, (2019).
[235] Leigh S. Martin, "Quantum feedback for measurement and control", arXiv:2004.09766, (2020).
[236] Evandro Chagas Ribeiro da Rosa and Rafael de Santiago, "Classical and Quantum Data Interaction in Programming Languages: A Runtime Architecture", arXiv:2006.00131, (2020).
[237] L. C. G. Govia, D. Bunandar, J. Lin, D. Englund, N. Lütkenhaus, and H. Krovi, "Clifford-group-restricted eavesdroppers in quantum key distribution", Physical Review A 101 6, 062318 (2020).
[238] Haozhen Situ and Zhimin He, "Machine learning distributions of quantum ansatz with hierarchical structure", International Journal of Modern Physics B 34 20, 2050196-3746 (2020).
[239] Michael Hanks, William J. Munro, and Kae Nemoto, "Optical manipulation of the negative silicon-vacancy center in diamond", Physical Review A 102 2, 022616 (2020).
[240] Seung-Woo Lee, Jaewan Kim, and Wonmin Son, "Noise-adaptive test of quantum correlations with quasiprobability functions", Physical Review A 102 1, 012408 (2020).
[241] Ajinkya Borle and Josh McCarter, "On Post-Processing the Results of Quantum Optimizers", arXiv:1905.13107, (2019).
[242] H. W. L. Naus and H. Polinder, "Bell inequality violation on small NISQ computers", arXiv:2006.13794, (2020).
[243] Adam Holmes, Yongshan Ding, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic T. Chong, "Resource Optimized Quantum Architectures for Surface Code Implementations of Magic-State Distillation", arXiv:1904.11528, (2019).
[244] Rodrigo S. Sousa, Priscila G. M. dos Santos, Tiago M. L. Veras, Wilson R. de Oliveira, and Adenilton J. da Silva, "Parametric Probabilistic Quantum Memory", arXiv:2001.04798, (2020).
[245] Kelvin Loh, "Fairness evaluation during the conceptual design of heat grids with quantum annealers", arXiv:1910.09929, (2019).
[246] Anurag Mishra and Alireza Shabani, "High-Quality Protein Force Fields with Noisy Quantum Processors", arXiv:1907.07128, (2019).
[247] Daniel Vert, Renaud Sirdey, and Stéphane Louise, "Revisiting old combinatorial beasts in the quantum age: quantum annealing versus maximal matching", arXiv:1910.05129, (2019).
[248] Arit Kumar Bishwas, Ashish Mani, and Vasile Palade, "Parts of Speech Tagging in NLP: Runtime Optimization with Quantum Formulation and ZX Calculus", arXiv:2007.10328, (2020).
[249] H. W. L. Naus, "NISQ computing for decision making under uncertainty", arXiv:1911.06167, (2019).
[250] David W. Kribs, Ningping Cao, Chi-Kwong Li, Yiu-Tung Poon, Bei Zeng, and Mike Nelson, "Higher Rank Matricial Ranges and Hybrid Quantum Error Correction", arXiv:1911.12744, (2019).
[251] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles, "Cost function dependent barren plateaus in shallow parametrized quantum circuits", Nature Communications 12, 1791 (2021).
[252] Yuta Shingu, Yuya Seki, Shohei Watabe, Suguru Endo, Yuichiro Matsuzaki, Shiro Kawabata, Tetsuro Nikuni, and Hideaki Hakoshima, "Boltzmann machine learning with a variational quantum algorithm", Physical Review A 104 3, 032413 (2021).
[253] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J. Coles, "Noise-induced barren plateaus in variational quantum algorithms", Nature Communications 12, 6961 (2021).
[254] Joseph Vovrosh, Kiran E. Khosla, Sean Greenaway, Christopher Self, M. S. Kim, and Johannes Knolle, "Simple mitigation of global depolarizing errors in quantum simulations", Physical Review E 104 3, 035309 (2021).
[255] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, and Nana Liu, "Quantum noise protects quantum classifiers against adversaries", Physical Review Research 3 2, 023153 (2021).
[256] Bharath Hebbe Madhusudhana, Sebastian Scherg, Thomas Kohlert, Immanuel Bloch, and Monika Aidelsburger, "Benchmarking a Novel Efficient Numerical Method for Localized 1D Fermi-Hubbard Systems on a Quantum Simulator", PRX Quantum 2 4, 040325 (2021).
[257] Hideaki Hakoshima, Yuichiro Matsuzaki, and Suguru Endo, "Relationship between costs for quantum error mitigation and non-Markovian measures", Physical Review A 103 1, 012611 (2021).
[258] Daniel Stilck França and Raul García-Patrón, "Limitations of optimization algorithms on noisy quantum devices", Nature Physics 17 11, 1221 (2021).
[259] Jonathan Wurtz and Peter Love, "MaxCut quantum approximate optimization algorithm performance guarantees for p >1", Physical Review A 103 4, 042612 (2021).
[260] Taylor L. Patti, Khadijeh Najafi, Xun Gao, and Susanne F. Yelin, "Entanglement devised barren plateau mitigation", Physical Review Research 3 3, 033090 (2021).
[261] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S. Steiger, Markus Reiher, Martin Roetteler, and Matthias Troyer, "Quantum computing enhanced computational catalysis", Physical Review Research 3 3, 033055 (2021).
[262] Oleksandr Kyriienko, Annie E. Paine, and Vincent E. Elfving, "Solving nonlinear differential equations with differentiable quantum circuits", Physical Review A 103 5, 052416 (2021).
[263] Juneseo Lee, Alicia B. Magann, Herschel A. Rabitz, and Christian Arenz, "Progress toward favorable landscapes in quantum combinatorial optimization", Physical Review A 104 3, 032401 (2021).
[264] Shiro Tamiya, Sho Koh, and Yuya O. Nakagawa, "Calculating nonadiabatic couplings and Berry's phase by variational quantum eigensolvers", Physical Review Research 3 2, 023244 (2021).
[265] Guillermo García-Pérez, Matteo A. C. Rossi, Boris Sokolov, Francesco Tacchino, Panagiotis Kl. Barkoutsos, Guglielmo Mazzola, Ivano Tavernelli, and Sabrina Maniscalco, "Learning to Measure: Adaptive Informationally Complete Generalized Measurements for Quantum Algorithms", PRX Quantum 2 4, 040342 (2021).
[266] Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen, and Ulrik L. Andersen, "Deterministic multi-mode gates on a scalable photonic quantum computing platform", Nature Physics 17 9, 1018 (2021).
[267] Tobias Haug, Kishor Bharti, and M. S. Kim, "Capacity and Quantum Geometry of Parametrized Quantum Circuits", PRX Quantum 2 4, 040309 (2021).
[268] Angus Lowe, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio, "Unified approach to data-driven quantum error mitigation", Physical Review Research 3 3, 033098 (2021).
[269] João Barata, Niklas Mueller, Andrey Tarasov, and Raju Venugopalan, "Single-particle digitization strategy for quantum computation of a ϕ<SUP>4</SUP> scalar field theory", Physical Review A 103 4, 042410 (2021).
[270] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, and Dacheng Tao, "Learnability of Quantum Neural Networks", PRX Quantum 2 4, 040337 (2021).
[271] Ryuji Takagi, "Optimal resource cost for error mitigation", Physical Review Research 3 3, 033178 (2021).
[272] Kenji Kubo, Yuya O. Nakagawa, Suguru Endo, and Shota Nagayama, "Variational quantum simulations of stochastic differential equations", Physical Review A 103 5, 052425 (2021).
[273] Jonah Kudler-Flam, Vladimir Narovlansky, and Shinsei Ryu, "Distinguishing Random and Black Hole Microstates", PRX Quantum 2 4, 040340 (2021).
[274] Haoran Liao, Ian Convy, William J. Huggins, and K. Birgitta Whaley, "Robust in practice: Adversarial attacks on quantum machine learning", Physical Review A 103 4, 042427 (2021).
[275] John S. Van Dyke, George S. Barron, Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou, "Preparing Bethe Ansatz Eigenstates on a Quantum Computer", PRX Quantum 2 4, 040329 (2021).
[276] Andrew D. King, Jack Raymond, Trevor Lanting, Sergei V. Isakov, Masoud Mohseni, Gabriel Poulin-Lamarre, Sara Ejtemaee, William Bernoudy, Isil Ozfidan, Anatoly Yu. Smirnov, Mauricio Reis, Fabio Altomare, Michael Babcock, Catia Baron, Andrew J. Berkley, Kelly Boothby, Paul I. Bunyk, Holly Christiani, Colin Enderud, Bram Evert, Richard Harris, Emile Hoskinson, Shuiyuan Huang, Kais Jooya, Ali Khodabandelou, Nicolas Ladizinsky, Ryan Li, P. Aaron Lott, Allison J. R. MacDonald, Danica Marsden, Gaelen Marsden, Teresa Medina, Reza Molavi, Richard Neufeld, Mana Norouzpour, Travis Oh, Igor Pavlov, Ilya Perminov, Thomas Prescott, Chris Rich, Yuki Sato, Benjamin Sheldan, George Sterling, Loren J. Swenson, Nicholas Tsai, Mark H. Volkmann, Jed D. Whittaker, Warren Wilkinson, Jason Yao, Hartmut Neven, Jeremy P. Hilton, Eric Ladizinsky, Mark W. Johnson, and Mohammad H. Amin, "Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets", Nature Communications 12, 1113 (2021).
[277] Yuval Baum, Mirko Amico, Sean Howell, Michael Hush, Maggie Liuzzi, Pranav Mundada, Thomas Merkh, Andre R. R. Carvalho, and Michael J. Biercuk, "Experimental Deep Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting Quantum Computer", PRX Quantum 2 4, 040324 (2021).
[278] Yongdan Yang, Bing-Nan Lu, and Ying Li, "Accelerated Quantum Monte Carlo with Mitigated Error on Noisy Quantum Computer", PRX Quantum 2 4, 040361 (2021).
[279] Dan-Bo Zhang, Hongxi Xing, Hui Yan, Enke Wang, and Shi-Liang Zhu, "Selected topics of quantum computing for nuclear physics", arXiv:2011.01431, (2020).
[280] Yordan S. Yordanov, V. Armaos, Crispin H. W. Barnes, and David R. M. Arvidsson-Shukur, "Qubit-excitation-based adaptive variational quantum eigensolver", Communications Physics 4 1, 228 (2021).
[281] Alexandre Choquette, Agustin Di Paolo, Panagiotis Kl. Barkoutsos, David Sénéchal, Ivano Tavernelli, and Alexandre Blais, "Quantum-optimal-control-inspired ansatz for variational quantum algorithms", Physical Review Research 3 2, 023092 (2021).
[282] Benjamin Nachman, Davide Provasoli, Wibe A. de Jong, and Christian W. Bauer, "Quantum Algorithm for High Energy Physics Simulations", Physical Review Letters 126 6, 062001 (2021).
[283] Karthik Chinni, Pablo M. Poggi, and Ivan H. Deutsch, "Effect of chaos on the simulation of quantum critical phenomena in analog quantum simulators", Physical Review Research 3 3, 033145 (2021).
[284] Ravitej Uppu, Leonardo Midolo, Xiaoyan Zhou, Jacques Carolan, and Peter Lodahl, "Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology", Nature Nanotechnology 16 12, 1308 (2021).
[285] Prasanna Date and Thomas Potok, "Adiabatic quantum linear regression", Scientific Reports 11, 21905 (2021).
[286] Andre R. R. Carvalho, Harrison Ball, Michael J. Biercuk, Michael R. Hush, and Felix Thomsen, "Error-Robust Quantum Logic Optimization Using a Cloud Quantum Computer Interface", Physical Review Applied 15 6, 064054 (2021).
[287] S. E. Rasmussen, K. S. Christensen, S. P. Pedersen, L. B. Kristensen, T. Bækkegaard, N. J. S. Loft, and N. T. Zinner, "Superconducting Circuit Companion—an Introduction with Worked Examples", PRX Quantum 2 4, 040204 (2021).
[288] Andrea Mari, Nathan Shammah, and William J. Zeng, "Extending quantum probabilistic error cancellation by noise scaling", Physical Review A 104 5, 052607 (2021).
[289] Bálint Koczor, "The dominant eigenvector of a noisy quantum state", New Journal of Physics 23 12, 123047 (2021).
[290] Yukio Kawashima, Erika Lloyd, Marc P. Coons, Yunseong Nam, Shunji Matsuura, Alejandro J. Garza, Sonika Johri, Lee Huntington, Valentin Senicourt, Andrii O. Maksymov, Jason H. V. Nguyen, Jungsang Kim, Nima Alidoust, Arman Zaribafiyan, and Takeshi Yamazaki, "Optimizing electronic structure simulations on a trapped-ion quantum computer using problem decomposition", Communications Physics 4 1, 245 (2021).
[291] Chee Kong Lee, Pranay Patil, Shengyu Zhang, and Chang Yu Hsieh, "Neural-network variational quantum algorithm for simulating many-body dynamics", Physical Review Research 3 2, 023095 (2021).
[292] Emma Lomonte, Martin A. Wolff, Fabian Beutel, Simone Ferrari, Carsten Schuck, Wolfram H. P. Pernice, and Francesco Lenzini, "Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits", Nature Communications 12, 6847 (2021).
[293] Barnaby van Straaten and Bálint Koczor, "Measurement Cost of Metric-Aware Variational Quantum Algorithms", PRX Quantum 2 3, 030324 (2021).
[294] Sean Greenaway, Frédéric Sauvage, Kiran E. Khosla, and Florian Mintert, "Efficient assessment of process fidelity", Physical Review Research 3 3, 033031 (2021).
[295] Kishor Bharti and Tobias Haug, "Iterative quantum-assisted eigensolver", Physical Review A 104 5, L050401 (2021).
[296] John P. T. Stenger, Nicholas T. Bronn, Daniel J. Egger, and David Pekker, "Simulating the dynamics of braiding of Majorana zero modes using an IBM quantum computer", Physical Review Research 3 3, 033171 (2021).
[297] Caterina Vigliar, Stefano Paesani, Yunhong Ding, Jeremy C. Adcock, Jianwei Wang, Sam Morley-Short, Davide Bacco, Leif K. Oxenløwe, Mark G. Thompson, John G. Rarity, and Anthony Laing, "Error-protected qubits in a silicon photonic chip", Nature Physics 17 10, 1137 (2021).
[298] Yasar Y. Atas, Jinglei Zhang, Randy Lewis, Amin Jahanpour, Jan F. Haase, and Christine A. Muschik, "SU(2) hadrons on a quantum computer via a variational approach", Nature Communications 12, 6499 (2021).
[299] Zhide Lu, Pei-Xin Shen, and Dong-Ling Deng, "Markovian Quantum Neuroevolution for Machine Learning", Physical Review Applied 16 4, 044039 (2021).
[300] Xiu Gu, Jorge Fernández-Pendás, Pontus Vikstâl, Tahereh Abad, Christopher Warren, Andreas Bengtsson, Giovanna Tancredi, Vitaly Shumeiko, Jonas Bylander, Göran Johansson, and Anton Frisk Kockum, "Fast Multiqubit Gates through Simultaneous Two-Qubit Gates", PRX Quantum 2 4, 040348 (2021).
[301] Sergey Bravyi, David Gosset, and Ramis Movassagh, "Classical algorithms for quantum mean values", Nature Physics 17 3, 337 (2021).
[302] Boaz Barak, "Work with what you've got", Nature Physics 17 3, 295 (2021).
[303] Kenneth R. Brown, John Chiaverini, Jeremy M. Sage, and Hartmut Häffner, "Materials challenges for trapped-ion quantum computers", Nature Reviews Materials 6 10, 892 (2021).
[304] Olivia Di Matteo, Anna McCoy, Peter Gysbers, Takayuki Miyagi, R. M. Woloshyn, and Petr Navrátil, "Improving Hamiltonian encodings with the Gray code", Physical Review A 103 4, 042405 (2021).
[305] Zbigniew Puchała, Kamil Korzekwa, Roberto Salazar, Paweł Horodecki, and Karol Życzkowski, "Dephasing superchannels", Physical Review A 104 5, 052611 (2021).
[306] Connor T. Hann, Gideon Lee, S. M. Girvin, and Liang Jiang, "Resilience of Quantum Random Access Memory to Generic Noise", PRX Quantum 2 2, 020311 (2021).
[307] Alexander J. Buser, Hrant Gharibyan, Masanori Hanada, Masazumi Honda, and Junyu Liu, "Quantum simulation of gauge theory via orbifold lattice", Journal of High Energy Physics 2021 9, 34 (2021).
[308] András Gilyén, Zhao Song, and Ewin Tang, "An improved quantum-inspired algorithm for linear regression", arXiv:2009.07268, (2020).
[309] Yuki Sato, Ruho Kondo, Satoshi Koide, Hideki Takamatsu, and Nobuyuki Imoto, "Variational quantum algorithm based on the minimum potential energy for solving the Poisson equation", Physical Review A 104 5, 052409 (2021).
[310] Hongxiang Chen, Max Nusspickel, Jules Tilly, and George H. Booth, "Variational quantum eigensolver for dynamic correlation functions", Physical Review A 104 3, 032405 (2021).
[311] Yadong Wu, Juan Yao, Pengfei Zhang, and Hui Zhai, "Expressivity of quantum neural networks", Physical Review Research 3 3, L032049 (2021).
[312] Shuai-Feng Guo, Feng Chen, Qi Liu, Ming Xue, Jun-Jie Chen, Jia-Hao Cao, Tian-Wei Mao, Meng Khoon Tey, and Li You, "Faster State Preparation across Quantum Phase Transition Assisted by Reinforcement Learning", Physical Review Letters 126 6, 060401 (2021).
[313] Megan L. Dahlhauser and Travis S. Humble, "Modeling noisy quantum circuits using experimental characterization", Physical Review A 103 4, 042603 (2021).
[314] Élie Genois, Jonathan A. Gross, Agustin Di Paolo, Noah J. Stevenson, Gerwin Koolstra, Akel Hashim, Irfan Siddiqi, and Alexandre Blais, "Quantum-Tailored Machine-Learning Characterization of a Superconducting Qubit", PRX Quantum 2 4, 040355 (2021).
[315] Atchade Parfait Adelomou, Elisabet Golobardes Ribe, and Xavier Vilasis Cardona, "Using the Parameterized Quantum Circuit combined with Variational-Quantum-Eigensolver (VQE) to create an Intelligent social workers' schedule problem solver", arXiv:2010.05863, (2020).
[316] Yadong Wu, Pengfei Zhang, and Hui Zhai, "Scrambling ability of quantum neural network architectures", Physical Review Research 3 3, L032057 (2021).
[317] Rebecca Hicks, Christian W. Bauer, and Benjamin Nachman, "Readout rebalancing for near-term quantum computers", Physical Review A 103 2, 022407 (2021).
[318] Michael L. Wall, Matthew R. Abernathy, and Gregory Quiroz, "Generative machine learning with tensor networks: Benchmarks on near-term quantum computers", Physical Review Research 3 2, 023010 (2021).
[319] Rafael I. Nepomechie, "Bethe ansatz on a quantum computer?", arXiv:2010.01609, (2020).
[320] Xiao Xiong, Nuttawut Kongsuwan, Yiming Lai, Ching Eng Png, Lin Wu, and Ortwin Hess, "Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications", Applied Physics Letters 118 13, 130501 (2021).
[321] Davide Bacco, Jacob F. F. Bulmer, Manuel Erhard, Marcus Huber, and Stefano Paesani, "Proposal for practical multidimensional quantum networks", Physical Review A 104 5, 052618 (2021).
[322] Vincent Paul Su, "Variational preparation of the thermofield double state of the Sachdev-Ye-Kitaev model", Physical Review A 104 1, 012427 (2021).
[323] Martin Kliesch and Ingo Roth, "Theory of quantum system certification: a tutorial", arXiv:2010.05925, (2020).
[324] Joonho Kim, Jaedeok Kim, and Dario Rosa, "Universal effectiveness of high-depth circuits in variational eigenproblems", Physical Review Research 3 2, 023203 (2021).
[325] Shunji Matsuura, Samantha Buck, Valentin Senicourt, and Arman Zaribafiyan, "Variationally scheduled quantum simulation", Physical Review A 103 5, 052435 (2021).
[326] Stewart Morawetz, Isaac J. S. De Vlugt, Juan Carrasquilla, and Roger G. Melko, "U(1)-symmetric recurrent neural networks for quantum state reconstruction", Physical Review A 104 1, 012401 (2021).
[327] Ian MacCormack, Conor Delaney, Alexey Galda, Nidhi Aggarwal, and Prineha Narang, "Branching Quantum Convolutional Neural Networks", arXiv:2012.14439, (2020).
[328] Xiao-Ming Zhang, Weicheng Kong, Muhammad Usman Farooq, Man-Hong Yung, Guoping Guo, and Xin Wang, "Generic detection-based error mitigation using quantum autoencoders", Physical Review A 103 4, L040403 (2021).
