Quantum Computing in the NISQ era and beyond

John Preskill

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.

► BibTeX data

► References

[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41, 303-332 (1999), 10.1137/​S0036144598347011.
https://doi.org/10.1137/S0036144598347011

[2] A. P. Lund, M. J. Bremner, and T. C. Ralph, Quantum sampling problems, BosonSampling, and quantum supremacy, npj Quantum Information 3: 15 (2017), arXiv:1702.03061, 10.1038/​s41534-017-0018-2.
https://doi.org/10.1038/s41534-017-0018-2
arXiv:1702.03061

[3] A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549, 203-209 (2017), 10.1038/​nature23458.
https://doi.org/10.1038/nature23458

[4] S. P. Jordan, Quantum algorithm zoo, http:/​/​math.nist.gov/​quantum/​zoo/​.
http:/​/​math.nist.gov/​quantum/​zoo/​

[5] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information, 15023 (2016), arXiv:1511.04206, 10.1038/​npjqi.2015.23.
https://doi.org/10.1038/npjqi.2015.23
arXiv:1511.04206

[6] L. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325 (1997), arXiv:quant-ph/​9706033, 10.1103/​PhysRevLett.79.325.
https://doi.org/10.1103/PhysRevLett.79.325
arXiv:quant-ph/9706033

[7] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26, 1510-1523 (1997), arXiv:quant-ph/​9701001, 10.1137/​S0097539796300933.
https://doi.org/10.1137/S0097539796300933
arXiv:quant-ph/9701001

[8] R. B. Laughlin and D. Pines, The theory of everything, PNAS 97, 28-31 (2000), 10.1073/​pnas.97.1.28.
https://doi.org/10.1073/pnas.97.1.28

[9] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Physics 21, 467-488 (1982).

[10] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Proceedings of Symposia in Applied Matthematics 68 (2010), arXiv:0904.2557.
arXiv:0904.2557

[11] S. Boixo, S. V. Isakov, V. N. Smelyansky, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nature Physics 14, 595-600 (2018), arXiv:1608.00263 (2016), 10.1038/​s41567-018-0124-x.
https://doi.org/10.1038/s41567-018-0124-x
arXiv:1608.00263

[12] S. Aaronson and L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, arXiv:1612.05903 (2017).
arXiv:1612.05903

[13] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, and R. Wisnieff, Breaking the 49-qubit barrier in the simulation of quantum circuits, arXiv:1710.05867 (2017).
arXiv:1710.05867

[14] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits, Phys. Rev. Lett. 117, 060504 (2016), arXiv:1512.04600, 10.1103/​PhysRevLett.117.060504.
https://doi.org/10.1103/PhysRevLett.117.060504
arXiv:1512.04600

[15] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508, 500-503 (2014), arXiv:1402.4848, 10.1038/​nature13171.
https://doi.org/10.1038/nature13171
arXiv:1402.4848

[16] D. J. Bernstein, J. Buchmann, E. Dahmen, editors, Post-Quantum Cryptography, Springer (2009), 10.1007/​978-3-540-88702-7.
https://doi.org/10.1007/978-3-540-88702-7

[17] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, and A. Zeilinger, Using quantum key distribution for cryptographic purposes: a survey, Theoretical Computer Science 560, 62-81 (2014), arXiv:quant-ph/​0701168, 10.1016/​j.tcs.2014.09.018.
https://doi.org/10.1016/j.tcs.2014.09.018
arXiv:quant-ph/0701168

[18] S. Muralidharan, L. Li, J. Kim, N Lütkenhaus, M. D. Lukin, and L. Jiang, Efficient long distance quantum communication, Scientific Reports 6, 20463 (2016), arXiv:1509.08435, 10.1038/​srep20463.
https://doi.org/10.1038/srep20463
arXiv:1509.08435

[19] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, M. J. Stevens, and L. K. Shalm, Experimentally generated randomness certified by the impossibility of superluminal signals, Nature 556, 223-226 (2018), arXiv:1803.06219, 10.1038/​s41586-018-0019-0.
https://doi.org/10.1038/s41586-018-0019-0
arXiv:1803.06219

[20] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick, Certifiable randomness from a single quantum device, arXiv:1804.00640 (2018).
arXiv:1804.00640

[21] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017), arXiv:1611.04691, 10.1103/​RevModPhys.89.035002.
https://doi.org/10.1103/RevModPhys.89.035002
arXiv:1611.04691

[22] J. Preskill, Quantum computing and the entanglement frontier, 25th Solvay Conference on Physics (2011), arXiv:1203.5813.
arXiv:1203.5813

[23] S. Khot, Hardness of approximation, Proceedings of the International Congress of Mathematicians (2014).