[329] Emiel Koridon, Saad Yalouz, Bruno Senjean, Francesco Buda, Thomas E. O'Brien, and Lucas Visscher, "Orbital transformations to reduce the 1-norm of the electronic structure Hamiltonian for quantum computing applications", Physical Review Research 3 3, 033127 (2021).
[330] Xiruo Yan, Sebastian Gitt, Becky Lin, Donald Witt, Mahssa Abdolahi, Abdelrahman Afifi, Adan Azem, Adam Darcie, Jingda Wu, Kashif Awan, Matthew Mitchell, Andreas Pfenning, Lukas Chrostowski, and Jeff F. Young, "Silicon photonic quantum computing with spin qubits", APL Photonics 6 7, 070901 (2021).
[331] S. D. Manko, D. N. Frolovtsev, and S. A. Magnitsky, "Simulation of Quantum Tomography Process of Biphoton Polarization States on a Quantum Computer", Moscow University Physics Bulletin 76 2, 97 (2021).
[332] Kevin C. Smith, Aniruddha Bhattacharya, and David J. Masiello, "Exact k -body representation of the Jaynes-Cummings interaction in the dressed basis: Insight into many-body phenomena with light", Physical Review A 104 1, 013707 (2021).
[333] Simon Milz, Dominic Jurkschat, Felix A. Pollock, and Kavan Modi, "Delayed-choice causal order and nonclassical correlations", Physical Review Research 3 2, 023028 (2021).
[334] Cillian Harney, Leonardo Banchi, and Stefano Pirandola, "Ultimate limits of thermal pattern recognition", Physical Review A 103 5, 052406 (2021).
[335] Susan M. Mniszewski, Pavel A. Dub, Sergei Tretiak, Petr M. Anisimov, Yu Zhang, and Christian F. A. Negre, "Reduction of the molecular hamiltonian matrix using quantum community detection", Scientific Reports 11, 4099 (2021).
[336] Vincenzo Lordi and John M. Nichol, "Advances and opportunities in materials science for scalable quantum computing", MRS Bulletin 46 7, 589 (2021).
[337] Nhat A. Nghiem, Samuel Yen-Chi Chen, and Tzu-Chieh Wei, "Unified framework for quantum classification", Physical Review Research 3 3, 033056 (2021).
[338] Konstantinos Georgopoulos, Clive Emary, and Paolo Zuliani, "Comparison of quantum-walk implementations on noisy intermediate-scale quantum computers", Physical Review A 103 2, 022408 (2021).
[339] Albert Benseny and Klaus Mølmer, "Adiabatic theorem revisited: The unexpectedly good performance of adiabatic passage", Physical Review A 103 6, 062215 (2021).
[340] Yoshifumi Nakata, Eyuri Wakakuwa, and Hayata Yamasaki, "One-shot quantum error correction of classical and quantum information", Physical Review A 104 1, 012408 (2021).
[341] Kapil K. Sharma and Suprabhat Sinha, "Trade-off between Squashed Entanglement and Concurrence in Bipartite Quantum States", International Journal of Theoretical Physics 60 9, 3651 (2021).
[342] Nivedita Dey, Mrityunjay Ghosh, Subhra Samir kundu, and Amlan Chakrabarti, "QDLC -- The Quantum Development Life Cycle", arXiv:2010.08053, (2020).
[343] Ramin Ayanzadeh, John Dorband, Milton Halem, and Tim Finin, "Multi-qubit correction for quantum annealers", Scientific Reports 11, 16119 (2021).
[344] Yi-Te Huang, Jhen-Dong Lin, Huan-Yu Ku, and Yueh-Nan Chen, "Benchmarking quantum state transfer on quantum devices", Physical Review Research 3 2, 023038 (2021).
[345] Dominik Hangleiter, "Sampling and the complexity of nature", arXiv:2012.07905, (2020).
[346] Alexis Ralli, Peter J. Love, Andrew Tranter, and Peter V. Coveney, "Implementation of measurement reduction for the variational quantum eigensolver", Physical Review Research 3 3, 033195 (2021).
[347] Yihong Zhang, Yifan Tang, You Zhou, and Xiongfeng Ma, "Efficient entanglement generation and detection of generalized stabilizer states", Physical Review A 103 5, 052426 (2021).
[348] Nur R. Ayukaryana, Mohammad H. Fauzi, and Eddwi H. Hasdeo, "The quest and hope of Majorana zero modes in topological superconductor for fault-tolerant quantum computing: An introductory overview", American Institute of Physics Conference Series 2382 1, 020007 (2021).
[349] Yutaka Shikano, Hiroshi C. Watanabe, Ken M. Nakanishi, and Yu-ya Ohnishi, "Post-Hartree-Fock method in quantum chemistry for quantum computer", European Physical Journal Special Topics 230 4, 1037 (2021).
[350] Matthew Otten, Keshav Kapoor, A. Barış Özgüler, Eric T. Holland, James B. Kowalkowski, Yuri Alexeev, and Adam L. Lyon, "Impacts of noise and structure on quantum information encoded in a quantum memory", Physical Review A 104 1, 012605 (2021).
[351] Yifei Huang and Peter Love, "Feynman-path-type simulation using stabilizer projector decomposition of unitaries", Physical Review A 103 2, 022428 (2021).
[352] Lucas Kocia and Mohan Sarovar, "Classical simulation of quantum circuits using fewer Gaussian eliminations", Physical Review A 103 2, 022603 (2021).
[353] Nicolas Schwaller, Marc-André Dupertuis, and Clément Javerzac-Galy, "Evidence of the entanglement constraint on wave-particle duality using the IBM Q quantum computer", Physical Review A 103 2, 022409 (2021).
[354] Aonan Zhang, Hao Zhan, Junjie Liao, Kaimin Zheng, Tao Jiang, Minghao Mi, Penghui Yao, and Lijian Zhang, "Quantum verification of NP problems with single photons and linear optics", Light: Science & Applications 10 1, 169 (2021).
[355] Indrakshi Raychowdhury, "Toward quantum simulating non-Abelian gauge theories", Indian Journal of Physics 95 8, 1681 (2021).
[356] Hong-Bin Chen and Yueh-Nan Chen, "Canonical Hamiltonian ensemble representation of dephasing dynamics and the impact of thermal fluctuations on quantum-to-classical transition", Scientific Reports 11, 10046 (2021).
[357] Brian Barch, Razieh Mohseninia, and Daniel Lidar, "Low overhead universality and quantum supremacy using only Z control", Physical Review Research 3 3, 033207 (2021).
[358] Ying-Jiun Chen, Markus Hoffmann, Bernd Zimmermann, Gustav Bihlmayer, Stefan Blügel, Claus M. Schneider, and Christian Tusche, "Quantum spin mixing in Dirac materials", Communications Physics 4 1, 179 (2021).
[359] Chunfeng Huang, Tianyu Huang, Qianyu Lin, and Kejin Wei, "Blinding quantum computation using alternative sources", Physical Review A 104 1, 012614 (2021).
[360] Ludovico Lami, "Quantum data hiding with continuous-variable systems", Physical Review A 104 5, 052428 (2021).
[361] Jelmer J. Renema, Hui Wang, Jian Qin, Xiang You, Chaoyang Lu, and Jianwei Pan, "Sample-efficient benchmarking of multiphoton interference on a boson sampler in the sparse regime", Physical Review A 103 2, 023722 (2021).
[362] Guillermo González, Rahul Trivedi, and J. Ignacio Cirac, "Quantum algorithms for powering stable Hermitian matrices", Physical Review A 103 6, 062420 (2021).
[363] João Barata and Carlos A. Salgado, "A quantum strategy to compute the jet quenching parameter q ^", European Physical Journal C 81 10, 862 (2021).
[364] Sam McArdle, "Learning from Physics Experiments with Quantum Computers: Applications in Muon Spectroscopy", PRX Quantum 2 2, 020349 (2021).
[365] J. H. Béjanin, C. T. Earnest, Y. R. Sanders, and M. Mariantoni, "Resonant Coupling Parameter Estimation with Superconducting Qubits", PRX Quantum 2 4, 040343 (2021).
[366] Wooyeong Song, Youngrong Lim, Hyukjoon Kwon, Gerardo Adesso, Marcin Wieśniak, Marcin Pawłowski, Jaewan Kim, and Jeongho Bang, "Quantum secure learning with classical samples", Physical Review A 103 4, 042409 (2021).
[367] Nathan Eli Miller and Saibal Mukhopadhyay, "A quantum Hopfield associative memory implemented on an actual quantum processor", Scientific Reports 11, 23391 (2021).
[368] Samudra Dasgupta and Travis S. Humble, "Characterizing the Stability of NISQ Devices", arXiv:2008.09612, (2020).
[369] Stephanie Law and Servaas Kokkelmans, "Materials for quantum technologies: Computing, information, and sensing", Journal of Applied Physics 129 14, 140401 (2021).
[370] Pedro Rivero, Ian C. Cloët, and Zack Sullivan, "An optimal quantum sampling regression algorithm for variational eigensolving in the low qubit number regime", arXiv:2012.02338, (2020).
[371] Chen Lin, YiChen Wang, JinZhao Wu, and GuoWu Yang, "Efficient Decoding Scheme of Non-Uniform Concatenation Quantum Code with Deep Neural Network", International Journal of Theoretical Physics 60 3, 848 (2021).
[372] Jacob Chevalier Drori, Yordan S. Yordanov, Thierry Ferrus, Matthew Applegate, and Crispin H. W. Barnes, "Invariant subspaces of two-qubit quantum gates and their application in the verification of quantum computers", Physical Review A 104 5, 052619 (2021).
[373] Minsung Kim, Davide Venturelli, and Kyle Jamieson, "Towards Hybrid Classical-Quantum Computation Structures in Wirelessly-Networked Systems", arXiv:2010.00682, (2020).
[374] Tongyang Li, Chunhao Wang, Shouvanik Chakrabarti, and Xiaodi Wu, "Sublinear classical and quantum algorithms for general matrix games", arXiv:2012.06519, (2020).
[375] Roberto Baginski B. Santos and Vinicius S. F. Lisboa, "Coupling Modifies the Quantum Fluctuations of Entangled Oscillators", Brazilian Journal of Physics 51 3, 559 (2021).
[376] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff, "Circuit quantum electrodynamics", Reviews of Modern Physics 93 2, 025005 (2021).
[377] C. Monroe, W. C. Campbell, L. -M. Duan, Z. -X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao, "Programmable quantum simulations of spin systems with trapped ions", Reviews of Modern Physics 93 2, 025001 (2021).
[378] Avinash Chalumuri, Raghavendra Kune, and B. S. Manoj, "A hybrid classical-quantum approach for multi-class classification", Quantum Information Processing 20 3, 119 (2021).
[379] Matteo Ippoliti, Michael J. Gullans, Sarang Gopalakrishnan, David A. Huse, and Vedika Khemani, "Entanglement Phase Transitions in Measurement-Only Dynamics", Physical Review X 11 1, 011030 (2021).
[380] Antoine Neven, Jose Carrasco, Vittorio Vitale, Christian Kokail, Andreas Elben, Marcello Dalmonte, Pasquale Calabrese, Peter Zoller, Benoît Vermersch, Richard Kueng, and Barbara Kraus, "Symmetry-resolved entanglement detection using partial transpose moments", npj Quantum Information 7, 152 (2021).
[381] Youngkyu Sung, Leon Ding, Jochen Braumüller, Antti Vepsäläinen, Bharath Kannan, Morten Kjaergaard, Ami Greene, Gabriel O. Samach, Chris McNally, David Kim, Alexander Melville, Bethany M. Niedzielski, Mollie E. Schwartz, Jonilyn L. Yoder, Terry P. Orlando, Simon Gustavsson, and William D. Oliver, "Realization of High-Fidelity CZ and Z Z -Free iSWAP Gates with a Tunable Coupler", Physical Review X 11 2, 021058 (2021).
[382] Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio, "Error mitigation with Clifford quantum-circuit data", Quantum 5, 592 (2021).
[383] Chris N. Self, Kiran E. Khosla, Alistair W. R. Smith, Frédéric Sauvage, Peter D. Haynes, Johannes Knolle, Florian Mintert, and M. S. Kim, "Variational quantum algorithm with information sharing", npj Quantum Information 7, 116 (2021).
[384] Peter Nimbe, Benjamin Asubam Weyori, and Adebayo Felix Adekoya, "Models in quantum computing: a systematic review", Quantum Information Processing 20 2, 80 (2021).
[385] Zhenyu Cai, "Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications", npj Quantum Information 7, 80 (2021).
[386] Bálint Koczor, "Exponential Error Suppression for Near-Term Quantum Devices", Physical Review X 11 3, 031057 (2021).
[387] William J. Huggins, Jarrod R. McClean, Nicholas C. Rubin, Zhang Jiang, Nathan Wiebe, K. Birgitta Whaley, and Ryan Babbush, "Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers", npj Quantum Information 7, 23 (2021).
[388] Avinash Chalumuri, Raghavendra Kune, S. Kannan, and B. S. Manoj, "Quantum-enhanced deep neural network architecture for image scene classification", Quantum Information Processing 20 11, 381 (2021).
[389] John M. Martinis, "Saving superconducting quantum processors from decay and correlated errors generated by gamma and cosmic rays", npj Quantum Information 7, 90 (2021).
[390] Filip B. Maciejewski, Flavio Baccari, Zoltán Zimborás, and Michał Oszmaniec, "Modeling and mitigation of cross-talk effects in readout noise with applications to the Quantum Approximate Optimization Algorithm", Quantum 5, 464 (2021).
[391] Jan F. Haase, Luca Dellantonio, Alessio Celi, Danny Paulson, Angus Kan, Karl Jansen, and Christine A. Muschik, "A resource efficient approach for quantum and classical simulations of gauge theories in particle physics", Quantum 5, 393 (2021).
[392] Sarmed A Rahman, Randy Lewis, Emanuele Mendicelli, and Sarah Powell, "SU(2) lattice gauge theory on a quantum annealer", arXiv:2103.08661, (2021).
[393] Matija Medvidović and Giuseppe Carleo, "Classical variational simulation of the Quantum Approximate Optimization Algorithm", npj Quantum Information 7, 101 (2021).
[394] Johannes Jakob Meyer, Johannes Borregaard, and Jens Eisert, "A variational toolbox for quantum multi-parameter estimation", npj Quantum Information 7, 89 (2021).
[395] Benedikt Fauseweh and Jian-Xin Zhu, "Digital quantum simulation of non-equilibrium quantum many-body systems", Quantum Information Processing 20 4, 138 (2021).
[396] Benjamin A. Cordier, Nicolas P. D. Sawaya, Gian G. Guerreschi, and Shannon K. McWeeney, "Biology and medicine in the landscape of quantum advantages", arXiv:2112.00760, (2021).
[397] Johannes Jakob Meyer, "Fisher Information in Noisy Intermediate-Scale Quantum Applications", Quantum 5, 539 (2021).
[398] Jonathan Wei Zhong Lau, Kian Hwee Lim, Harshank Shrotriya, and Leong Chuan Kwek, "NISQ computing: where are we and where do we go?", Association of Asia Pacific Physical Societies Bulletin 32 1, 27 (2022).
[399] Evan Peters, João Caldeira, Alan Ho, Stefan Leichenauer, Masoud Mohseni, Hartmut Neven, Panagiotis Spentzouris, Doug Strain, and Gabriel N. Perdue, "Machine learning of high dimensional data on a noisy quantum processor", npj Quantum Information 7, 161 (2021).
[400] Arthur G. Rattew, Yue Sun, Pierre Minssen, and Marco Pistoia, "The Efficient Preparation of Normal Distributions in Quantum Registers", Quantum 5, 609 (2021).
[401] Helin Zhang, Srivatsan Chakram, Tanay Roy, Nathan Earnest, Yao Lu, Ziwen Huang, D. K. Weiss, Jens Koch, and David I. Schuster, "Universal Fast-Flux Control of a Coherent, Low-Frequency Qubit", Physical Review X 11 1, 011010 (2021).
[402] Takeru Kusumoto, Kosuke Mitarai, Keisuke Fujii, Masahiro Kitagawa, and Makoto Negoro, "Experimental quantum kernel trick with nuclear spins in a solid", npj Quantum Information 7, 94 (2021).
[403] Sowmitra Das, Md. Saifur Rahman, and Mahbub Majumdar, "Design of a quantum repeater using quantum circuits and benchmarking its performance on an IBM quantum computer", Quantum Information Processing 20 7, 245 (2021).
[404] Alexander M. Dalzell, Nicholas Hunter-Jones, and Fernando G. S. L. Brandão, "Random quantum circuits transform local noise into global white noise", arXiv:2111.14907, (2021).
[405] Jules Tilly, P. V. Sriluckshmy, Akashkumar Patel, Enrico Fontana, Ivan Rungger, Edward Grant, Robert Anderson, Jonathan Tennyson, and George H. Booth, "Reduced density matrix sampling: Self-consistent embedding and multiscale electronic structure on current generation quantum computers", Physical Review Research 3 3, 033230 (2021).
[406] Casper Gyurik, Dyon van Vreumingen, and Vedran Dunjko, "Structural risk minimization for quantum linear classifiers", arXiv:2105.05566, (2021).
[407] Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, and Paolo Stornati, "Dimensional Expressivity Analysis of Parametric Quantum Circuits", Quantum 5, 422 (2021).
[408] Leonardo Banchi and Gavin E. Crooks, "Measuring Analytic Gradients of General Quantum Evolution with the Stochastic Parameter Shift Rule", Quantum 5, 386 (2021).
[409] Ophelia Crawford, Barnaby van Straaten, Daochen Wang, Thomas Parks, Earl Campbell, and Stephen Brierley, "Efficient quantum measurement of Pauli operators in the presence of finite sampling error", Quantum 5, 385 (2021).
[410] Shahnawaz Ahmed, Carlos Sánchez Muñoz, Franco Nori, and Anton Frisk Kockum, "Classification and reconstruction of optical quantum states with deep neural networks", Physical Review Research 3 3, 033278 (2021).
[411] Kun Zhang, Pooja Rao, Kwangmin Yu, Hyunkyung Lim, and Vladimir Korepin, "Implementation of efficient quantum search algorithms on NISQ computers", Quantum Information Processing 20 7, 233 (2021).
[412] Hirofumi Nishi, Taichi Kosugi, and Yu-ichiro Matsushita, "Implementation of quantum imaginary-time evolution method on NISQ devices by introducing nonlocal approximation", npj Quantum Information 7, 85 (2021).
[413] Stefan H. Sack and Maksym Serbyn, "Quantum annealing initialization of the quantum approximate optimization algorithm", Quantum 5, 491 (2021).
[414] Yi Xia, Wei Li, Quntao Zhuang, and Zheshen Zhang, "Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network", Physical Review X 11 2, 021047 (2021).
[415] Philippe Suchsland, Francesco Tacchino, Mark H. Fischer, Titus Neupert, Panagiotis Kl. Barkoutsos, and Ivano Tavernelli, "Algorithmic Error Mitigation Scheme for Current Quantum Processors", Quantum 5, 492 (2021).
[416] Chun-Jun Cao, "From Quantum Codes to Gravity: A Journey of Gravitizing Quantum Mechanics", Universe 8 1, 1 (2021).
[417] Junhua Liu, Kwan Hui Lim, Kristin L. Wood, Wei Huang, Chu Guo, and He-Liang Huang, "Hybrid quantum-classical convolutional neural networks", Science China Physics, Mechanics, and Astronomy 64 9, 290311 (2021).
[418] Xinbiao Wang, Yuxuan Du, Yong Luo, and Dacheng Tao, "Towards understanding the power of quantum kernels in the NISQ era", Quantum 5, 531 (2021).
[419] Kouhei Nakaji and Naoki Yamamoto, "Expressibility of the alternating layered ansatz for quantum computation", Quantum 5, 434 (2021).
[420] Xuanqiang Zhao, Benchi Zhao, Zihe Wang, Zhixin Song, and Xin Wang, "Practical distributed quantum information processing with LOCCNet", npj Quantum Information 7, 159 (2021).
[421] Chen Zhao and Xiao-Shan Gao, "Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus", Quantum 5, 466 (2021).
[422] Xin Wang, Zhixin Song, and Youle Wang, "Variational Quantum Singular Value Decomposition", Quantum 5, 483 (2021).
[423] Peihao Huang and Xuedong Hu, "Fast spin-valley-based quantum gates in Si with micromagnets", npj Quantum Information 7, 162 (2021).
[424] Yi-Ting Chen, Collin Farquhar, and Robert M. Parrish, "Low-rank density-matrix evolution for noisy quantum circuits", npj Quantum Information 7, 61 (2021).
[425] N. Slate, E. Matwiejew, S. Marsh, and J. B. Wang, "Quantum walk-based portfolio optimisation", Quantum 5, 513 (2021).
[426] Michael A. Perlin, Zain H. Saleem, Martin Suchara, and James C. Osborn, "Quantum circuit cutting with maximum-likelihood tomography", npj Quantum Information 7, 64 (2021).
[427] Christian W. Bauer, Plato Deliyannis, Marat Freytsis, and Benjamin Nachman, "Practical considerations for the preparation of multivariate Gaussian states on quantum computers", arXiv:2109.10918, (2021).
[428] Takaya Nakazato, Raustin Reyes, Nobuaki Imaike, Kazuyasu Matsuda, Kazuya Tsurumoto, Yuhei Sekiguchi, and Hideo Kosaka, "Quantum error correction of spin quantum memories in diamond under a zero magnetic field", Communications Physics 5 1, 102 (2022).
[429] Ryan Shaffer, Eli Megidish, Joseph Broz, Wei-Ting Chen, and Hartmut Häffner, "Practical verification protocols for analog quantum simulators", npj Quantum Information 7, 46 (2021).
[430] Siyuan Niu and Aida Todri-Sanial, "Enabling Multi-programming Mechanism for Quantum Computing in the NISQ Era", arXiv:2102.05321, (2021).
[431] F. Petiziol, A. Chiesa, S. Wimberger, P. Santini, and S. Carretta, "Counteracting dephasing in Molecular Nanomagnets by optimized qudit encodings", npj Quantum Information 7, 133 (2021).
[432] Mingxia Huo and Ying Li, "Error-resilient Monte Carlo quantum simulation of imaginary time", arXiv:2109.07807, (2021).
[433] Kunal Marwaha, "Local classical MAX-CUT algorithm outperforms p=2 QAOA on high-girth regular graphs", Quantum 5, 437 (2021).
[434] Justin Yirka and Yiğit Subaşı, "Qubit-efficient entanglement spectroscopy using qubit resets", Quantum 5, 535 (2021).
[435] Oinam Romesh Meitei, Bryan T. Gard, George S. Barron, David P. Pappas, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, "Gate-free state preparation for fast variational quantum eigensolver simulations", npj Quantum Information 7, 155 (2021).
[436] Jiaqing Jiang, Kun Wang, and Xin Wang, "Physical Implementability of Linear Maps and Its Application in Error Mitigation", Quantum 5, 600 (2021).
[437] Xiao Yuan, Yunchao Liu, Qi Zhao, Bartosz Regula, Jayne Thompson, and Mile Gu, "Universal and operational benchmarking of quantum memories", npj Quantum Information 7, 108 (2021).
[438] Soumik Adhikary, "Entanglement assisted training algorithm for supervised quantum classifiers", Quantum Information Processing 20 8, 254 (2021).
[439] Benjamin Tan, Marc-Antoine Lemonde, Supanut Thanasilp, Jirawat Tangpanitanon, and Dimitris G. Angelakis, "Qubit-efficient encoding schemes for binary optimisation problems", Quantum 5, 454 (2021).
[440] Kaixuan Huang, Zheng-An Wang, Chao Song, Kai Xu, Hekang Li, Zhen Wang, Qiujiang Guo, Zixuan Song, Zhi-Bo Liu, Dongning Zheng, Dong-Ling Deng, H. Wang, Jian-Guo Tian, and Heng Fan, "Quantum generative adversarial networks with multiple superconducting qubits", npj Quantum Information 7, 165 (2021).
[441] Lin Htoo Zaw, Yuanzheng Paul Tan, Long Hoang Nguyen, Rangga P. Budoyo, Kun Hee Park, Zhi Yang Koh, Alessandro Landra, Christoph Hufnagel, Yung Szen Yap, Teck Seng Koh, and Rainer Dumke, "Ghost factors in Gauss-sum factorization with transmon qubits", arXiv:2104.11368, (2021).
[442] Leo Zhou and Dorit Aharonov, "Strongly Universal Hamiltonian Simulators", arXiv:2102.02991, (2021).
[443] Lasse Bjørn Kristensen, Matthias Degroote, Peter Wittek, Alán Aspuru-Guzik, and Nikolaj T. Zinner, "An artificial spiking quantum neuron", npj Quantum Information 7, 59 (2021).
[444] Alexandre M. Souza, "Process tomography of robust dynamical decoupling with superconducting qubits", Quantum Information Processing 20 7, 237 (2021).
[445] Cillian Harney and Stefano Pirandola, "Idler-free multi-channel discrimination via multipartite probe states", npj Quantum Information 7, 153 (2021).
[446] Freek Witteveen, Volkher Scholz, Brian Swingle, and Michael Walter, "Quantum Circuit Approximations and Entanglement Renormalization for the Dirac Field in 1+1 Dimensions", Communications in Mathematical Physics 389 1, 75 (2022).
[447] Kazuki Ikeda, "Quantum contracts between Schrödinger and a cat", Quantum Information Processing 20 9, 313 (2021).
[448] David Fitzek, Toheed Ghandriz, Leo Laine, Mats Granath, and Anton Frisk Kockum, "Applying quantum approximate optimization to the heterogeneous vehicle routing problem", arXiv:2110.06799, (2021).
[449] Nathan Holman, D. Rosenberg, D. Yost, J. L. Yoder, R. Das, William D. Oliver, R. McDermott, and M. A. Eriksson, "3D integration and measurement of a semiconductor double quantum dot with a high-impedance TiN resonator", npj Quantum Information 7, 137 (2021).
[450] Chenyi Zhang, Jiaqi Leng, and Tongyang Li, "Quantum algorithms for escaping from saddle points", Quantum 5, 529 (2021).
[451] Kosuke Mitarai and Keisuke Fujii, "Overhead for simulating a non-local channel with local channels by quasiprobability sampling", Quantum 5, 388 (2021).
[452] Aidan Pellow-Jarman, Ilya Sinayskiy, Anban Pillay, and Francesco Petruccione, "A comparison of various classical optimizers for a variational quantum linear solver", Quantum Information Processing 20 6, 202 (2021).
[453] Bülent Demirel, Weikai Weng, Christopher Thalacker, Matty Hoban, and Stefanie Barz, "Correlations for computation and computation for correlations", npj Quantum Information 7, 29 (2021).
[454] F. Holik, M. Losada, H. Freytes, A. Plastino, and G. Sergioli, "Partial orbits of quantum gates and full three-particle entanglement", Quantum Information Processing 20 10, 351 (2021).
[455] Heng Fan, "Efficient implementation of quantum arithmetic operation circuits", Science China Physics, Mechanics, and Astronomy 64 1, 210332 (2021).
[456] Kevin Slagle, "Testing Quantum Mechanics using Noisy Quantum Computers", arXiv:2108.02201, (2021).
[457] Ulysse Chabaud, Pierre-Emmanuel Emeriau, and Frédéric Grosshans, "Witnessing Wigner Negativity", Quantum 5, 471 (2021).
[458] K. Bertels, A. Sarkar, A. Krol, R. Budhrani, J. Samadi, E. Geoffroy, J. Matos, R. Abreu, G. Gielen, and I. Ashraf, "Quantum Accelerator Stack: A Research Roadmap", arXiv:2102.02035, (2021).
[459] Kang Cai, Prabin Parajuli, Guilu Long, Chee Wei Wong, and Lin Tian, "Robust preparation of many-body ground states in Jaynes-Cummings lattices", npj Quantum Information 7, 96 (2021).
[460] Naeimeh Mohseni, Marek Narozniak, Alexey N. Pyrkov, Valentin Ivannikov, Jonathan P. Dowling, and Tim Byrnes, "Error suppression in adiabatic quantum computing with qubit ensembles", npj Quantum Information 7, 71 (2021).
[461] Ulysse Chabaud, Damian Markham, and Adel Sohbi, "Quantum machine learning with adaptive linear optics", Quantum 5, 496 (2021).
[462] Daiqin Su, Robert Israel, Kunal Sharma, Haoyu Qi, Ish Dhand, and Kamil Brádler, "Error mitigation on a near-term quantum photonic device", Quantum 5, 452 (2021).
[463] Youle Wang, Guangxi Li, and Xin Wang, "A Hybrid Quantum-Classical Hamiltonian Learning Algorithm", arXiv:2103.01061, (2021).
[464] Scott Aaronson, "Open Problems Related to Quantum Query Complexity", arXiv:2109.06917, (2021).
[465] Chang Yu Hsieh, Qiming Sun, Shengyu Zhang, and Chee Kong Lee, "Unitary-coupled restricted Boltzmann machine ansatz for quantum simulations", npj Quantum Information 7, 19 (2021).
[466] Oscar Higgott, Matthew Wilson, James Hefford, James Dborin, Farhan Hanif, Simon Burton, and Dan E. Browne, "Optimal local unitary encoding circuits for the surface code", Quantum 5, 517 (2021).
[467] Bo Peng and Karol Kowalski, "Variational quantum solver employing the PDS energy functional", Quantum 5, 473 (2021).
[468] Hiroshi C. Watanabe, Rudy Raymond, Yu-ya Ohnishi, Eriko Kaminishi, and Michihiko Sugawara, "Optimizing Parameterized Quantum Circuits with Free-Axis Selection", arXiv:2104.14875, (2021).
[469] Kok Chuan Tan and Tyler Volkoff, "Variational quantum algorithms to estimate rank, quantum entropies, fidelity, and Fisher information via purity minimization", Physical Review Research 3 3, 033251 (2021).
[470] Ramin Ayanzadeh, Poulami Das, Swamit S. Tannu, and Moinuddin Qureshi, "EQUAL: Improving the Fidelity of Quantum Annealers by Injecting Controlled Perturbations", arXiv:2108.10964, (2021).
[471] Awais Khan, Junaid ur Rehman, and Hyundong Shin, "Quantum anonymous notification for network-based applications", Quantum Information Processing 20 12, 397 (2021).
[472] Poulami Das, Swamit Tannu, Siddharth Dangwal, and Moinuddin Qureshi, "ADAPT: Mitigating Idling Errors in Qubits via Adaptive Dynamical Decoupling", arXiv:2109.05309, (2021).
[473] Bill Poirier, "Efficient Evaluation of Exponential and Gaussian Functions on a Quantum Computer", arXiv:2110.05653, (2021).
[474] Yongsoo Hwang and Byung-Soo Choi, "Hierarchical system mapping for large-scale fault-tolerant quantum computing", Quantum Information Processing 20 6, 215 (2021).
[475] Ying Chen, Yunheng Ma, and Shun Zhou, "Quantum Simulations of the Non-Unitary Time Evolution and Applications to Neutral-Kaon Oscillations", arXiv:2105.04765, (2021).
[476] Christina Giarmatzi and Fabio Costa, "Witnessing quantum memory in non-Markovian processes", Quantum 5, 440 (2021).
[477] Susan M. Clark, Daniel Lobser, Melissa Revelle, Christopher G. Yale, David Bossert, Ashlyn D. Burch, Matthew N. Chow, Craig W. Hogle, Megan Ivory, Jessica Pehr, Bradley Salzbrenner, Daniel Stick, William Sweatt, Joshua M. Wilson, Edward Winrow, and Peter Maunz, "Engineering the Quantum Scientific Computing Open User Testbed (QSCOUT): Design details and user guide", arXiv:2104.00759, (2021).
[478] Sergi Ramos-Calderer, Emanuele Bellini, José I. Latorre, Marc Manzano, and Victor Mateu, "Quantum search for scaled hash function preimages", Quantum Information Processing 20 5, 180 (2021).
[479] Jyoti Faujdar and Atul Kumar, "A comparative study to analyze efficiencies of (N +2 ) -qubit partially entangled states in real conditions from the perspective of N controllers", Quantum Information Processing 20 2, 64 (2021).
[480] Steven Herbert, Roland Guichard, and Darren Ng, "Noise-Aware Quantum Amplitude Estimation", arXiv:2109.04840, (2021).
[481] Jaesung Lee, Matthew D. LaHaye, and Philip X. -L. Feng, "Design of strongly nonlinear graphene nanoelectromechanical systems in quantum regime", Applied Physics Letters 120 1, 014001 (2022).
[482] Poulami Das, Swamit Tannu, and Moinuddin Qureshi, "JigSaw: Boosting Fidelity of NISQ Programs via Measurement Subsetting", arXiv:2109.05314, (2021).
[483] Maurice Weber, Nana Liu, Bo Li, Ce Zhang, and Zhikuan Zhao, "Optimal provable robustness of quantum classification via quantum hypothesis testing", npj Quantum Information 7, 76 (2021).
[484] T. J. Sturges, T. McDermott, A. Buraczewski, W. R. Clements, J. J. Renema, S. W. Nam, T. Gerrits, A. Lita, W. S. Kolthammer, A. Eckstein, I. A. Walmsley, and M. Stobińska, "Quantum simulations with multiphoton Fock states", npj Quantum Information 7, 91 (2021).
[485] Weijie Du, James P. Vary, Xingbo Zhao, and Wei Zuo, "Ab initio nuclear structure via quantum adiabatic algorithm", arXiv:2105.08910, (2021).
[486] Johannes Borregaard, Matthias Christandl, and Daniel Stilck França, "Noise-robust exploration of many-body quantum states on near-term quantum devices", npj Quantum Information 7, 45 (2021).
[487] Xiaoqiang Wang, Lejia Gu, Heung-wing Lee, and Guofeng Zhang, "Quantum context-aware recommendation systems based on tensor singular value decomposition", Quantum Information Processing 20 5, 190 (2021).
[488] M. Mahdian and H. Davoodi Yeganeh, "Toward a quantum computing algorithm to quantify classical and quantum correlation of system states", Quantum Information Processing 20 12, 393 (2021).
[489] Y. Herasymenko and T. E. O'Brien, "A diagrammatic approach to variational quantum ansatz construction", Quantum 5, 596 (2021).
[490] Casey Duckering, Jonathan M. Baker, Andrew Litteken, and Frederic T. Chong, "Orchestrated Trios: Compiling for Efficient Communication in Quantum Programs with 3-Qubit Gates", arXiv:2102.08451, (2021).
[491] Ellis Wilson, Frank Mueller, Lindsay Bassman, and Constin Iancu, "Empirical Evaluation of Circuit Approximations on Noisy Quantum Devices", arXiv:2107.06701, (2021).
[492] Yan Zhu, Ge Bai, Yuexuan Wang, Tongyang Li, and Giulio Chiribella, "Quantum autoencoders for communication-efficient quantum cloud computing", arXiv:2112.12369, (2021).
[493] Zbigniew Puchała, Łukasz Pawela, Aleksandra Krawiec, Ryszard Kukulski, and Michał Oszmaniec, "Multiple-shot and unambiguous discrimination of von Neumann measurements", Quantum 5, 425 (2021).
[494] Kieu Quang Tuan, Hung Q. Nguyen, and Le Bin Ho, "Direct state measurements under state-preparation-and-measurement errors", Quantum Information Processing 20 6, 197 (2021).
[495] Valery Shchesnovich, "Distinguishing noisy boson sampling from classical simulations", Quantum 5, 423 (2021).
[496] Wooyeong Song, Marcin Wieśniak, Nana Liu, Marcin Pawłowski, Jinhyoung Lee, Jaewan Kim, and Jeongho Bang, "Tangible reduction in learning sample complexity with large classical samples and small quantum system", Quantum Information Processing 20 8, 275 (2021).
[497] Leonardo Novo, Juani Bermejo-Vega, and Raúl García-Patrón, "Quantum advantage from energy measurements of many-body quantum systems", Quantum 5, 465 (2021).
[498] Dong-Ling Deng, "Quantum enhanced convolutional neural networks for NISQ computers", Science China Physics, Mechanics, and Astronomy 64 10, 100331 (2021).
[499] Gregory Slepyan and Amir Boag, "Super-operator Linear Equations and their Applications to Quantum Antennas and Quantum Light Scattering", arXiv:2112.09882, (2021).
[500] Kaoru Mizuta, Yuya O. Nakagawa, Kosuke Mitarai, and Keisuke Fujii, "Local Variational Quantum Compilation of Large-Scale Hamiltonian Dynamics", PRX Quantum 3 4, 040302 (2022).
[501] Yu-Jie Liu, Kirill Shtengel, Adam Smith, and Frank Pollmann, "Methods for Simulating String-Net States and Anyons on a Digital Quantum Computer", PRX Quantum 3 4, 040315 (2022).
[502] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin, "A quantum processor based on coherent transport of entangled atom arrays", Nature 604 7906, 451 (2022).
[503] Karthik Chinni, Manuel H. Muñoz-Arias, Ivan H. Deutsch, and Pablo M. Poggi, "Trotter Errors from Dynamical Structural Instabilities of Floquet Maps in Quantum Simulation", PRX Quantum 3 1, 010351 (2022).
[504] Suhas Kumar, Xinxin Wang, John Paul Strachan, Yuchao Yang, and Wei D. Lu, "Dynamical memristors for higher-complexity neuromorphic computing", Nature Reviews Materials 7 7, 575 (2022).
[505] Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois, Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes Herrmann, Graham J. Norris, Christian Kraglund Andersen, Markus Müller, Alexandre Blais, Christopher Eichler, and Andreas Wallraff, "Realizing repeated quantum error correction in a distance-three surface code", Nature 605 7911, 669 (2022).
[506] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles, "Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus", PRX Quantum 3 1, 010313 (2022).
[507] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers, T. Noel, and M. Saffman, "Multi-qubit entanglement and algorithms on a neutral-atom quantum computer", Nature 604 7906, 457 (2022).
[508] Guillermo González-García, Rahul Trivedi, and J. Ignacio Cirac, "Error Propagation in NISQ Devices for Solving Classical Optimization Problems", PRX Quantum 3 4, 040326 (2022).
[509] Xiao Xue, Maximilian Russ, Nodar Samkharadze, Brennan Undseth, Amir Sammak, Giordano Scappucci, and Lieven M. K. Vandersypen, "Quantum logic with spin qubits crossing the surface code threshold", Nature 601 7893, 343 (2022).
[510] Naeimeh Mohseni, Peter L. McMahon, and Tim Byrnes, "Ising machines as hardware solvers of combinatorial optimization problems", Nature Reviews Physics 4 6, 363 (2022).
[511] Christian D. Marciniak, Thomas Feldker, Ivan Pogorelov, Raphael Kaubruegger, Denis V. Vasilyev, Rick van Bijnen, Philipp Schindler, Peter Zoller, Rainer Blatt, and Thomas Monz, "Optimal metrology with programmable quantum sensors", Nature 603 7902, 604 (2022).
[512] Andrew J. Daley, Immanuel Bloch, Christian Kokail, Stuart Flannigan, Natalie Pearson, Matthias Troyer, and Peter Zoller, "Practical quantum advantage in quantum simulation", Nature 607 7920, 667 (2022).
[513] Kyungjoo Noh, Christopher Chamberland, and Fernando G. S. L. Brandão, "Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code", PRX Quantum 3 1, 010315 (2022).
[514] Stefan H. Sack, Raimel A. Medina, Alexios A. Michailidis, Richard Kueng, and Maksym Serbyn, "Avoiding Barren Plateaus Using Classical Shadows", PRX Quantum 3 2, 020365 (2022).
[515] J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N. Muthusubramanian, C. Zachariadis, F. Battistel, M. Beekman, N. Haider, W. Vlothuizen, A. Bruno, B. M. Terhal, and L. DiCarlo, "Logical-qubit operations in an error-detecting surface code", Nature Physics 18 1, 80 (2022).
[516] Rawad Mezher, James Mills, and Elham Kashefi, "Mitigating errors by quantum verification and postselection", Physical Review A 105 5, 052608 (2022).
[517] Vincent R. Pascuzzi, Andre He, Christian W. Bauer, Wibe A. de Jong, and Benjamin Nachman, "Computationally efficient zero-noise extrapolation for quantum-gate-error mitigation", Physical Review A 105 4, 042406 (2022).
[518] Mingxia Huo and Ying Li, "Dual-state purification for practical quantum error mitigation", Physical Review A 105 2, 022427 (2022).
[519] Andrea Maiani, Morten Kjaergaard, and Constantin Schrade, "Entangling Transmons with Low-Frequency Protected Superconducting Qubits", PRX Quantum 3 3, 030329 (2022).
[520] Max McGinley, Sebastian Leontica, Samuel J. Garratt, Jovan Jovanovic, and Steven H. Simon, "Quantifying information scrambling via classical shadow tomography on programmable quantum simulators", Physical Review A 106 1, 012441 (2022).
[521] Paula García-Molina, Javier Rodríguez-Mediavilla, and Juan José García-Ripoll, "Quantum Fourier analysis for multivariate functions and applications to a class of Schrödinger-type partial differential equations", Physical Review A 105 1, 012433 (2022).
[522] Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Paolo Stornati, and Xiaoyang Wang, "Measurement error mitigation in quantum computers through classical bit-flip correction", Physical Review A 105 6, 062404 (2022).
[523] Enrico Rinaldi, Xizhi Han, Mohammad Hassan, Yuan Feng, Franco Nori, Michael McGuigan, and Masanori Hanada, "Matrix-Model Simulations Using Quantum Computing, Deep Learning, and Lattice Monte Carlo", PRX Quantum 3 1, 010324 (2022).