[24] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028 (2014).
arXiv:1411.4028

[25] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms, New J. Phys. 18, 023023 (2016), arXiv:1509.04279, 10.1038/​ncomms5213.
https://doi.org/10.1038/ncomms5213
arXiv:1509.04279

[26] D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, Journal of the ACM 51, 385-463 (2004), arXiv:cs/​0111050, 10.1145/​990308.990310.
https://doi.org/10.1145/990308.990310
arXiv:cs/0111050

[27] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436-444 (2015), 10.1038/​nature14539.
https://doi.org/10.1038/nature14539

[28] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining and detecting quantum speedup, Science 345, 420-424 (2014), 10.1126/​science.1252319.
https://doi.org/10.1126/science.1252319

[29] S. Mandrà, H. G. Katzgraber, and C. Thomas, The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again), Quantum Sci. Technol. 2, 038501 (2017), arXiv:1703.00622, 10.1088/​2058-9565/​aa7877.
https://doi.org/10.1088/2058-9565/aa7877
arXiv:1703.00622

[30] T. Albash and D. A. Lidar, Adiabatic quantum computing, Rev. Mod. Phys. 90, 015002 (2018), arXiv:1611.04471, 10.1103/​RevModPhys.90.015002.
https://doi.org/10.1103/RevModPhys.90.015002
arXiv:1611.04471

[31] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, SIAM Rev. 50, 755-787 (2008), arXiv:quant-ph/​0405098.
arXiv:quant-ph/0405098

[32] S. Bravyi, D. DiVincenzo, R. I. Oliveira, and B. M. Terhal, The complexity of stoquastic local Hamiltonian problems, Quant. Inf. Comp. 8, 0361-0385 (2008), arXiv:quant-ph/​0606140.
arXiv:quant-ph/0606140

[33] M. Jarret, S. P. Jordan, and B. Lackey, Adiabatic optimization versus diffusion Monte Carlo, Phys. Rev. A 94, 042318 (2016), arXiv:1607.03389, 10.1103/​PhysRevA.94.042318.
https://doi.org/10.1103/PhysRevA.94.042318
arXiv:1607.03389

[34] A. D. King, J. Carrasquilla, I. Ozfidan, J. Raymond, E. Andriyash, A. Berkley, M. Reis, T. M. Lanting, R. Harris, G. Poulin-Lamarre, A. Yu. Smirnov, C. Rich, F. Altomare, P. Bunyk, J. Whittaker, L. Swenson, E. Hoskinson, Y. Sato, M. Volkmann, E. Ladizinsky, M. Johnson, J. Hilton, and M. H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits, arXiv:1803.02047 (2018).
arXiv:1803.02047

[35] I. H. Kim, Noise-resilient preparation of quantum many-body ground states, arXiv:1703.00032 (2017).
arXiv:1703.00032

[36] I. H. Kim and B. Swingle, Robust entanglement renormalization on a noisy quantum computer, arXiv:1711.07500 (2017).
arXiv:1711.07500

[37] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549, 195-202 (2017), arXiv:1611.09347, 10.1038/​nature23474.
https://doi.org/10.1038/nature23474
arXiv:1611.09347

[38] S. Aaronson, Read the fine print, Nature Physics 11, 291-293 (2015), 10.1038/​nphys3272.
https://doi.org/10.1038/nphys3272

[39] X. Gao, Z. Zhang, and L. Duan, An efficient quantum algorithm for generative machine learning, arXiv:1711.02038 (2017).
arXiv:1711.02038

[40] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009), arXiv:0811.3171, 10.1103/​PhysRevLett.103.150502.
https://doi.org/10.1103/PhysRevLett.103.150502
arXiv:0811.3171

[41] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Preconditioned quantum linear system algorithm, Phys. Rev. Lett. 110, 250504 (2013), arXiv:1301.2340, 10.1103/​PhysRevLett.110.250504.
https://doi.org/10.1103/PhysRevLett.110.250504
arXiv:1301.2340