[524] Yulong Dong, Lin Lin, and Yu Tong, "Ground-State Preparation and Energy Estimation on Early Fault-Tolerant Quantum Computers via Quantum Eigenvalue Transformation of Unitary Matrices", PRX Quantum 3 4, 040305 (2022).
[525] Abhinav Deshpande, Pradeep Niroula, Oles Shtanko, Alexey V. Gorshkov, Bill Fefferman, and Michael J. Gullans, "Tight Bounds on the Convergence of Noisy Random Circuits to the Uniform Distribution", PRX Quantum 3 4, 040329 (2022).
[526] Phillip C. Lotshaw, Thien Nguyen, Anthony Santana, Alexander McCaskey, Rebekah Herrman, James Ostrowski, George Siopsis, and Travis S. Humble, "Scaling quantum approximate optimization on near-term hardware", Scientific Reports 12, 12388 (2022).
[527] A. Barış Özgüler and Davide Venturelli, "Numerical gate synthesis for quantum heuristics on bosonic quantum processors", Frontiers in Physics 10, 900612 (2022).
[528] Matthew Choi, Daniel Flam-Shepherd, Thi Ha Kyaw, and Alán Aspuru-Guzik, "Learning quantum dynamics with latent neural ordinary differential equations\xC2", Physical Review A 105 4, 042403 (2022).
[529] Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout, "Measuring the capabilities of quantum computers", Nature Physics 18 1, 75 (2022).
[530] Long B. Nguyen, Gerwin Koolstra, Yosep Kim, Alexis Morvan, Trevor Chistolini, Shraddha Singh, Konstantin N. Nesterov, Christian Jünger, Larry Chen, Zahra Pedramrazi, Bradley K. Mitchell, John Mark Kreikebaum, Shruti Puri, David I. Santiago, and Irfan Siddiqi, "Blueprint for a High-Performance Fluxonium Quantum Processor", PRX Quantum 3 3, 037001 (2022).
[531] Arpan Bhattacharyya, Lata Kh. Joshi, and Bhuvanesh Sundar, "Quantum information scrambling: from holography to quantum simulators", European Physical Journal C 82 5, 458 (2022).
[532] Brennan de Neeve, Thanh-Long Nguyen, Tanja Behrle, and Jonathan P. Home, "Error correction of a logical grid state qubit by dissipative pumping", Nature Physics 18 3, 296 (2022).
[533] Bo Peng, Sahil Gulania, Yuri Alexeev, and Niranjan Govind, "Quantum time dynamics employing the Yang-Baxter equation for circuit compression", Physical Review A 106 1, 012412 (2022).
[534] Arvid Rolander, Adam Kinos, and Andreas Walther, "Quantum error correction in the noisy intermediate-scale quantum regime for sequential quantum computing", Physical Review A 105 6, 062604 (2022).
[535] Dimitrios Giannakis, Abbas Ourmazd, Philipp Pfeffer, Jörg Schumacher, and Joanna Slawinska, "Embedding classical dynamics in a quantum computer", Physical Review A 105 5, 052404 (2022).
[536] Irénée Frérot, Flavio Baccari, and Antonio Acín, "Unveiling Quantum Entanglement in Many-Body Systems from Partial Information", PRX Quantum 3 1, 010342 (2022).
[537] Kübra Yeter-Aydeniz, Eleftherios Moschandreou, and George Siopsis, "Quantum imaginary-time evolution algorithm for quantum field theories with continuous variables", Physical Review A 105 1, 012412 (2022).
[538] Adam Callison and Nicholas Chancellor, "Hybrid quantum-classical algorithms in the noisy intermediate-scale quantum era and beyond", Physical Review A 106 1, 010101 (2022).
[539] Bobak Toussi Kiani, Giacomo De Palma, Dirk Englund, William Kaminsky, Milad Marvian, and Seth Lloyd, "Quantum advantage for differential equation analysis", Physical Review A 105 2, 022415 (2022).
[540] Gaurav Gyawali and Michael J. Lawler, "Adaptive variational preparation of the Fermi-Hubbard eigenstates", Physical Review A 105 1, 012413 (2022).
[541] Jiawei Tan, Ligang Xiao, Daowen Qiu, Le Luo, and Paulo Mateus, "Distributed quantum algorithm for Simon's problem", Physical Review A 106 3, 032417 (2022).
[542] Cristian L. Cortes and Stephen K. Gray, "Quantum Krylov subspace algorithms for ground- and excited-state energy estimation", Physical Review A 105 2, 022417 (2022).
[543] Keisuke Fujii, Kaoru Mizuta, Hiroshi Ueda, Kosuke Mitarai, Wataru Mizukami, and Yuya O. Nakagawa, "Deep Variational Quantum Eigensolver: A Divide-And-Conquer Method for Solving a Larger Problem with Smaller Size Quantum Computers", PRX Quantum 3 1, 010346 (2022).
[544] Thomas E. O'Brien, Lev B. Ioffe, Yuan Su, David Fushman, Hartmut Neven, Ryan Babbush, and Vadim Smelyanskiy, "Quantum Computation of Molecular Structure Using Data from Challenging-To-Classically-Simulate Nuclear Magnetic Resonance Experiments", PRX Quantum 3 3, 030345 (2022).
[545] Kaifeng Bu, Dax Enshan Koh, Lu Li, Qingxian Luo, and Yaobo Zhang, "Statistical complexity of quantum circuits", Physical Review A 105 6, 062431 (2022).
[546] Marie Lu, Jean-Loup Ville, Joachim Cohen, Alexandru Petrescu, Sydney Schreppler, Larry Chen, Christian Jünger, Chiara Pelletti, Alexei Marchenkov, Archan Banerjee, William P. Livingston, John Mark Kreikebaum, David I. Santiago, Alexandre Blais, and Irfan Siddiqi, "Multipartite Entanglement in Rabi-Driven Superconducting Qubits", PRX Quantum 3 4, 040322 (2022).
[547] Huo Chen and Daniel A. Lidar, "Hamiltonian open quantum system toolkit", Communications Physics 5 1, 112 (2022).
[548] Qinghong Yang and Dong E. Liu, "Effect of quantum error correction on detection-induced coherent errors", Physical Review A 105 2, 022434 (2022).
[549] Philip Thomas, Leonardo Ruscio, Olivier Morin, and Gerhard Rempe, "Efficient generation of entangled multiphoton graph states from a single atom", Nature 608 7924, 677 (2022).
[550] Kishor Bharti, Tobias Haug, Vlatko Vedral, and Leong-Chuan Kwek, "Noisy intermediate-scale quantum algorithm for semidefinite programming", Physical Review A 105 5, 052445 (2022).
[551] Muhammad Ahsan, Syed Abbas Zilqurnain Naqvi, and Haider Anwer, "Quantum circuit engineering for correcting coherent noise", Physical Review A 105 2, 022428 (2022).
[552] Hashir Kuniyil, Helin Ozel, Hasan Yilmaz, and Kadir Durak, "Noise-tolerant object detection and ranging using quantum correlations", Journal of Optics 24 10, 105201 (2022).
[553] Leonid V. Abdurakhimov, Imran Mahboob, Hiraku Toida, Kosuke Kakuyanagi, Yuichiro Matsuzaki, and Shiro Saito, "Identification of Different Types of High-Frequency Defects in Superconducting Qubits", PRX Quantum 3 4, 040332 (2022).
[554] Bryan T. Gard and Adam M. Meier, "Classically efficient quantum scalable Fermi-Hubbard benchmark", Physical Review A 105 4, 042602 (2022).
[555] Maninder Kaur and Araceli Venegas-Gomez, "Defining the quantum workforce landscape: a review of global quantum education initiatives", Optical Engineering 61, 081806 (2022).
[556] Maxime Dupont, Nicolas Didier, Mark J. Hodson, Joel E. Moore, and Matthew J. Reagor, "Calibrating the Classical Hardness of the Quantum Approximate Optimization Algorithm", PRX Quantum 3 4, 040339 (2022).
[557] Mogens Dalgaard, Felix Motzoi, and Jacob Sherson, "Predicting quantum dynamical cost landscapes with deep learning", Physical Review A 105 1, 012402 (2022).
[558] Álvaro Gómez-León, Tomás Ramos, Diego Porras, and Alejandro González-Tudela, "Decimation technique for open quantum systems: A case study with driven-dissipative bosonic chains", Physical Review A 105 5, 052223 (2022).
[559] Minhyuk Kim, Kangheun Kim, Jaeyong Hwang, Eun-Gook Moon, and Jaewook Ahn, "Rydberg quantum wires for maximum independent set problems", Nature Physics 18 7, 755 (2022).
[560] Tarun Dutta, Adrián Pérez-Salinas, Jasper Phua Sing Cheng, José Ignacio Latorre, and Manas Mukherjee, "Single-qubit universal classifier implemented on an ion-trap quantum device", Physical Review A 106 1, 012411 (2022).
[561] Yuhan Huang, Qingyu Li, Xiaokai Hou, Rebing Wu, Man-Hong Yung, Abolfazl Bayat, and Xiaoting Wang, "Robust resource-efficient quantum variational ansatz through an evolutionary algorithm", Physical Review A 105 5, 052414 (2022).
[562] Eoin Carolan, Anthony Kiely, and Steve Campbell, "Counterdiabatic control in the impulse regime", Physical Review A 105 1, 012605 (2022).
[563] Ludmila Botelho, Adam Glos, Akash Kundu, Jarosław Adam Miszczak, Özlem Salehi, and Zoltán Zimborás, "Error mitigation for variational quantum algorithms through mid-circuit measurements", Physical Review A 105 2, 022441 (2022).
[564] Scott E. Smart, Jan-Niklas Boyn, and David A. Mazziotti, "Resolving correlated states of benzyne with an error-mitigated contracted quantum eigensolver", Physical Review A 105 2, 022405 (2022).
[565] Piotr Migdał, Klementyna Jankiewicz, Paweł Grabarz, Chiara Decaroli, and Philippe Cochin, "Visualizing quantum mechanics in an interactive simulation - Virtual Lab by Quantum Flytrap", Optical Engineering 61, 081808 (2022).
[566] Vinayak Jagadish, R. Srikanth, and Francesco Petruccione, "Measure of invertible dynamical maps under convex combinations of noninvertible dynamical maps", Physical Review A 106 1, 012438 (2022).
[567] Yudai Suzuki, Qi Gao, Ken C. Pradel, Kenji Yasuoka, and Naoki Yamamoto, "Natural quantum reservoir computing for temporal information processing", Scientific Reports 12, 1353 (2022).
[568] Fumiyoshi Kobayashi, Kosuke Mitarai, and Keisuke Fujii, "Parent Hamiltonian as a benchmark problem for variational quantum eigensolvers", Physical Review A 105 5, 052415 (2022).
[569] Andreas Hartmann, Glen Bigan Mbeng, and Wolfgang Lechner, "Polynomial scaling enhancement in the ground-state preparation of Ising spin models via counterdiabatic driving", Physical Review A 105 2, 022614 (2022).
[570] David Joseph, Antonio J. Martinez, Cong Ling, and Florian Mintert, "Quantum mean-value approximator for hard integer-value problems", Physical Review A 105 5, 052419 (2022).
[571] K. J. Harikrishnan and Amit Kumar Pal, "Distinguishing phases via non-Markovian dynamics of entanglement in topological quantum codes under parallel magnetic field", Physical Review A 105 5, 052421 (2022).
[572] D. K. Weiss, Helin Zhang, Chunyang Ding, Yuwei Ma, David I. Schuster, and Jens Koch, "Fast High-Fidelity Gates for Galvanically-Coupled Fluxonium Qubits Using Strong Flux Modulation", PRX Quantum 3 4, 040336 (2022).
[573] Brian Coyle, Mina Doosti, Elham Kashefi, and Niraj Kumar, "Progress toward practical quantum cryptanalysis by variational quantum cloning", Physical Review A 105 4, 042604 (2022).
[574] Rebecca Hicks, Bryce Kobrin, Christian W. Bauer, and Benjamin Nachman, "Active readout-error mitigation", Physical Review A 105 1, 012419 (2022).
[575] Amit Saha, Ritajit Majumdar, Debasri Saha, Amlan Chakrabarti, and Susmita Sur-Kolay, "Asymptotically improved circuit for a d -ary Grover's algorithm with advanced decomposition of the n -qudit Toffoli gate", Physical Review A 105 6, 062453 (2022).
[576] Philipp Schleich, Jakob S. Kottmann, and Alán Aspuru-Guzik, "Improving the accuracy of the variational quantum eigensolver for molecular systems by the explicitly-correlated perturbative [2]R12-correction", Physical Chemistry Chemical Physics (Incorporating Faraday Transactions) 24 22, 13550 (2022).
[577] Evan Peters, Prasanth Shyamsundar, Andy C. Y. Li, and Gabriel Perdue, "Qubit Assignment Using Time Reversal", PRX Quantum 3 4, 040333 (2022).
[578] Suhail Ahmad Rather, S. Aravinda, and Arul Lakshminarayan, "Construction and Local Equivalence of Dual-Unitary Operators: From Dynamical Maps to Quantum Combinatorial Designs", PRX Quantum 3 4, 040331 (2022).
[579] Yuan Yao, Pierre Cussenot, Richard A. Wolf, and Filippo Miatto, "Complex natural gradient optimization for optical quantum circuit design", Physical Review A 105 5, 052402 (2022).
[580] Xu Zhang, Wenjie Jiang, Jinfeng Deng, Ke Wang, Jiachen Chen, Pengfei Zhang, Wenhui Ren, Hang Dong, Shibo Xu, Yu Gao, Feitong Jin, Xuhao Zhu, Qiujiang Guo, Hekang Li, Chao Song, Alexey V. Gorshkov, Thomas Iadecola, Fangli Liu, Zhe-Xuan Gong, Zhen Wang, Dong-Ling Deng, and H. Wang, "Digital quantum simulation of Floquet symmetry-protected topological phases", Nature 607 7919, 468 (2022).
[581] Zhenhuan Liu, Pei Zeng, You Zhou, and Mile Gu, "Characterizing correlation within multipartite quantum systems via local randomized measurements", Physical Review A 105 2, 022407 (2022).
[582] Shu Kanno, Suguru Endo, Takeru Utsumi, and Tomofumi Tada, "Resource estimations for the Hamiltonian simulation in correlated electron materials", Physical Review A 106 1, 012612 (2022).
[583] Morten Kjaergaard, "An improved recipe for error detection", Nature Physics 18 1, 7 (2022).
[584] Yahui Chai, Yong-Jian Han, Yu-Chun Wu, Ye Li, Menghan Dou, and Guo-Ping Guo, "Shortcuts to the quantum approximate optimization algorithm", Physical Review A 105 4, 042415 (2022).
[585] Thomas J. Maldonado, Johannes Flick, Stefan Krastanov, and Alexey Galda, "Error rate reduction of single-qubit gates via noise-aware decomposition into native gates", Scientific Reports 12, 6379 (2022).
[586] Fong Yew Leong, Wei-Bin Ewe, and Dax Enshan Koh, "Variational quantum evolution equation solver", Scientific Reports 12, 10817 (2022).
[587] Kun Fang and Zi-Wen Liu, "No-Go Theorems for Quantum Resource Purification: New Approach and Channel Theory", PRX Quantum 3 1, 010337 (2022).
[588] Gabriele Agliardi, Michele Grossi, Mathieu Pellen, and Enrico Prati, "Quantum integration of elementary particle processes", Physics Letters B 832, 137228 (2022).
[589] Elija Perrier, Akram Youssry, and Chris Ferrie, "QDataSet, quantum datasets for machine learning", Scientific Data 9 1, 582 (2022).
[590] Rakesh Kumar Saini, Raman Sehgal, and Sudhir R. Jain, "Protection of qubits by nonlinear resonances", European Physical Journal Plus 137 3, 356 (2022).
[591] Benjamin L. Foulon, Keith G. Ray, Chang-Eun Kim, Yuan Liu, Brenda M. Rubenstein, and Vincenzo Lordi, "1 /ω electric-field noise in surface ion traps from correlated adsorbate dynamics", Physical Review A 105 1, 013107 (2022).
[592] Artur Soriani, Pierre Nazé, Marcus V. S. Bonança, Bartłomiej Gardas, and Sebastian Deffner, "Three phases of quantum annealing: Fast, slow, and very slow", Physical Review A 105 4, 042423 (2022).
[593] Min-Quan He, Dan-Bo Zhang, and Z. D. Wang, "Quantum Gaussian filter for exploring ground-state properties", Physical Review A 106 3, 032420 (2022).
[594] Zhimin He, Junjian Su, Chuangtao Chen, Minghua Pan, and Haozhen Situ, "Search space pruning for quantum architecture search", European Physical Journal Plus 137 4, 491 (2022).
[595] Lewis W. Anderson, Martin Kiffner, Panagiotis Kl. Barkoutsos, Ivano Tavernelli, Jason Crain, and Dieter Jaksch, "Coarse-grained intermolecular interactions on quantum processors", Physical Review A 105 6, 062409 (2022).
[596] R. S. Amal and S. Kannan, "Manifestation of quantum images using unitary matrix encoding", European Physical Journal Plus 137 4, 449 (2022).
[597] Francesco Preti, Tommaso Calarco, and Felix Motzoi, "Continuous Quantum Gate Sets and Pulse-Class Meta-Optimization", PRX Quantum 3 4, 040311 (2022).
[598] Mercy G. Amankwah, Daan Camps, E. Wes Bethel, Roel Van Beeumen, and Talita Perciano, "Quantum pixel representations and compression for N-dimensional images", Scientific Reports 12, 7712 (2022).
[599] Ohad Shpielberg, "Universal entanglement entropy in the ground state of biased bipartite systems", Physical Review A 106 3, L030401 (2022).
[600] A. S. Kardashin, A. V. Vlasova, A. A. Pervishko, D. Yudin, and J. D. Biamonte, "Quantum-machine-learning channel discrimination", Physical Review A 106 3, 032409 (2022).
[601] Hong-Bin Chen, "Effects of symmetry breaking of the structurally-disordered Hamiltonian ensembles on the anisotropic decoherence of qubits", Scientific Reports 12, 2869 (2022).
[602] Ohad Shpielberg, "Power-law decay of entanglement quantifiers in a single agent coupled to a many-body system", Physical Review A 105 4, 042420 (2022).
[603] Wei Xia, Jie Zou, Xingze Qiu, and Xiaopeng Li, "The reservoir learning power across quantum many-body localization transition", Frontiers of Physics 17 3, 33506 (2022).
[604] Amit Saha, Debasri Saha, and Amlan Chakrabarti, "Moving quantum states without SWAP via intermediate higher-dimensional qudits", Physical Review A 106 1, 012429 (2022).
[605] Shweta Sahoo, Utkarsh Azad, and Harjinder Singh, "Quantum phase recognition using quantum tensor networks", European Physical Journal Plus 137 12, 1373 (2022).
[606] Michael A. Jones, Harish J. Vallury, Charles D. Hill, and Lloyd C. L. Hollenberg, "Chemistry beyond the Hartree-Fock energy via quantum computed moments", Scientific Reports 12, 8985 (2022).
[607] Jian Lin, Zhengfeng Zhang, Junping Zhang, and Xiaopeng Li, "Hard-instance learning for quantum adiabatic prime factorization", Physical Review A 105 6, 062455 (2022).
[608] Shuanping Du and Zhaofang Bai, "Conversion of Gaussian states under incoherent Gaussian operations", Physical Review A 105 2, 022412 (2022).
[609] Luogen Xu, Joseph T. Lee, and J. K. Freericks, "Decomposition of high-rank factorized unitary coupled-cluster operators using ancilla and multiqubit controlled low-rank counterparts", Physical Review A 105 1, 012406 (2022).
[610] Haozhen Situ and Zhimin He, "Using simulated annealing to learn the SDC quantum protocol", European Physical Journal Plus 137 1, 98 (2022).
[611] Kaitlin N. Smith, Gokul Subramanian Ravi, Thomas Alexander, Nicholas T. Bronn, André R. R. Carvalho, Alba Cervera-Lierta, Frederic T. Chong, Jerry M. Chow, Michael Cubeddu, Akel Hashim, Liang Jiang, Olivia Lanes, Matthew J. Otten, David I. Schuster, Pranav Gokhale, Nathan Earnest, and Alexey Galda, "Programming physical quantum systems with pulse-level control", Frontiers in Physics 10, 900099 (2022).
[612] Spencer T. Stober, Stuart M. Harwood, Dimitar Trenev, Panagiotis Kl. Barkoutsos, Tanvi P. Gujarati, and Sarah Mostame, "Considerations for evaluating thermodynamic properties with hybrid quantum-classical computing work flows", Physical Review A 105 1, 012425 (2022).
[613] N. Barraza, C. -Y. Pan, L. Lamata, E. Solano, and F. Albarrán-Arriagada, "Adaptive random quantum eigensolver", Physical Review A 105 5, 052406 (2022).
[614] Dongni Chen, Si Luo, Ying-Dan Wang, Stefano Chesi, and Mahn-Soo Choi, "Geometric manipulation of a decoherence-free subspace in atomic ensembles", Physical Review A 105 2, 022627 (2022).
[615] Ruge Lin and Weiqiang Wen, "Quantum computation capability verification protocol for noisy intermediate-scale quantum devices with the dihedral coset problem", Physical Review A 106 1, 012430 (2022).
[616] Kai Sun, Ze-Yan Hao, Yan Wang, Jia-Kun Li, Xiao-Ye Xu, Jin-Shi Xu, Yong-Jian Han, Chuan-Feng Li, and Guang-Can Guo, "Optical demonstration of quantum fault-tolerant threshold", Light: Science & Applications 11 1, 203 (2022).
[617] Erik Aurell, Roberto Mulet, and Jan Tuziemski, "Real-time dynamics in diluted quantum networks", Physical Review A 105 2, 022205 (2022).
[618] Xin Zhou, Jianmin Pang, Feng Yue, Fudong Liu, Jiayu Guo, Wenfu Liu, Zhihui Song, Guoqiang Shu, Bing Xia, and Zheng Shan, "A new method of software vulnerability detection based on a quantum neural network", Scientific Reports 12, 8053 (2022).
[619] S. Moradi, C. Brandner, C. Spielvogel, D. Krajnc, S. Hillmich, R. Wille, W. Drexler, and L. Papp, "Clinical data classification with noisy intermediate scale quantum computers", Scientific Reports 12, 1851 (2022).
[620] Bill Poirier and Jonathan Jerke, "Full-dimensional Schrödinger wavefunction calculations using tensors and quantum computers: the Cartesian component-separated approach", Physical Chemistry Chemical Physics (Incorporating Faraday Transactions) 24 7, 4437 (2022).
[621] Aritra Das and Barry C. Sanders, "Blind quantum factorization of 21", Physical Review A 106 1, 012421 (2022).
[622] Bao Yan, Shijie Wei, Haocong Jiang, Hong Wang, Qianheng Duan, Zhi Ma, and Gui-Lu Long, "Fixed-point oblivious quantum amplitude-amplification algorithm", Scientific Reports 12, 14339 (2022).
[623] Yuxuan Zhang, "Straddling-gates problem in multipartite quantum systems", Physical Review A 105 6, 062430 (2022).
[624] Junxiang Xiao, Jingwei Wen, Shijie Wei, and Guilu Long, "Reconstructing unknown quantum states using variational layerwise method", Frontiers of Physics 17 5, 51501 (2022).
[625] Federico Carollo and Vincenzo Alba, "Entangled multiplets and spreading of quantum correlations in a continuously monitored tight-binding chain", Physical Review B 106 22, L220304 (2022).
[626] Piotr Sierant, Marco Schirò, Maciej Lewenstein, and Xhek Turkeshi, "Measurement-induced phase transitions in (d +1 ) -dimensional stabilizer circuits", Physical Review B 106 21, 214316 (2022).
[627] Kazuhiro Seki, Yuichi Otsuka, and Seiji Yunoki, "Gutzwiller wave function on a quantum computer using a discrete Hubbard-Stratonovich transformation", Physical Review B 105 15, 155119 (2022).
[628] Qing Xie, Kazuhiro Seki, and Seiji Yunoki, "Variational counterdiabatic driving of the Hubbard model for ground-state preparation", Physical Review B 106 15, 155153 (2022).
[629] Alexey E. Rastegin and Anzhelika M. Shemet, "Quantum search degeneration under amplitude noise in queries to the oracle", Quantum Information Processing 21 5, 158 (2022).
[630] Utkarsh Agrawal, Aidan Zabalo, Kun Chen, Justin H. Wilson, Andrew C. Potter, J. H. Pixley, Sarang Gopalakrishnan, and Romain Vasseur, "Entanglement and Charge-Sharpening Transitions in U(1) Symmetric Monitored Quantum Circuits", Physical Review X 12 4, 041002 (2022).
[631] Adam Smith, Bernhard Jobst, Andrew G. Green, and Frank Pollmann, "Crossing a topological phase transition with a quantum computer", Physical Review Research 4 2, L022020 (2022).
[632] Pejman Jouzdani, Calvin W. Johnson, Eduardo R. Mucciolo, and Ionel Stetcu, "Alternative approach to quantum imaginary time evolution", Physical Review A 106 6, 062435 (2022).
[633] Daniel González-Cuadra, Torsten V. Zache, Jose Carrasco, Barbara Kraus, and Peter Zoller, "Hardware Efficient Quantum Simulation of Non-Abelian Gauge Theories with Qudits on Rydberg Platforms", Physical Review Letters 129 16, 160501 (2022).
[634] Liangliang Fan and Haozhen Situ, "Compact data encoding for data re-uploading quantum classifier", Quantum Information Processing 21 3, 87 (2022).
[635] Zixin Huang, Gavin K. Brennen, and Yingkai Ouyang, "Imaging Stars with Quantum Error Correction", Physical Review Letters 129 21, 210502 (2022).
[636] Maxime Dupont and Joel E. Moore, "Quantum criticality using a superconducting quantum processor", Physical Review B 106 4, L041109 (2022).
[637] Sijia Gao, Fergus Hayes, Sarah Croke, Chris Messenger, and John Veitch, "Quantum algorithm for gravitational-wave matched filtering", Physical Review Research 4 2, 023006 (2022).
[638] Michael Krebsbach, Björn Trauzettel, and Alessio Calzona, "Optimization of Richardson extrapolation for quantum error mitigation", Physical Review A 106 6, 062436 (2022).
[639] Bruno Murta and J. Fernández-Rossier, "One-to-one correspondence between thermal structure factors and coupling constants of general bilinear Hamiltonians", Physical Review E 105 6, L062101 (2022).
[640] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko, "Quantum agents in the Gym: a variational quantum algorithm for deep Q-learning", Quantum 6, 720 (2022).
[641] Markus Schmitt and Zala Lenarčič, "From observations to complexity of quantum states via unsupervised learning", Physical Review B 106 4, L041110 (2022).
[642] N. N. Hegade, P. Chandarana, K. Paul, Xi Chen, F. Albarrán-Arriagada, and E. Solano, "Portfolio optimization with digitized counterdiabatic quantum algorithms", Physical Review Research 4 4, 043204 (2022).
[643] Siddharth Dangwal, Ritvik Sharma, and Debanjan Bhowmik, "Fast-QTrain: an algorithm for fast training of variational classifiers", Quantum Information Processing 21 5, 189 (2022).
[644] Henrique Silvério, Sebastián Grijalva, Constantin Dalyac, Lucas Leclerc, Peter J. Karalekas, Nathan Shammah, Mourad Beji, Louis-Paul Henry, and Loïc Henriet, "Pulser: An open-source package for the design of pulse sequences in programmable neutral-atom arrays", Quantum 6, 629 (2022).
[645] Bálint Koczor and Simon C. Benjamin, "Quantum analytic descent", Physical Review Research 4 2, 023017 (2022).
[646] Aydin Deger, Sthitadhi Roy, and Achilleas Lazarides, "Arresting Classical Many-Body Chaos by Kinetic Constraints", Physical Review Letters 129 16, 160601 (2022).
[647] Manuel G. Algaba, Mario Ponce-Martinez, Carlos Munuera-Javaloy, Vicente Pina-Canelles, Manish J. Thapa, Bruno G. Taketani, Martin Leib, Inés de Vega, Jorge Casanova, and Hermanni Heimonen, "Co-Design quantum simulation of nanoscale NMR", Physical Review Research 4 4, 043089 (2022).
[648] Paul K. Faehrmann, Mark Steudtner, Richard Kueng, Maria Kieferova, and Jens Eisert, "Randomizing multi-product formulas for Hamiltonian simulation", Quantum 6, 806 (2022).
[649] Oriel Kiss, Michele Grossi, Pavel Lougovski, Federico Sanchez, Sofia Vallecorsa, and Thomas Papenbrock, "Quantum computing of the <SUP>6</SUP>Li nucleus via ordered unitary coupled clusters", Physical Review C 106 3, 034325 (2022).
[650] Joris Kattemölle and Jasper van Wezel, "Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice", Physical Review B 106 21, 214429 (2022).
[651] Rihito Sakurai, Wataru Mizukami, and Hiroshi Shinaoka, "Hybrid quantum-classical algorithm for computing imaginary-time correlation functions", Physical Review Research 4 2, 023219 (2022).
[652] Jonathan Wurtz and Peter J. Love, "Counterdiabaticity and the quantum approximate optimization algorithm", Quantum 6, 635 (2022).
[653] Karolina Kolos, Vladimir Sobes, Ramona Vogt, Catherine E. Romano, Michael S. Smith, Lee A. Bernstein, David A. Brown, Mary T. Burkey, Yaron Danon, Mohamed A. Elsawi, Bethany L. Goldblum, Lawrence H. Heilbronn, Susan L. Hogle, Jesson Hutchinson, Ben Loer, Elizabeth A. McCutchan, Matthew R. Mumpower, Ellen M. O'Brien, Catherine Percher, Patrick N. Peplowski, Jennifer J. Ressler, Nicolas Schunck, Nicholas W. Thompson, Andrew S. Voyles, William Wieselquist, and Michael Zerkle, "Current nuclear data needs for applications", Physical Review Research 4 2, 021001 (2022).
[654] K. S. C. Decker, D. M. Kennes, and C. Karrasch, "Many-body localization and the area law in two dimensions", Physical Review B 106 18, L180201 (2022).
[655] Zongkang Zhang, Yongdan Yang, Xiaosi Xu, and Ying Li, "Quantum algorithms for Schrieffer-Wolff transformation", Physical Review Research 4 4, 043023 (2022).
[656] Zixuan Hu, Kade Head-Marsden, David A. Mazziotti, Prineha Narang, and Sabre Kais, "A general quantum algorithm for open quantum dynamics demonstrated with the Fenna-Matthews-Olson complex", Quantum 6, 726 (2022).
[657] Emilie Huffman, Miguel García Vera, and Debasish Banerjee, "Toward the real-time evolution of gauge-invariant Z<SUB>2</SUB> and U (1 ) quantum link models on noisy intermediate-scale quantum hardware with error mitigation", Physical Review D 106 9, 094502 (2022).
[658] Noah F. Berthusen, Thaís V. Trevisan, Thomas Iadecola, and Peter P. Orth, "Quantum dynamics simulations beyond the coherence time on noisy intermediate-scale quantum hardware by variational Trotter compression", Physical Review Research 4 2, 023097 (2022).
[659] Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford, and Nathan Shammah, "Pulse-level noisy quantum circuits with QuTiP", Quantum 6, 630 (2022).
[660] Özlem Salehi, Adam Glos, and Jarosław Adam Miszczak, "Unconstrained binary models of the travelling salesman problem variants for quantum optimization", Quantum Information Processing 21 2, 67 (2022).
[661] Zhenning Liu and Alexandru Gheorghiu, "Depth-efficient proofs of quantumness", Quantum 6, 807 (2022).
[662] Sven Jandura and Guido Pupillo, "Time-Optimal Two- and Three-Qubit Gates for Rydberg Atoms", Quantum 6, 712 (2022).
[663] Gregory Boyd and Bálint Koczor, "Training Variational Quantum Circuits with CoVaR: Covariance Root Finding with Classical Shadows", Physical Review X 12 4, 041022 (2022).
[664] Lucas Slattery, Benjamin Villalonga, and Bryan K. Clark, "Unitary block optimization for variational quantum algorithms", Physical Review Research 4 2, 023072 (2022).
[665] Michael Meth, Viacheslav Kuzmin, Rick van Bijnen, Lukas Postler, Roman Stricker, Rainer Blatt, Martin Ringbauer, Thomas Monz, Pietro Silvi, and Philipp Schindler, "Probing Phases of Quantum Matter with an Ion-Trap Tensor-Network Quantum Eigensolver", Physical Review X 12 4, 041035 (2022).
[666] Antonio A. Mele, Glen B. Mbeng, Giuseppe E. Santoro, Mario Collura, and Pietro Torta, "Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian variational ansatz", Physical Review A 106 6, L060401 (2022).
[667] Benjamin Lienhard, Antti Vepsäläinen, Luke C. G. Govia, Cole R. Hoffer, Jack Y. Qiu, Diego Ristè, Matthew Ware, David Kim, Roni Winik, Alexander Melville, Bethany Niedzielski, Jonilyn Yoder, Guilhem J. Ribeill, Thomas A. Ohki, Hari K. Krovi, Terry P. Orlando, Simon Gustavsson, and William D. Oliver, "Deep-Neural-Network Discrimination of Multiplexed Superconducting-Qubit States", Physical Review Applied 17 1, 014024 (2022).
[668] Giuseppe Clemente, Arianna Crippa, and Karl Jansen, "Strategies for the determination of the running coupling of (2 +1 )-dimensional QED with quantum computing", Physical Review D 106 11, 114511 (2022).
[669] Anthony W. Schlimgen, Kade Head-Marsden, LeeAnn M. Sager, Prineha Narang, and David A. Mazziotti, "Quantum simulation of the Lindblad equation using a unitary decomposition of operators", Physical Review Research 4 2, 023216 (2022).
[670] Zhenhuan Liu, Yifan Tang, Hao Dai, Pengyu Liu, Shu Chen, and Xiongfeng Ma, "Detecting Entanglement in Quantum Many-Body Systems via Permutation Moments", Physical Review Letters 129 26, 260501 (2022).
[671] V. M. Bastidas, T. Haug, C. Gravel, L. -C. Kwek, W. J. Munro, and Kae Nemoto, "Stroboscopic Hamiltonian engineering in the low-frequency regime with a one-dimensional quantum processor", Physical Review B 105 7, 075140 (2022).
[672] Ziwen Huang, Xinyuan You, Ugur Alyanak, Alexander Romanenko, Anna Grassellino, and Shaojiang Zhu, "High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators: Symmetry Breaking and Floquet Protection", Physical Review Applied 18 6, L061001 (2022).
[673] Yinqi Chen, Konstantin N. Nesterov, Vladimir E. Manucharyan, and Maxim G. Vavilov, "Fast Flux Entangling Gate for Fluxonium Circuits", Physical Review Applied 18 3, 034027 (2022).
[674] Jinyoung Ha, Jonghyun Lee, and Jun Heo, "Resource analysis of quantum computing with noisy qubits for Shor's factoring algorithms", Quantum Information Processing 21 2, 60 (2022).
[675] Wonho Jang, Koji Terashi, Masahiko Saito, Christian W. Bauer, Benjamin Nachman, Yutaro Iiyama, Ryunosuke Okubo, and Ryu Sawada, "Initial-State Dependent Optimization of Controlled Gate Operations with Quantum Computer", Quantum 6, 798 (2022).
[676] Jin-Min Liang, Shu-Qian Shen, Ming Li, and Shao-Ming Fei, "Quantum algorithms for the generalized eigenvalue problem", Quantum Information Processing 21 1, 23 (2022).
[677] Dmitry A. Fedorov, Yuri Alexeev, Stephen K. Gray, and Matthew Otten, "Unitary Selective Coupled-Cluster Method", Quantum 6, 703 (2022).
[678] Yunlong Yu, Chenfeng Cao, Carter Dewey, Xiang-Bin Wang, Nic Shannon, and Robert Joynt, "Quantum approximate optimization algorithm with adaptive bias fields", Physical Review Research 4 2, 023249 (2022).
[679] Mirko Consiglio, Tony J. G. Apollaro, and Marcin Wieśniak, "Variational approach to the quantum separability problem", Physical Review A 106 6, 062413 (2022).
[680] Yuki Takeuchi, Yasuhiro Takahashi, Tomoyuki Morimae, and Seiichiro Tani, "Divide-and-conquer verification method for noisy intermediate-scale quantum computation", Quantum 6, 758 (2022).
[681] Wenyang Qian, Robert Basili, Soham Pal, Glenn Luecke, and James P. Vary, "Solving hadron structures using the basis light-front quantization approach on quantum computers", Physical Review Research 4 4, 043193 (2022).
[682] Quancheng Liu, Klaus Ziegler, David A. Kessler, and Eli Barkai, "Driving quantum systems with periodic conditional measurements", Physical Review Research 4 2, 023129 (2022).
[683] Zhiyuan Yao, Lei Pan, Shang Liu, and Pengfei Zhang, "Bounding entanglement entropy using zeros of local correlation matrices", Physical Review Research 4 4, L042037 (2022).
[684] Alexis Morvan, Larry Chen, Jeffrey M. Larson, David I. Santiago, and Irfan Siddiqi, "Optimizing frequency allocation for fixed-frequency superconducting quantum processors", Physical Review Research 4 2, 023079 (2022).
[685] Baptiste Anselme Martin, Pascal Simon, and Marko J. Rančić, "Simulating strongly interacting Hubbard chains with the variational Hamiltonian ansatz on a quantum computer", Physical Review Research 4 2, 023190 (2022).
[686] Kazuki Ikeda and Shoto Aoki, "Theory of quantum games and quantum economic behavior", Quantum Information Processing 21 1, 27 (2022).
[687] Carlos Bravo-Prieto, Julien Baglio, Marco Cè, Anthony Francis, Dorota M. Grabowska, and Stefano Carrazza, "Style-based quantum generative adversarial networks for Monte Carlo events", Quantum 6, 777 (2022).
[688] Luca Erhart, Kosuke Mitarai, Wataru Mizukami, and Keisuke Fujii, "Constructing Local Bases for a Deep Variational Quantum Eigensolver for Molecular Systems", Physical Review Applied 18 6, 064051 (2022).
[689] Matthew Girling, Cristina Cîrstoiu, and David Jennings, "Estimation of correlations and nonseparability in quantum channels via unitarity benchmarking", Physical Review Research 4 2, 023041 (2022).
[690] Ioannis Kolotouros and Petros Wallden, "Evolving objective function for improved variational quantum optimization", Physical Review Research 4 2, 023225 (2022).
[691] R. S. Amal and J. Solomon Ivan, "A quantum genetic algorithm for optimization problems on the Bloch sphere", Quantum Information Processing 21 2, 43 (2022).
[692] John P. T. Stenger, Gilad Ben-Shach, David Pekker, and Nicholas T. Bronn, "Simulating spectroscopy experiments with a superconducting quantum computer", Physical Review Research 4 4, 043106 (2022).
[693] Plato Deliyannis, James Sud, Diana Chamaki, Zoë Webb-Mack, Christian W. Bauer, and Benjamin Nachman, "Improving quantum simulation efficiency of final state radiation with dynamic quantum circuits", Physical Review D 106 3, 036007 (2022).
[694] Bernhard Irsigler and Tobias Grass, "The quantum annealing gap and quench dynamics in the exact cover problem", Quantum 6, 624 (2022).
[695] Shashank Kumar Ranu and Daniel D. Stancil, "Single-magnon excited states of a Heisenberg spin chain using a quantum computer", Physical Review B 106 18, 184402 (2022).
[696] Tudor Giurgica-Tiron, Iordanis Kerenidis, Farrokh Labib, Anupam Prakash, and William Zeng, "Low depth algorithms for quantum amplitude estimation", Quantum 6, 745 (2022).
[697] Kim Pöyhönen, Ali G. Moghaddam, and Teemu Ojanen, "Many-body entanglement and topology from uncertainties and measurement-induced modes", Physical Review Research 4 2, 023200 (2022).
[698] Tyson Jones and Simon C. Benjamin, "Robust quantum compilation and circuit optimisation via energy minimisation", Quantum 6, 628 (2022).
[699] Andrey Zhukov and Walter Pogosov, "Quantum error reduction with deep neural network applied at the post-processing stage", Quantum Information Processing 21 3, 93 (2022).
[700] Andrew Y. Guo, Abhinav Deshpande, Su-Kuan Chu, Zachary Eldredge, Przemyslaw Bienias, Dhruv Devulapalli, Yuan Su, Andrew M. Childs, and Alexey V. Gorshkov, "Implementing a fast unbounded quantum fanout gate using power-law interactions", Physical Review Research 4 4, L042016 (2022).
[701] Lidia Stocker, Stefan H. Sack, Michael S. Ferguson, and Oded Zilberberg, "Entanglement-based observables for quantum impurities", Physical Review Research 4 4, 043177 (2022).
[702] Basudha Srivastava, Anton Frisk Kockum, and Mats Granath, "The XYZ2 hexagonal stabilizer code", Quantum 6, 698 (2022).
[703] Marco Maronese, Claudio Destri, and Enrico Prati, "Quantum activation functions for quantum neural networks", Quantum Information Processing 21 4, 128 (2022).
[704] Hersh Singh, "Qubit regularized O (N ) nonlinear sigma models", Physical Review D 105 11, 114509 (2022).
[705] E. Bahnsen, S. E. Rasmussen, N. J. S. Loft, and N. T. Zinner, "Application of the Diamond Gate in Quantum Fourier Transformations and Quantum Machine Learning", Physical Review Applied 17 2, 024053 (2022).
[706] Roeland Wiersema, Leonardo Guerini, Juan Felipe Carrasquilla, and Leandro Aolita, "Circuit connectivity boosts by quantum-classical-quantum interfaces", Physical Review Research 4 4, 043221 (2022).
[707] Jacopo Rizzo, Francesco Libbi, Francesco Tacchino, Pauline J. Ollitrault, Nicola Marzari, and Ivano Tavernelli, "One-particle Green's functions from the quantum equation of motion algorithm", Physical Review Research 4 4, 043011 (2022).
[708] Pengcheng Zhu, Shenggen Zheng, Lihua Wei, Xueyun Cheng, Zhijin Guan, and Shiguang Feng, "The complexity of quantum circuit mapping with fixed parameters", Quantum Information Processing 21 10, 361 (2022).
[709] I. -Chi Chen, Benjamin Burdick, Yongxin Yao, Peter P. Orth, and Thomas Iadecola, "Error-mitigated simulation of quantum many-body scars on quantum computers with pulse-level control", Physical Review Research 4 4, 043027 (2022).
[710] Hiroshi Ohno, "Boosting for quantum weak learners", Quantum Information Processing 21 6, 199 (2022).
[711] Nobuyuki Okuma and Yuya O. Nakagawa, "Nonnormal Hamiltonian dynamics in quantum systems and its realization on quantum computers", Physical Review B 105 5, 054304 (2022).
[712] Bin Xu and Wei Xue, "(3 +1 )-dimensional Schwinger pair production with quantum computers", Physical Review D 106 11, 116007 (2022).
[713] Christian Boudreault, Hichem Eleuch, Michael Hilke, and Richard MacKenzie, "Universal quantum computation with symmetric qubit clusters coupled to an environment", Physical Review A 106 6, 062610 (2022).
[714] Isabel Nha Minh Le, Julian D. Teske, Tobias Hangleiter, Pascal Cerfontaine, and Hendrik Bluhm, "Analytic Filter-Function Derivatives for Quantum Optimal Control", Physical Review Applied 17 2, 024006 (2022).
[715] Stavros Efthymiou, Marco Lazzarin, Andrea Pasquale, and Stefano Carrazza, "Quantum simulation with just-in-time compilation", Quantum 6, 814 (2022).
[716] Ángel Gutiérrez-Rubio, Juan S. Rojas-Arias, Jun Yoneda, Seigo Tarucha, Daniel Loss, and Peter Stano, "Bayesian estimation of correlation functions", Physical Review Research 4 4, 043166 (2022).
[717] Alicia B. Magann, Kenneth M. Rudinger, Matthew D. Grace, and Mohan Sarovar, "Lyapunov-control-inspired strategies for quantum combinatorial optimization", Physical Review A 106 6, 062414 (2022).
[718] Philipp M. Mutter and Guido Burkard, "Fingerprints of Qubit Noise in Transient Cavity Transmission", Physical Review Letters 128 23, 236801 (2022).
[719] Obinna Abah, Gabriele De Chiara, Mauro Paternostro, and Ricardo Puebla, "Harnessing nonadiabatic excitations promoted by a quantum critical point: Quantum battery and spin squeezing", Physical Review Research 4 2, L022017 (2022).
[720] Akshaya Jayashankar, My Duy Hoang Long, Hui Khoon Ng, and Prabha Mandayam, "Achieving fault tolerance against amplitude-damping noise", Physical Review Research 4 2, 023034 (2022).
[721] Dax Enshan Koh and Sabee Grewal, "Classical Shadows With Noise", Quantum 6, 776 (2022).
[722] Paolo Braccia, Leonardo Banchi, and Filippo Caruso, "Quantum Noise Sensing by Generating Fake Noise", Physical Review Applied 17 2, 024002 (2022).
[723] En-Jui Kuo and Hossein Dehghani, "Unsupervised learning of interacting topological and symmetry-breaking phase transitions", Physical Review B 105 23, 235136 (2022).
[724] Zhi-Cheng Yang, "Distinction between transport and Rényi entropy growth in kinetically constrained models", Physical Review B 106 22, L220303 (2022).
[725] Raoul Heese, Patricia Bickert, and Astrid Elisa Niederle, "Representation of binary classification trees with binary features by quantum circuits", Quantum 6, 676 (2022).
[726] Hasan Yetiş and Mehmet Karaköse, "An improved and cost reduced quantum circuit generator approach for image encoding applications", Quantum Information Processing 21 6, 203 (2022).
[727] Utkan Güngördü and J. P. Kestner, "Robust quantum gates using smooth pulses and physics-informed neural networks", Physical Review Research 4 2, 023155 (2022).
[728] Jan Lukas Bosse and Ashley Montanaro, "Probing ground-state properties of the kagome antiferromagnetic Heisenberg model using the variational quantum eigensolver", Physical Review B 105 9, 094409 (2022).
[729] Tinggui Zhang, Naihuan Jing, and Shao-Ming Fei, "Quantum separability criteria based on realignment moments", Quantum Information Processing 21 8, 276 (2022).
[730] D. V. Babukhin and W. V. Pogosov, "The effect of quantum noise on algorithmic perfect quantum state transfer on NISQ processors", Quantum Information Processing 21 1, 7 (2022).
[731] David Subires, Fernando J. Gómez-Ruiz, Antonia Ruiz-García, Daniel Alonso, and Adolfo del Campo, "Benchmarking quantum annealing dynamics: The spin-vector Langevin model", Physical Review Research 4 2, 023104 (2022).
[732] David A. Herrera-Martí, "Policy Gradient Approach to Compilation of Variational Quantum Circuits", Quantum 6, 797 (2022).
[733] Guijiao Du, Chengcheng Zhou, and Leong-Chuan Kwek, "Compression and reduction of N ∗1 states by unitary matrices", Quantum Information Processing 21 2, 80 (2022).
[734] Ruho Kondo, Yuki Sato, Satoshi Koide, Seiji Kajita, and Hideki Takamatsu, "Computationally Efficient Quantum Expectation with Extended Bell Measurements", Quantum 6, 688 (2022).
[735] Jino Heo and Seong-Gon Choi, "Photonic scheme of quantum phase estimation for quantum algorithms via quantum dots", Quantum Information Processing 21 1, 6 (2022).
[736] Shohei Imai, Atsushi Ono, and Sumio Ishihara, "Energy-band echoes: Time-reversed light emission from optically driven quasiparticle wave packets", Physical Review Research 4 4, 043155 (2022).
[737] Yordan S. Yordanov, Crispin H. W. Barnes, and David R. M. Arvidsson-Shukur, "Molecular-excited-state calculations with the qubit-excitation-based adaptive variational quantum eigensolver protocol", Physical Review A 106 3, 032434 (2022).
[738] Ratul Banerjee, Amit Kumar Pal, and Aditi SenDe, "Hierarchies of localizable entanglement due to spatial distribution of local noise", Physical Review Research 4 2, 023035 (2022).
[739] Fang Gao, Guojian Wu, Mingyu Yang, Wei Cui, and Feng Shuang, "A hybrid algorithm to solve linear systems of equations with limited qubit resources", Quantum Information Processing 21 3, 111 (2022).
[740] J. A. Montañez-Barrera, Michael R. von Spakovsky, Cesar E. Damian Ascencio, and Sergio Cano-Andrade, "Decoherence predictions in a superconducting quantum processor using the steepest-entropy-ascent quantum thermodynamics framework", Physical Review A 106 3, 032426 (2022).
[741] Bálint Koczor and Simon C. Benjamin, "Quantum natural gradient generalized to noisy and nonunitary circuits", Physical Review A 106 6, 062416 (2022).
[742] András Gilyén, Zhao Song, and Ewin Tang, "An improved quantum-inspired algorithm for linear regression", Quantum 6, 754 (2022).
[743] Laura Gentini, Alessandro Cuccoli, and Leonardo Banchi, "Variational Adiabatic Gauge Transformation on Real Quantum Hardware for Effective Low-Energy Hamiltonians and Accurate Diagonalization", Physical Review Applied 18 3, 034025 (2022).
[744] Simon Martiel and Timothée Goubault de Brugière, "Architecture aware compilation of quantum circuits via lazy synthesis", Quantum 6, 729 (2022).
[745] Amit Kumar Pal, Philipp Schindler, Alexander Erhard, Ángel Rivas, Miguel-Angel Martin-Delgado, Rainer Blatt, Thomas Monz, and Markus Müller, "Relaxation times do not capture logical qubit dynamics", Quantum 6, 632 (2022).
[746] Enrico Fontana, M. Cerezo, Andrew Arrasmith, Ivan Rungger, and Patrick J. Coles, "Non-trivial symmetries in quantum landscapes and their resilience to quantum noise", Quantum 6, 804 (2022).
[747] Carlile Lavor, Franklin Marquezino, Andrês Oliveira, and Renato Portugal, "A quantum approach to the discretizable molecular distance geometry problem", Quantum Information Processing 21 7, 239 (2022).
[748] Xiao-Qi Liu, Jing Wang, Ming Li, Shu-Qian Shen, Weiguo Li, and Shao-Ming Fei, "Quantum relaxed row and column iteration methods based on block-encoding", Quantum Information Processing 21 6, 230 (2022).
[749] Anbang Wang, Jingning Zhang, and Ying Li, "Error-mitigated deep-circuit quantum simulation of open systems: Steady state and relaxation rate problems", Physical Review Research 4 4, 043140 (2022).
[750] Bin Cheng, Xiu-Hao Deng, Xiu Gu, Yu He, Guangchong Hu, Peihao Huang, Jun Li, Ben-Chuan Lin, Dawei Lu, Yao Lu, Chudan Qiu, Hui Wang, Tao Xin, Shi Yu, Man-Hong Yung, Junkai Zeng, Song Zhang, Youpeng Zhong, Xinhua Peng, Franco Nori, and Dapeng Yu, "Noisy intermediate-scale quantum computers", Frontiers of Physics 18 2, 21308 (2023).
[751] Fabio Caceffo and Vincenzo Alba, "Entanglement negativity in a fermionic chain with dissipative defects: exact results", Journal of Statistical Mechanics: Theory and Experiment 2023 2, 023102 (2023).
[752] Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni, Hartmut Neven, Ryan Babbush, Richard Kueng, John Preskill, and Jarrod R. McClean, "Quantum advantage in learning from experiments", Science 376 6598, 1182 (2022).
[753] Andreas Elben, Steven T. Flammia, Hsin-Yuan Huang, Richard Kueng, John Preskill, Benoît Vermersch, and Peter Zoller, "The randomized measurement toolbox", Nature Reviews Physics 5 1, 9 (2023).
[754] Hongting Song, Areeya Chantasri, Behnam Tonekaboni, and Howard M. Wiseman, "Optimized mitigation of random-telegraph-noise dephasing by spectator-qubit sensing and control", Physical Review A 107 3, L030601 (2023).
[755] Shiro Tamiya and Hayata Yamasaki, "Stochastic gradient line Bayesian optimization for efficient noise-robust optimization of parameterized quantum circuits", npj Quantum Information 8, 90 (2022).
[756] Alexey Melnikov, Mohammad Kordzanganeh, Alexander Alodjants, and Ray-Kuang Lee, "Quantum machine learning: from physics to software engineering", Advances in Physics X 8 1, 2165452 (2023).
[757] Fabian Kreppel, Christian Melzer, Janis Wagner, Janine Hilder, Ulrich Poschinger, Ferdinand Schmidt-Kaler, and André Brinkmann, "Quantum Circuit Compiler for a Shuttling-Based Trapped-Ion Quantum Computer", arXiv:2207.01964, (2022).
[758] Tobias Haug, Chris N. Self, and M. S. Kim, "Quantum machine learning of large datasets using randomized measurements", Machine Learning: Science and Technology 4 1, 015005 (2023).
[759] Siheon Park, Daniel K. Park, and June-Koo Kevin Rhee, "Variational quantum approximate support vector machine with inference transfer", Scientific Reports 13, 3288 (2023).
[760] Johannes Jakob Meyer, Marian Mularski, Elies Gil-Fuster, Antonio Anna Mele, Francesco Arzani, Alissa Wilms, and Jens Eisert, "Exploiting Symmetry in Variational Quantum Machine Learning", PRX Quantum 4 1, 010328 (2023).
[761] Behnam Tonekaboni, Areeya Chantasri, Hongting Song, Yanan Liu, and Howard M. Wiseman, "Greedy versus map-based optimized adaptive algorithms for random-telegraph-noise mitigation by spectator qubits", Physical Review A 107 3, 032401 (2023).
[762] Alireza Seif, Ze-Pei Cian, Sisi Zhou, Senrui Chen, and Liang Jiang, "Shadow Distillation: Quantum Error Mitigation with Classical Shadows for Near-Term Quantum Processors", PRX Quantum 4 1, 010303 (2023).
[763] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan, Patrick J. Coles, and M. Cerezo, "Diagnosing Barren Plateaus with Tools from Quantum Optimal Control", Quantum 6, 824 (2022).
[764] Hiroki Sukeno and Takuya Okuda, "Measurement-based quantum simulation of Abelian lattice gauge theories", arXiv:2210.10908, (2022).
[765] Giacomo De Palma, Milad Marvian, Cambyse Rouzé, and Daniel Stilck França, "Limitations of Variational Quantum Algorithms: A Quantum Optimal Transport Approach", PRX Quantum 4 1, 010309 (2023).
[766] Tobias Haug and M. S. Kim, "Scalable Measures of Magic Resource for Quantum Computers", PRX Quantum 4 1, 010301 (2023).
[767] Andy C. Y. Li, Alexandru Macridin, Stephen Mrenna, and Panagiotis Spentzouris, "Simulating scalar field theories on quantum computers with limited resources", Physical Review A 107 3, 032603 (2023).
[768] Alvin Gonzales, Ruslan Shaydulin, Zain H. Saleem, and Martin Suchara, "Quantum error mitigation by Pauli check sandwiching", Scientific Reports 13, 2122 (2023).
[769] Jonah Kudler-Flam, Ramanjit Sohal, and Laimei Nie, "Information Scrambling with Conservation Laws", SciPost Physics 12 4, 117 (2022).
[770] Valentin Gebhart, Raffaele Santagati, Antonio Andrea Gentile, Erik M. Gauger, David Craig, Natalia Ares, Leonardo Banchi, Florian Marquardt, Luca Pezzè, and Cristian Bonato, "Learning quantum systems", Nature Reviews Physics 5 3, 141 (2023).
[771] Stefan H. Sack, Raimel A. Medina, Richard Kueng, and Maksym Serbyn, "Transition states and greedy exploration of the QAOA optimization landscape", arXiv:2209.01159, (2022).
[772] Roland C. Farrell, Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage, "Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (I) Axial Gauge", arXiv:2207.01731, (2022).
[773] Ji Chu, Xiaoyu He, Yuxuan Zhou, Jiahao Yuan, Libo Zhang, Qihao Guo, Yongju Hai, Zhikun Han, Chang-Kang Hu, Wenhui Huang, Hao Jia, Dawei Jiao, Sai Li, Yang Liu, Zhongchu Ni, Lifu Nie, Xianchuang Pan, Jiawei Qiu, Weiwei Wei, Wuerkaixi Nuerbolati, Zusheng Yang, Jiajian Zhang, Zhida Zhang, Wanjing Zou, Yuanzhen Chen, Xiaowei Deng, Xiuhao Deng, Ling Hu, Jian Li, Song Liu, Yao Lu, Jingjing Niu, Dian Tan, Yuan Xu, Tongxing Yan, Youpeng Zhong, Fei Yan, Xiaoming Sun, and Dapeng Yu, "Scalable algorithm simplification using quantum AND logic", Nature Physics 19 1, 126 (2023).
[774] Salvatore F. E. Oliviero, Lorenzo Leone, Alioscia Hamma, and Seth Lloyd, "Measuring magic on a quantum processor", npj Quantum Information 8, 148 (2022).
[775] I. Joseph, Y. Shi, M. D. Porter, A. R. Castelli, V. I. Geyko, F. R. Graziani, S. B. Libby, and J. L. DuBois, "Quantum computing for fusion energy science applications", Physics of Plasmas 30 1, 010501 (2023).
[776] Shaojie Yuan, Chuanpu Liu, Jilei Chen, Song Liu, Jin Lan, Haiming Yu, Jiansheng Wu, Fei Yan, Man-Hong Yung, Jiang Xiao, Liang Jiang, and Dapeng Yu, "Spin-wave-based tunable coupler between superconducting flux qubits", Physical Review A 107 1, 012434 (2023).
[777] Anirban Mukherjee, Noah F. Berthusen, João C. Getelina, Peter P. Orth, and Yong-Xin Yao, "Comparative study of adaptive variational quantum eigensolvers for multi-orbital impurity models", Communications Physics 6 1, 4 (2023).
[778] Yu Zhang, Lukasz Cincio, Christian F. A. Negre, Piotr Czarnik, Patrick J. Coles, Petr M. Anisimov, Susan M. Mniszewski, Sergei Tretiak, and Pavel A. Dub, "Variational quantum eigensolver with reduced circuit complexity", npj Quantum Information 8, 96 (2022).
[779] Elijah Pelofske, Andreas Bärtschi, and Stephan Eidenbenz, "Quantum Volume in Practice: What Users Can Expect from NISQ Devices", arXiv:2203.03816, (2022).
[780] Troy J. Sewell, Christopher David White, and Brian Swingle, "Thermal Multi-scale Entanglement Renormalization Ansatz for Variational Gibbs State Preparation", arXiv:2210.16419, (2022).
[781] Mario Krenn, Jonas Landgraf, Thomas Foesel, and Florian Marquardt, "Artificial intelligence and machine learning for quantum technologies", Physical Review A 107 1, 010101 (2023).
[782] Steven Herbert, "Quantum Monte Carlo Integration: The Full Advantage in Minimal Circuit Depth", Quantum 6, 823 (2022).
[783] Jin Ming Koh, Tommy Tai, Yong Han Phee, Wei En Ng, and Ching Hua Lee, "Stabilizing multiple topological fermions on a quantum computer", npj Quantum Information 8, 16 (2022).
[784] Christophe Piveteau, David Sutter, and Stefan Woerner, "Quasiprobability decompositions with reduced sampling overhead", npj Quantum Information 8, 12 (2022).
[785] Krzysztof Domino, Mátyás Koniorczyk, Krzysztof Krawiec, Konrad Jałowiecki, Sebastian Deffner, and Bartłomiej Gardas, "Quantum Annealing in the NISQ Era: Railway Conflict Management", Entropy 25 2, 191 (2023).
[786] S. Shin, Y. S. Teo, and H. Jeong, "Exponential data encoding for quantum supervised learning", Physical Review A 107 1, 012422 (2023).
[787] Daniel Gottesman, "Opportunities and Challenges in Fault-Tolerant Quantum Computation", arXiv:2210.15844, (2022).
[788] Lorenzo Buffoni and Michele Campisi, "Cooperative quantum information erasure", arXiv:2206.10230, (2022).
[789] Connor Powers, Lindsay Bassman Oftelie, Daan Camps, and Wibe A. de Jong, "Exploring finite temperature properties of materials with quantum computers", Scientific Reports 13, 1986 (2023).
[790] Ali Shaib, Mohamad Hussein Naim, Mohammed E. Fouda, Rouwaida Kanj, and Fadi Kurdahi, "Efficient noise mitigation technique for quantum computing", Scientific Reports 13, 3912 (2023).
[791] Tanmay Singal, Filip B. Maciejewski, and Michał Oszmaniec, "Implementation of quantum measurements using classical resources and only a single ancillary qubit", npj Quantum Information 8, 82 (2022).
[792] Nikita A. Nemkov, Evgeniy O. Kiktenko, Ilia A. Luchnikov, and Aleksey K. Fedorov, "Efficient variational synthesis of quantum circuits with coherent multi-start optimization", arXiv:2205.01121, (2022).
[793] Hao-Kai Zhang, Chengkai Zhu, Geng Liu, and Xin Wang, "Fundamental limitations on optimization in variational quantum algorithms", arXiv:2205.05056, (2022).
[794] Ramin Ayanzadeh, Narges Alavisamani, Poulami Das, and Moinuddin Qureshi, "FrozenQubits: Boosting Fidelity of QAOA by Skipping Hotspot Nodes", arXiv:2210.17037, (2022).
[795] B. -W. Li, Y. -K. Wu, Q. -X. Mei, R. Yao, W. -Q. Lian, M. -L. Cai, Y. Wang, B. -X. Qi, L. Yao, L. He, Z. -C. Zhou, and L. -M. Duan, "Probing Critical Behavior of Long-Range Transverse-Field Ising Model through Quantum Kibble-Zurek Mechanism", PRX Quantum 4 1, 010302 (2023).
[796] Nishant Jain, Brian Coyle, Elham Kashefi, and Niraj Kumar, "Graph neural network initialisation of quantum approximate optimisation", Quantum 6, 861 (2022).
[797] Tobias Schmale, Moritz Reh, and Martin Gärttner, "Efficient quantum state tomography with convolutional neural networks", npj Quantum Information 8, 115 (2022).
[798] Gunhee Park, Joonsuk Huh, and Daniel K. Park, "Variational quantum one-class classifier", Machine Learning: Science and Technology 4 1, 015006 (2023).
[799] Daniel Huerga, "Variational Quantum Simulation of Valence-Bond Solids", Quantum 6, 874 (2022).
[800] Gabriele Cenedese, Giuliano Benenti, and Maria Bondani, "Correcting Coherent Errors by Random Operation on Actual Quantum Hardware", Entropy 25 2, 324 (2023).
[801] Marco Cattaneo, Matteo A. C. Rossi, Guillermo García-Pérez, Roberta Zambrini, and Sabrina Maniscalco, "Quantum Simulation of Dissipative Collective Effects on Noisy Quantum Computers", PRX Quantum 4 1, 010324 (2023).
[802] Matteo Ippoliti, Yaodong Li, Tibor Rakovszky, and Vedika Khemani, "Operator relaxation and the optimal depth of classical shadows", arXiv:2212.11963, (2022).
[803] Andrea Matic, Maureen Monnet, Jeanette Miriam Lorenz, Balthasar Schachtner, and Thomas Messerer, "Quantum-classical convolutional neural networks in radiological image classification", arXiv:2204.12390, (2022).
[804] E. Vahapoglu, J. P. Slack-Smith, R. C. C. Leon, W. H. Lim, F. E. Hudson, T. Day, J. D. Cifuentes, T. Tanttu, C. H. Yang, A. Saraiva, N. V. Abrosimov, H. -J. Pohl, M. L. W. Thewalt, A. Laucht, A. S. Dzurak, and J. J. Pla, "Coherent control of electron spin qubits in silicon using a global field", npj Quantum Information 8, 126 (2022).
[805] Riccardo Molteni, Claudio Destri, and Enrico Prati, "Optimization of the memory reset rate of a quantum echo-state network for time sequential tasks", Physics Letters A 465, 128713 (2023).
[806] Troy J. Sewell, Ning Bao, and Stephen P. Jordan, "Variational quantum simulation of critical Ising model with symmetry averaging", arXiv:2210.15053, (2022).
[807] Xinbiao Wang, Junyu Liu, Tongliang Liu, Yong Luo, Yuxuan Du, and Dacheng Tao, "Symmetric Pruning in Quantum Neural Networks", arXiv:2208.14057, (2022).
[808] Bingzhi Zhang, Akira Sone, and Quntao Zhuang, "Quantum computational phase transition in combinatorial problems", npj Quantum Information 8, 87 (2022).
[809] S. Carrazza, S. Efthymiou, M. Lazzarin, and A. Pasquale, "An open-source modular framework for quantum computing", Journal of Physics Conference Series 2438 1, 012148 (2023).
[810] Nicholas H. Stair, Cristian L. Cortes, Robert M. Parrish, Jeffrey Cohn, and Mario Motta, "Stochastic quantum Krylov protocol with double-factorized Hamiltonians", Physical Review A 107 3, 032414 (2023).
[811] Ryan Shaffer, Lucas Kocia, and Mohan Sarovar, "Surrogate-based optimization for variational quantum algorithms", Physical Review A 107 3, 032415 (2023).
[812] Kerstin Borras, Su Yeon Chang, Lena Funcke, Michele Grossi, Tobias Hartung, Karl Jansen, Dirk Kruecker, Stefan Kühn, Florian Rehm, Cenk Tüysüz, and Sofia Vallecorsa, "Impact of quantum noise on the training of quantum Generative Adversarial Networks", Journal of Physics Conference Series 2438 1, 012093 (2023).
[813] Jonas Koppe and Mark-Oliver Wolf, "Amplitude-based implementation of the unit step function on a quantum computer", Physical Review A 107 2, 022606 (2023).
[814] Youle Wang, Benchi Zhao, and Xin Wang, "Quantum algorithms for estimating quantum entropies", arXiv:2203.02386, (2022).
[815] Shahnawaz Ahmed, Fernando Quijandría, and Anton Frisk Kockum, "Gradient-descent quantum process tomography by learning Kraus operators", arXiv:2208.00812, (2022).
[816] Xuanqiang Zhao, Benchi Zhao, Zihan Xia, and Xin Wang, "Information recoverability of noisy quantum states", arXiv:2203.04862, (2022).
[817] Luciano Pereira, Leonardo Zambrano, and Aldo Delgado, "Scalable estimation of pure multi-qubit states", npj Quantum Information 8, 57 (2022).
[818] Muhammad Kashif and Saif Al-Kuwari, "The impact of cost function globality and locality in hybrid quantum neural networks on NISQ devices", Machine Learning: Science and Technology 4 1, 015004 (2023).
[819] Lennart Bittel, Jens Watty, and Martin Kliesch, "Fast gradient estimation for variational quantum algorithms", arXiv:2210.06484, (2022).
[820] Minzhao Liu, Junyu Liu, Yuri Alexeev, and Liang Jiang, "Estimating the randomness of quantum circuit ensembles up to 50 qubits", npj Quantum Information 8, 137 (2022).
[821] Poulami Das, Suhas K. Vittal, and Moinuddin Qureshi, "ForeSight: Reducing SWAPs in NISQ Programs via Adaptive Multi-Candidate Evaluations", arXiv:2204.13142, (2022).
[822] Louis Schatzki, Guangkuo Liu, M. Cerezo, and Eric Chitambar, "A Hierarchy of Multipartite Correlations Based on Concentratable Entanglement", arXiv:2209.07607, (2022).
[823] Senrui Chen, Yunchao Liu, Matthew Otten, Alireza Seif, Bill Fefferman, and Liang Jiang, "The learnability of Pauli noise", Nature Communications 14, 52 (2023).
[824] P. Mironowicz, "Entangled rendezvous: a possible application of Bell non-locality for mobile agents on networks", New Journal of Physics 25 1, 013023 (2023).
[825] Karen Wintersperger, Hila Safi, and Wolfgang Mauerer, "QPU-System Co-Design for Quantum HPC Accelerators", arXiv:2208.11449, (2022).
[826] Lennart Maximilian Seifert, Jason Chadwick, Andrew Litteken, Frederic T. Chong, and Jonathan M. Baker, "Time-Efficient Qudit Gates through Incremental Pulse Re-seeding", arXiv:2206.14975, (2022).
[827] Finn Voichick, Liyi Li, Robert Rand, and Michael Hicks, "Qunity: A Unified Language for Quantum and Classical Computing (Extended Version)", arXiv:2204.12384, (2022).
[828] Yuchen Luo and Xiaopeng Li, "Effect of quantum statistics on computational power of atomic quantum annealers", Physical Review A 107 1, 012608 (2023).
[829] S. Hasibul Hassan Chowdhury, Talal Ahmed Chowdhury, Salah Nasri, Omar Ibna Nazim, and Shaikh Saad, "Quantum simulation of quantum mechanical system with spatial noncommutativity", arXiv:2211.08338, (2022).
[830] Xinyi Chen, Elad Hazan, Tongyang Li, Zhou Lu, Xinzhao Wang, and Rui Yang, "Adaptive Online Learning of Quantum States", arXiv:2206.00220, (2022).
[831] Xiaoqin Gao, Paul Appel, Nicolai Friis, Martin Ringbauer, and Marcus Huber, "On the role of entanglement in qudit-based circuit compression", arXiv:2209.14584, (2022).
[832] Jannes Nys and Giuseppe Carleo, "Variational solutions to fermion-to-qubit mappings in two spatial dimensions", Quantum 6, 833 (2022).
[833] M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles, "Variational quantum state eigensolver", npj Quantum Information 8, 113 (2022).
[834] Oskar Słowik and Adam Sawicki, "Calculable lower bounds on the efficiency of universal sets of quantum gates", Journal of Physics A Mathematical General 56 11, 115304 (2023).
[835] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and Dacheng Tao, "Quantum circuit architecture search for variational quantum algorithms", npj Quantum Information 8, 62 (2022).
[836] David Headley and Frank K. Wilhelm, "Problem-size-independent angles for a Grover-driven quantum approximate optimization algorithm", Physical Review A 107 1, 012412 (2023).
[837] Gelo Noel M. Tabia, Kai-Siang Chen, Chung-Yun Hsieh, Yu-Chun Yin, and Yeong-Cherng Liang, "Entanglement transitivity problems", npj Quantum Information 8, 98 (2022).
[838] Vu Tuan Hai and Le Bin Ho, "Universal compilation for quantum state tomography", Scientific Reports 13, 3750 (2023).
[839] Philipp M. Mutter and Guido Burkard, "Theory of qubit noise characterization using the long-time cavity transmission", Physical Review A 107 2, 022601 (2023).
[840] Leela Ganesh Chandra Lakkaraju, Srijon Ghosh, Debasis Sadhukan, and Aditi Sen De, "Can a finite range Hamiltonian mimic quantum correlation of a long-range Hamiltonian?", arXiv:2206.09199, (2022).
[841] Stefano Polla, Gian-Luca R. Anselmetti, and Thomas E. O'Brien, "Optimizing the information extracted by a single qubit measurement", arXiv:2207.09479, (2022).
[842] Hang Jing, Ye Wang, and Yan Li, "Data-driven quantum approximate optimization algorithm for power systems", Communications Engineering 2 1, 12 (2023).
[843] Kun Wang, Zhixin Song, Xuanqiang Zhao, Zihe Wang, and Xin Wang, "Detecting and quantifying entanglement on near-term quantum devices", npj Quantum Information 8, 52 (2022).
[844] Kok Chuan Tan, Dhiman Bhowmick, and Pinaki Sengupta, "Sign-problem free quantum stochastic series expansion algorithm on a quantum computer", npj Quantum Information 8, 44 (2022).
[845] You Zhou, Bo Xiao, Meng-Da Li, Qi Zhao, Zhen-Sheng Yuan, Xiongfeng Ma, and Jian-Wei Pan, "A scheme to create and verify scalable entanglement in optical lattice", npj Quantum Information 8, 99 (2022).
[846] Swamit Tannu, Poulami Das, Ramin Ayanzadeh, and Moinuddin Qureshi, "HAMMER: boosting fidelity of noisy Quantum circuits by exploiting Hamming behavior of erroneous outcomes", arXiv:2208.09371, (2022).
[847] Tailong Xiao, Jingzheng Huang, Hongjing Li, Jianping Fan, and Guihua Zeng, "Intelligent certification for quantum simulators via machine learning", npj Quantum Information 8, 138 (2022).
[848] Nikolaos Koukoulekidis, Hyukjoon Kwon, Hyejung H. Jee, David Jennings, and M. S. Kim, "Faster Born probability estimation via gate merging and frame optimisation", Quantum 6, 838 (2022).
[849] Casper Gyurik, Chris Cade, and Vedran Dunjko, "Towards quantum advantage via topological data analysis", Quantum 6, 855 (2022).
[850] Alejandro Montanez-Barrera, Dennis Willsch, Alberto Maldonado-Romo, and Kristel Michielsen, "Unbalanced penalization: A new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms", arXiv:2211.13914, (2022).
[851] Sofiene Jerbi, Lukas J. Fiderer, Hendrik Poulsen Nautrup, Jonas M. Kübler, Hans J. Briegel, and Vedran Dunjko, "Quantum machine learning beyond kernel methods", Nature Communications 14, 517 (2023).
[852] Sheikh Parvez Mandal, Ahana Ghoshal, Chirag Srivastava, and Ujjwal Sen, "Invariance of success probability in Grover's quantum search under local noise with memory", Physical Review A 107 2, 022427 (2023).
[853] Weiyuan Gong, Chenyi Zhang, and Tongyang Li, "Robustness of Quantum Algorithms for Nonconvex Optimization", arXiv:2212.02548, (2022).
[854] Yeonghun Lee, "Symmetric Trotterization in digital quantum simulation of quantum spin dynamics", Journal of Korean Physical Society 82 5, 479 (2023).
[855] Ning Yang and Jing Guo, "A Quantum-Computing-Based Method for Solving Quantum Confinement Problem in Semiconductor", IEEE Transactions on Electron Devices 70 3, 1366 (2023).
[856] Mostafa Motamedifar, Fatemeh Sadeghi, and Mojtaba Golshani, "Entanglement transmission due to the Dzyaloshinskii-Moriya interaction", Scientific Reports 13, 2932 (2023).
[857] Yang Qian, Zhijin Guan, Shenggen Zheng, and Shiguang Feng, "A Method Based on Timing Weight Priority and Distance Optimization for Quantum Circuit Transformation", Entropy 25 3, 465 (2023).
[858] Maida Wang, Anqi Huang, Yong Liu, Xuming Yi, Junjie Wu, and Siqi Wang, "A Quantum-Classical Hybrid Solution for Deep Anomaly Detection", Entropy 25 3, 427 (2023).
[859] Rajni Bala, Sooryansh Asthana, and V. Ravishankar, "Combating errors in quantum communication: an integrated approach", Scientific Reports 13, 2979 (2023).
[860] Shihao Zhang, Jiacheng Bao, Yifan Sun, Lvzhou Li, Houjun Sun, and Xiangdong Zhang, "An Exact and Practical Classical Strategy for 2D Graph State Sampling", Annalen der Physik 535 2, 2200531 (2023).
[861] Mohamad Niknam, Robert N. Schwartz, and Louis-S. Bouchard, "Quantum gates between mesoscopic spin ensembles", Physical Review A 107 3, 032601 (2023).
[862] Marcin Dukalski, Diego Rovetta, Stan van der Linde, Matthias Möller, Niels Neumann, and Frank Phillipson, "Quantum computer-assisted global optimization in geophysics illustrated with stack-power maximization for refraction residual statics estimation", Geophysics 88 2, V75 (2023).
[863] Xi-Dan Hu, Tong Luo, and Dan-Bo Zhang, "Quantum algorithm for evaluating operator size with Bell measurements", Physical Review A 107 2, 022407 (2023).
[864] Ufuk Korkmaz and Deniz Türkpençe, "Quantum collisional classifier driven by information reservoirs", Physical Review A 107 1, 012432 (2023).
[865] Yifan Zhou, Peng Zhang, and Fei Feng, "Noisy-Intermediate-Scale Quantum Electromagnetic Transients Program", IEEE Transactions on Power Systems 38 2, 1558 (2023).
[866] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, Yong-Jian Han, and Guo-Ping Guo, "Mitigating barren plateaus with transfer-learning-inspired parameter initializations", New Journal of Physics 25 1, 013039 (2023).
[867] Xavier Bonet-Monroig, Hao Wang, Diederick Vermetten, Bruno Senjean, Charles Moussa, Thomas Bäck, Vedran Dunjko, and Thomas E. O'Brien, "Performance comparison of optimization methods on variational quantum algorithms", Physical Review A 107 3, 032407 (2023).
[868] Yong Siah Teo, Seongwook Shin, Hyukgun Kwon, Seok-Hyung Lee, and Hyunseok Jeong, "Virtual distillation with noise dilution", Physical Review A 107 2, 022608 (2023).
[869] Greg Bowen and Simon Devitt, "Q2Graph: a modelling tool for measurement-based quantum computing", arXiv:2210.00657, (2022).
[870] Xingrui Song and Kater Murch, "Parity-time symmetric holographic principle", arXiv:2210.01128, (2022).
[871] Toru Fujii, Koshi Komuro, Yosuke Okudaira, and Masayasu Sawada, "Eigenvalue-Invariant Transformation of Ising Problem for Anti-Crossing Mitigation in Quantum Annealing", Journal of the Physical Society of Japan 92 4, 044001 (2023).
[872] Aleksey N. Bolgar, Shtefan V. Sanduleanu, Aleksandr Strelnikov, and Oleg V. Astafiev, "High Quality Quasinormal Modes of Phononic Crystals for Quantum Acoustodynamics", Journal of Low Temperature Physics 210 5-6, 573 (2023).
[873] Tom Rindell, Berat Yenilen, Niklas Halonen, Arttu Pönni, Ilkka Tittonen, and Matti Raasakka, "Generating approximate state preparation circuits for NISQ computers with a genetic algorithm", arXiv:2210.06411, (2022).
[874] Jin-Min Liang, Qiao-Qiao Lv, Zhi-Xi Wang, and Shao-Ming Fei, "Unified multivariate trace estimation and quantum error mitigation", Physical Review A 107 1, 012606 (2023).
[875] Rong-Yang Sun, Tomonori Shirakawa, and Seiji Yunoki, "Parametrized quantum circuit for weight-adjustable quantum loop gas", Physical Review B 107 4, L041109 (2023).
[876] Arno Bargerbos, Lukas Johannes Splitthoff, Marta Pita-Vidal, Jaap J. Wesdorp, Yu Liu, Peter Krogstrup, Leo P. Kouwenhoven, Christian Kraglund Andersen, and Lukas Grünhaupt, "Mitigation of Quasiparticle Loss in Superconducting Qubits by Phonon Scattering", Physical Review Applied 19 2, 024014 (2023).
[877] Shi-Xin Zhang, Jonathan Allcock, Zhou-Quan Wan, Shuo Liu, Jiace Sun, Hao Yu, Xing-Han Yang, Jiezhong Qiu, Zhaofeng Ye, Yu-Qin Chen, Chee-Kong Lee, Yi-Cong Zheng, Shao-Kai Jian, Hong Yao, Chang-Yu Hsieh, and Shengyu Zhang, "TensorCircuit: a Quantum Software Framework for the NISQ Era", Quantum 7, 912 (2023).
[878] Yanan Li, Zhimin Wang, Rongbing Han, Shangshang Shi, Jiaxin Li, Ruimin Shang, Haiyong Zheng, Guoqiang Zhong, and Yongjian Gu, "Quantum Recurrent Neural Networks for Sequential Learning", arXiv:2302.03244, (2023).
[879] Xuexin Xu and M. Ansari, "Parasitic-Free Gate: An Error-Protected Cross-Resonance Switch in Weakly Tunable Architectures", Physical Review Applied 19 2, 024057 (2023).
[880] David Jaz Myers, Hisham Sati, and Urs Schreiber, "Topological Quantum Gates in Homotopy Type Theory", arXiv:2303.02382, (2023).
[881] Refik Mansuroglu, Timo Eckstein, Ludwig Nützel, Samuel A. Wilkinson, and Michael J. Hartmann, "Variational Hamiltonian simulation for translational invariant systems via classical pre-processing", Quantum Science and Technology 8 2, 025006 (2023).
[882] Yuchen Guo and Shuo Yang, "Noise effects on purity and quantum entanglement in terms of physical implementability", npj Quantum Information 9, 11 (2023).
[883] Harper R. Grimsley, George S. Barron, Edwin Barnes, Sophia E. Economou, and Nicholas J. Mayhall, "Adaptive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes and barren plateaus", npj Quantum Information 9, 19 (2023).
[884] Nicolas Heurtel, Andreas Fyrillas, Grégoire de Gliniasty, Raphaël Le Bihan, Sébastien Malherbe, Marceau Pailhas, Eric Bertasi, Boris Bourdoncle, Pierre-Emmanuel Emeriau, Rawad Mezher, Luka Music, Nadia Belabas, Benoît Valiron, Pascale Senellart, Shane Mansfield, and Jean Senellart, "Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing", Quantum 7, 931 (2023).
[885] Tzu-Ching Yen, Aadithya Ganeshram, and Artur F. Izmaylov, "Deterministic improvements of quantum measurements with grouping of compatible operators, non-local transformations, and covariance estimates", npj Quantum Information 9, 14 (2023).
[886] Jonas Richter, Oliver Lunt, and Arijeet Pal, "Transport and entanglement growth in long-range random Clifford circuits", Physical Review Research 5 1, L012031 (2023).
[887] Zhi Li, Shengqi Sang, and Timothy H. Hsieh, "Entanglement dynamics of noisy random circuits", Physical Review B 107 1, 014307 (2023).
[888] Qiushi Liu, Zihao Hu, Haidong Yuan, and Yuxiang Yang, "Optimal Strategies of Quantum Metrology with a Strict Hierarchy", Physical Review Letters 130 7, 070803 (2023).
[889] Ariel Shlosberg, Andrew J. Jena, Priyanka Mukhopadhyay, Jan F. Haase, Felix Leditzky, and Luca Dellantonio, "Adaptive estimation of quantum observables", Quantum 7, 906 (2023).
[890] Daniel McNulty, Filip B. Maciejewski, and Michał Oszmaniec, "Estimating Quantum Hamiltonians via Joint Measurements of Noisy Noncommuting Observables", Physical Review Letters 130 10, 100801 (2023).
[891] Bruno Murta, Pedro M. Q. Cruz, and J. Fernández-Rossier, "Preparing valence-bond-solid states on noisy intermediate-scale quantum computers", Physical Review Research 5 1, 013190 (2023).
[892] Hiroshi Ohno, "Quantum Bayesian inference for parameter estimation using quantum generative model", Quantum Information Processing 22 1, 52 (2023).
[893] Niels Gleinig, Tobias Rohner, and Torsten Hoefler, "Approximate Reversible Circuits for NISQ-Era Quantum Computers", arXiv:2302.01066, (2023).
[894] Stefano Martina, Stefano Gherardini, and Filippo Caruso, "Machine learning classification of non-Markovian noise disturbing quantum dynamics", Physica Scripta 98 3, 035104 (2023).
[895] Erik Lötstedt, Lidong Wang, Ryuhei Yoshida, Youyuan Zhang, and Kaoru Yamanouchi, "Error-mitigated quantum computing of Heisenberg spin chain dynamics", Physica Scripta 98 3, 035111 (2023).
[896] Zeqiao Zhou, Yuxuan Du, Xinmei Tian, and Dacheng Tao, "QAOA-in-QAOA: Solving Large-Scale MaxCut Problems on Small Quantum Machines", Physical Review Applied 19 2, 024027 (2023).
[897] George Watkins, Hoang Minh Nguyen, Varun Seshadri, Keelan Watkins, Steven Pearce, Hoi-Kwan Lau, and Alexandru Paler, "A High Performance Compiler for Very Large Scale Surface Code Computations", arXiv:2302.02459, (2023).
[898] Manpreet Singh Jattana, Fengping Jin, Hans De Raedt, and Kristel Michielsen, "Improved Variational Quantum Eigensolver Via Quasidynamical Evolution", Physical Review Applied 19 2, 024047 (2023).
[899] Thomas Ayral, Pauline Besserve, Denis Lacroix, and Edgar Andres Ruiz Guzman, "Quantum computing with and for many-body physics", arXiv:2303.04850, (2023).
[900] P. V. Sriluckshmy, Vicente Pina-Canelles, Mario Ponce, Manuel G. Algaba, Fedor Šimkovic, and Martin Leib, "Optimal, hardware native decomposition of parameterized multi-qubit Pauli gates", arXiv:2303.04498, (2023).
[901] Kai Luo, Wenhui Huang, Ziyu Tao, Libo Zhang, Yuxuan Zhou, Ji Chu, Wuxin Liu, Biying Wang, Jiangyu Cui, Song Liu, Fei Yan, Man-Hong Yung, Yuanzhen Chen, Tongxing Yan, and Dapeng Yu, "Experimental Realization of Two Qutrits Gate with Tunable Coupling in Superconducting Circuits", Physical Review Letters 130 3, 030603 (2023).
[902] Peng Lv, Shijie Wei, Hao-Nan Xie, and Guilu Long, "QCSH: A full quantum computer nuclear shell-model package", Science China Physics, Mechanics, and Astronomy 66 4, 240311 (2023).
[903] Tahereh Abad, Anton Frisk Kockum, and Göran Johansson, "Impact of decoherence on the fidelity of quantum gates leaving the computational subspace", arXiv:2302.13885, (2023).
[904] Chong Ying, Bin Cheng, Youwei Zhao, He-Liang Huang, Yu-Ning Zhang, Ming Gong, Yulin Wu, Shiyu Wang, Futian Liang, Jin Lin, Yu Xu, Hui Deng, Hao Rong, Cheng-Zhi Peng, Man-Hong Yung, Xiaobo Zhu, and Jian-Wei Pan, "Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits", Physical Review Letters 130 11, 110601 (2023).
[905] Andrew Litteken, Lennart Maximilian Seifert, Jason D. Chadwick, Natalia Nottingham, Tanay Roy, Ziqian Li, David Schuster, Frederic T. Chong, and Jonathan M. Baker, "Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level Architectures", arXiv:2303.14069, (2023).
[906] Robert de Keijzer, Oliver Tse, and Servaas Kokkelmans, "Pulse based Variational Quantum Optimal Control for hybrid quantum computing", Quantum 7, 908 (2023).
[907] Michele Grossi, Oriel Kiss, Francesco De Luca, Carlo Zollo, Ian Gremese, and Antonio Mandarino, "Finite-size criticality in fully connected spin models on superconducting quantum hardware", Physical Review E 107 2, 024113 (2023).
[908] James Mills, Debasis Sadhukhan, and Elham Kashefi, "Simplifying errors by symmetry and randomisation", arXiv:2303.02712, (2023).
[909] Kevin J. Sung, Marko J. Rančić, Olivia T. Lanes, and Nicholas T. Bronn, "Simulating Majorana zero modes on a noisy quantum processor", Quantum Science and Technology 8 2, 025010 (2023).
[910] David Rodríguez Pérez, Paul Varosy, Ziqian Li, Tanay Roy, Eliot Kapit, and David Schuster, "Error-Divisible Two-Qubit Gates", Physical Review Applied 19 2, 024043 (2023).
[911] Denis Stanev, Nicolò Spagnolo, and Fabio Sciarrino, "Deterministic optimal quantum cloning via a quantum-optical neural network", Physical Review Research 5 1, 013139 (2023).
[912] Gabriele Cenedese, Maria Bondani, Dario Rosa, and Giuliano Benenti, "Generation of Pseudo-Random Quantum States on Actual Quantum Processors", arXiv:2302.04101, (2023).
[913] Waldemir Cambiucci, Regina Melo Silveira, and Wilson Vicente Ruggiero, "Hypergraphic partitioning of quantum circuits for distributed quantum computing", arXiv:2301.05759, (2023).
[914] Chufan Lyu, Xusheng Xu, Man-Hong Yung, and Abolfazl Bayat, "Symmetry enhanced variational quantum spin eigensolver", Quantum 7, 899 (2023).
[915] Zi-Jian Zhang, Jinzhao Sun, Xiao Yuan, and Man-Hong Yung, "Low-Depth Hamiltonian Simulation by an Adaptive Product Formula", Physical Review Letters 130 4, 040601 (2023).
[916] Carla Rodríguez, Dario Rosa, and Jan Olle, "AI-discovery of a new charging protocol in a micromaser quantum battery", arXiv:2301.09408, (2023).
[917] Carlos A. Riofrío, Oliver Mitevski, Caitlin Jones, Florian Krellner, Aleksandar Vučković, Joseph Doetsch, Johannes Klepsch, Thomas Ehmer, and Andre Luckow, "A performance characterization of quantum generative models", arXiv:2301.09363, (2023).
[918] Kaifeng Bu, Dax Enshan Koh, Lu Li, Qingxian Luo, and Yaobo Zhang, "Effects of quantum resources and noise on the statistical complexity of quantum circuits", Quantum Science and Technology 8 2, 025013 (2023).
[919] Kübra Yeter-Aydeniz, Zachary Parks, Aadithya Nair Thekkiniyedath, Erik Gustafson, Alexander F. Kemper, Raphael C. Pooser, Yannick Meurice, and Patrick Dreher, "Measuring qubit stability in a gate-based NISQ hardware processor", Quantum Information Processing 22 2, 96 (2023).
[920] Pere Mujal, Rodrigo Martínez-Peña, Gian Luca Giorgi, Miguel C. Soriano, and Roberta Zambrini, "Time-series quantum reservoir computing with weak and projective measurements", npj Quantum Information 9, 16 (2023).
[921] Daniel Azses, Maxime Dupont, Bram Evert, Matthew J. Reagor, and Emanuele G. Dalla Torre, "Navigating the noise-depth tradeoff in adiabatic quantum circuits", Physical Review B 107 12, 125127 (2023).
[922] Xi Wu, Qingyi Li, Zhiqiang Li, Donghan Yang, Hui Yang, Wenjie Pan, Marek Perkowski, and Xiaoyu Song, "Circuit optimization of Grover quantum search algorithm", Quantum Information Processing 22 1, 69 (2023).
[923] Fernando A. Calderon-Vargas, Timothy Proctor, Kenneth Rudinger, and Mohan Sarovar, "Quantum circuit debugging and sensitivity analysis via local inversions", Quantum 7, 921 (2023).
[924] Kazuki Ikeda, "Quantum extensive-form games", Quantum Information Processing 22 1, 66 (2023).
[925] Gilchan Park, Kun Zhang, Kwangmin Yu, and Vladimir Korepin, "Quantum multi-programming for Grover's search", Quantum Information Processing 22 1, 54 (2023).
[926] A. Avkhadiev, P. E. Shanahan, and R. D. Young, "Strategies for quantum-optimized construction of interpolating operators in classical simulations of lattice quantum field theories", Physical Review D 107 5, 054507 (2023).
[927] Raoul Heese, Thore Gerlach, Sascha Mücke, Sabine Müller, Matthias Jakobs, and Nico Piatkowski, "Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning", arXiv:2301.09138, (2023).
[928] Victoria J. Wright and Ravi Kunjwal, "Contextuality in composite systems: the role of entanglement in the Kochen-Specker theorem", Quantum 7, 900 (2023).
[929] Y. F. Zolotarev, I. A. Luchnikov, J. A. López-Saldívar, A. K. Fedorov, and E. O. Kiktenko, "Continuous Monitoring for Noisy Intermediate-Scale Quantum Processors", Physical Review Applied 19 1, 014027 (2023).
[930] Weiyuan Gong, Si Jiang, and Dong-Ling Deng, "No-go theorem and a universal decomposition strategy for quantum channel compilation", Physical Review Research 5 1, 013060 (2023).
[931] Yasuo Oda, Dennis Lucarelli, Kevin Schultz, B. David Clader, and Gregory Quiroz, "Optimally Band-Limited Noise Filtering for Single-Qubit Gates", Physical Review Applied 19 1, 014062 (2023).
[932] Davide Rattacaso, Gianluca Passarelli, and Procolo Lucignano, "High-accuracy Hamiltonian learning via delocalized quantum state evolutions", Quantum 7, 905 (2023).
[933] Seonghoon Choi, Ignacio Loaiza, and Artur F. Izmaylov, "Fluid fermionic fragments for optimizing quantum measurements of electronic Hamiltonians in the variational quantum eigensolver", Quantum 7, 889 (2023).
[934] Zachary Morrell, Marc Vuffray, Andrey Y. Lokhov, Andreas Bärtschi, Tameem Albash, and Carleton Coffrin, "Signatures of Open and Noisy Quantum Systems in Single-Qubit Quantum Annealing", Physical Review Applied 19 3, 034053 (2023).
[935] Hongye Yu, Yusheng Zhao, and Tzu-Chieh Wei, "Simulating large-size quantum spin chains on cloud-based superconducting quantum computers", Physical Review Research 5 1, 013183 (2023).
[936] Irtaza Khalid, Carrie A. Weidner, Edmond A. Jonckheere, Sophie G. Shermer, and Frank C. Langbein, "Statistically characterizing robustness and fidelity of quantum controls and quantum control algorithms", Physical Review A 107 3, 032606 (2023).
[937] Jun Qi, Chao-Han Huck Yang, Pin-Yu Chen, and Min-Hsiu Hsieh, "Theoretical error performance analysis for variational quantum circuit based functional regression", npj Quantum Information 9, 4 (2023).
[938] Conrad Strydom and Mark Tame, "Measurement-based interleaved randomised benchmarking using IBM processors", Physica Scripta 98 2, 025106 (2023).
[939] Matt Menickelly, Yunsoo Ha, and Matthew Otten, "Latency considerations for stochastic optimizers in variational quantum algorithms", Quantum 7, 949 (2023).
[940] Caroline E. P. Robin and Martin J. Savage, "Quantum Simulations in Effective Model Spaces (I): Hamiltonian Learning-VQE using Digital Quantum Computers and Application to the Lipkin-Meshkov-Glick Model", arXiv:2301.05976, (2023).
[941] Chenfeng Cao, Yunlong Yu, Zipeng Wu, Nic Shannon, Bei Zeng, and Robert Joynt, "Mitigating algorithmic errors in quantum optimization through energy extrapolation", Quantum Science and Technology 8 1, 015004 (2023).
[942] Bujiao Wu, Jinzhao Sun, Qi Huang, and Xiao Yuan, "Overlapped grouping measurement: A unified framework for measuring quantum states", Quantum 7, 896 (2023).
[943] Alexander Gresch and Martin Kliesch, "Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping", arXiv:2301.03385, (2023).
[944] Siyuan Niu and Aida Todri-Sanial, "Enabling Multi-programming Mechanism for Quantum Computing in the NISQ Era", Quantum 7, 925 (2023).
[945] Saverio Monaco, Oriel Kiss, Antonio Mandarino, Sofia Vallecorsa, and Michele Grossi, "Quantum phase detection generalization from marginal quantum neural network models", Physical Review B 107 8, L081105 (2023).
[946] Casper Gyurik, van Vreumingen, and Vedran Dunjko, "Structural risk minimization for quantum linear classifiers", Quantum 7, 893 (2023).
[947] Takuya Okuda, "Schwinger model on an interval: Analytic results and DMRG", Physical Review D 107 5, 054506 (2023).
[948] Javier Sanchez-Rivero, Daniel Talaván, Jose Garcia-Alonso, Antonio Ruiz-Cortés, and Juan Manuel Murillo, "Automatic Generation of an Efficient Less-Than Oracle for Quantum Amplitude Amplification", arXiv:2303.07120, (2023).
[949] Allan Wing-Bocanegra and Salvador E. Venegas-Andraca, "Circuit implementation of discrete-time quantum walks via the shunt decomposition method", Quantum Information Processing 22 3, 146 (2023).
[950] Hiroshi Ohno, "A direct error correction method for quantum machine learning", Quantum Information Processing 22 2, 119 (2023).
[951] Michael Fellner, Kilian Ender, Roeland ter Hoeven, and Wolfgang Lechner, "Parity Quantum Optimization: Benchmarks", Quantum 7, 952 (2023).
[952] Kilian Ender, Roeland ter Hoeven, Benjamin E. Niehoff, Maike Drieb-Schön, and Wolfgang Lechner, "Parity Quantum Optimization: Compiler", Quantum 7, 950 (2023).
[953] Israel F. Araujo, Daniel K. Park, Teresa B. Ludermir, Wilson R. Oliveira, Francesco Petruccione, and Adenilton J. da Silva, "Configurable sublinear circuits for quantum state preparation", Quantum Information Processing 22 2, 123 (2023).
[954] Raphael César de Souza Pimenta and Anibal Thiago Bezerra, "Revisiting semiconductor bulk hamiltonians using quantum computers", Physica Scripta 98 4, 045804 (2023).
[955] Niels M. P. Neumann, Paolo B. U. L. de Heer, and Frank Phillipson, "Quantum reinforcement learning", Quantum Information Processing 22 2, 125 (2023).
[956] Siwei Huang, Yan Chang, Yusheng Lin, and Shibin Zhang, "Hybrid quantum-classical convolutional neural networks with privacy quantum computing", Quantum Science and Technology 8 2, 025015 (2023).
[957] Mingxia Huo and Ying Li, "Error-resilient Monte Carlo quantum simulation of imaginary time", Quantum 7, 916 (2023).
[958] Zhimin He, Xuefen Zhang, Chuangtao Chen, Zhiming Huang, Yan Zhou, and Haozhen Situ, "A GNN-based predictor for quantum architecture search", Quantum Information Processing 22 2, 128 (2023).
[959] Bujiao Wu, Xiaoyu He, Shuai Yang, Lifu Shou, Guojing Tian, Jialin Zhang, and Xiaoming Sun, "Optimization of CNOT circuits on limited-connectivity architecture", Physical Review Research 5 1, 013065 (2023).
[960] Javier Sanchez-Rivero, Daniel Talaván, Jose Garcia-Alonso, Antonio Ruiz-Cortés, and Juan Manuel Murillo, "Some Initial Guidelines for Building Reusable Quantum Oracles", arXiv:2303.14959, (2023).
[961] Pietro Torta, Glen B. Mbeng, Carlo Baldassi, Riccardo Zecchina, and Giuseppe E. Santoro, "Quantum approximate optimization algorithm applied to the binary perceptron", Physical Review B 107 9, 094202 (2023).
[962] Vicente Moret-Bonillo, Eduardo Mosqueira-Rey, Samuel Magaz-Romero, and Diego Alvarez-Estevez, "Hybrid Classic-Quantum Computing for Staging of Invasive Ductal Carcinoma of Breast", arXiv:2303.10142, (2023).
[963] Justyna P. Zwolak and Jacob M. Taylor, "Colloquium: Advances in automation of quantum dot devices control", Reviews of Modern Physics 95 1, 011006 (2023).
[964] Marko J. Rančić, "Noisy intermediate-scale quantum computing algorithm for solving an n -vertex MaxCut problem with log(n ) qubits", Physical Review Research 5 1, L012021 (2023).
[965] Edgar Andres Ruiz Guzman and Denis Lacroix, "Restoring broken symmetries using quantum search "oracles"", Physical Review C 107 3, 034310 (2023).
[966] Felix Truger, Johanna Barzen, Marvin Bechtold, Martin Beisel, Frank Leymann, Alexander Mandl, and Vladimir Yussupov, "Warm-Starting and Quantum Computing: A Systematic Mapping Study", arXiv:2303.06133, (2023).
[967] Alexander Geng, Ali Moghiseh, Claudia Redenbach, and Katja Schladitz, "Improved FRQI on superconducting processors and its restrictions in the NISQ era", Quantum Information Processing 22 2, 104 (2023).
[968] Willie Huang, "Analyses of the viability of automating the quantum circuit construction of Grover Oracle for executing wildcard searches on NISQ processors", arXiv:2303.08898, (2023).
[969] Joanna Wiśniewska and Marek Sawerwain, "Variational Quantum Eigensolver for Classification in Credit Sales Risk", arXiv:2303.02797, (2023).
[970] Teiko Heinosaari, Daniel Reitzner, and Alessandro Toigo, "Anticipative measurements in hybrid quantum-classical computation", Physical Review A 107 3, 032612 (2023).
[971] Xiao-Wei Wang, Wen-Hao Zhou, Yu-Xuan Fu, Jun Gao, Yong-Heng Lu, Yi-Jun Chang, Lu-Feng Qiao, Ruo-Jing Ren, Ze-Kun Jiang, Zhi-Qiang Jiao, Georgios M. Nikolopoulos, and Xian-Min Jin, "Experimental Boson Sampling Enabling Cryptographic One-Way Function", Physical Review Letters 130 6, 060802 (2023).
[972] Anette Messinger, Michael Fellner, and Wolfgang Lechner, "Constant Depth Code Deformations in the Parity Architecture", arXiv:2303.08602, (2023).
[973] Jin-Min Liang, Qiao-Qiao Lv, Zhi-Xi Wang, and Shao-Ming Fei, "Assisted quantum simulation of open quantum systems", arXiv:2302.13299, (2023).
[974] Ana Cruz, Alexandre Madeira, and LuÂ-Ã-s Soares Barbosa, "Paraconsistent Transition Systems", arXiv:2303.13254, (2023).
[975] Jirawat Tangpanitanon, Supanut Thanasilp, Marc-Antoine Lemonde, Ninnat Dangniam, and Dimitris G. Angelakis, "Signatures of a sampling quantum advantage in driven quantum many-body systems", Quantum Science and Technology 8 2, 025019 (2023).
The above citations are from SAO/NASA ADS (last updated successfully 2023-03-31 02:13:28). The list may be incomplete as not all publishers provide suitable and complete citation data.
Could not fetch Crossref cited-by data during last attempt 2023-03-31 02:13:09: cURL error 28: Operation timed out after 10000 milliseconds with 766815 bytes received
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.
Pingback: January 9, 2019 – NRS Notes
Pingback: IBM and Quantum Computing – Linux Cluster
Pingback: Noisy Quantum Computers Could Be Good for Chemistry Problems – On.Share.co.ve
Pingback: Remote connections? Detangling entanglement in quantum physics - Phys.Org - Todaytells
Pingback: Noisy Quantum Computers Could Be Good for Chemistry Problems -
Pingback: Quantum Computing Beyond the Lab – Quantumly
Pingback: A caccia di applicazioni utili per i computer quantistici – Centro Studi Panzarella
Pingback: What is quantum entanglement? - Cosmos Magazine
Pingback: Quantum codes for a Quantum leap – IITM TECH TALK
Pingback: My experience with TensorFlow Quantum – Google News App
Pingback: La supremazia quantistica dimostrata con i fotoni – Chiara Sabelli
Pingback: How does a Quantum Computer work? - Science and Engineering
Pingback: Stairway to Quantum | SIGARCH
Pingback: 私を物理の世界に誘い込んだ本たち | | Piece of Color
Pingback: What is quantum entanglement?
Pingback: Чим квантові комп’ютери кращі за звичайні і скільки їх ще чекати — VEXPRESS
Pingback: Explore quantum computational advantage with Xanadu’s Borealis device on Amazon Braket | AWS Quantum Computing Blog