[42] A. Montanaro and S. Pallister, Quantum algorithms and the finite element method, Phys. Rev. A 93, 032324 (2016), arXiv:1512.05903, 10.1103/​PhysRevA.93.032324.
https://doi.org/10.1103/PhysRevA.93.032324
arXiv:1512.05903

[43] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum algorithm for simulating the wave equation, arXiv:1711.05394 (2017).
arXiv:1711.05394

[44] I. Kerenidis and A. Prakash, Quantum recommendation systems, arXiv:1603.08675 (2016).
arXiv:1603.08675

[45] E. Tang, A quantum-inspired classical algorithm for recommendation systems, Electronic Colloquium on Computational Complexity, TR18-12 (2018).

[46] F. G. S. L. Brandão and K. Svore, Quantum speed-ups for semidefinite programming, Proceedings of FOCS 2017, arXiv:1609.05537 (2017).
arXiv:1609.05537

[47] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and X. Wu, Exponential quantum speed-ups for semidefinite programming with applications to quantum learning, arXiv:1710.02581 (2017).
arXiv:1710.02581

[48] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction mechanisms on quantum computers, PNAS 117, 7555-7560 (2017), arXiv:1605.03590, 10.1073/​pnas.1619152114.
https://doi.org/10.1073/pnas.1619152114
arXiv:1605.03590

[49] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer, Solving strongly correlated electron models on a quantum computer, Phys. Rev. A 92, 062310 (2015), arXiv:1506.05135, 10.1103/​PhysRevA.92.062318.
https://doi.org/10.1103/PhysRevA.92.062318
arXiv:1506.05135

[50] J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, A. Aspuru-Guzik, Quantum information and computation for chemistry, NSF Workshop Report, arXiv:1706.05413 (2017).
arXiv:1706.05413

[51] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V Vuletić, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551, 579-584 (2017), arXiv:1707.04344, 10.1038/​nature24622.
https://doi.org/10.1038/nature24622
arXiv:1707.04344

[52] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, arXiv:1708.01044 (2017), 10.1038/​nature24654.
https://doi.org/10.1038/nature24654
arXiv:1708.01044

[53] E. T. Campbell, B. M. Terhal, and C. Vuillot, The steep road towards robust and universal quantum computation, arXiv:1612.07330 (2016).
arXiv:1612.07330

[54] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A 94, 052325 (2016), arXiv:1512:01098, 10.1103/​PhysRevA.94.052325.
https://doi.org/10.1103/PhysRevA.94.052325
arXiv:1512

[55] J. Combes, C. Granade, C. Ferrie, and S. T. Flammia, Logical randomized benchmarking, arXiv:1702.03688 (2017).
arXiv:1702.03688

[56] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012), arXiv:1208.0928, 10.1103/​PhysRevA.86.032324.
https://doi.org/10.1103/PhysRevA.86.032324
arXiv:1208.0928

[57] S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1, 15001 (2015), arXiv:1501.02813, 10.1038/​npjqi.2015.1.
https://doi.org/10.1038/npjqi.2015.1
arXiv:1501.02813

Cited by

[1] Taewan Kim and Byung-Soo Choi, "Efficient decomposition methods for controlled-R<SUB>n</SUB> using a single ancillary qubit", Scientific Reports 8, 5445 (2018).

[2] Maria Kieferova, Artur Scherer, and Dominic Berry, "Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series", arXiv:1805.00582 (2018).

[3] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo, "Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions", Physical Review Applied 9 4, 044036 (2018).

[4] Stefano Gandolfi, "Cloud Quantum Computing Tackles Simple Nucleus", Physics Online Journal 11, 51 (2018).

[5] Damian S. Steiger, Thomas Häner, and Matthias Troyer, "Advantages of a modular high-level quantum programming framework", arXiv:1806.01861 (2018).

[6] Alexandru Paler, Alwin Zulehner, and Robert Wille, "NISQ circuit compilers: search space structure and heuristics", arXiv:1806.07241 (2018).

[7] Gushu Li, Yufei Ding, and Yuan Xie, "Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices", arXiv:1809.02573 (2018).

[8] Sam Morley-Short, Mercedes Gimeno-Segovia, Terry Rudolph, and Hugo Cable, "Loss-tolerant teleportation on large stabilizer states", arXiv:1807.08729 (2018).

[9] Natalie Klco and Martin Savage, "Digitization of Scalar Fields for NISQ-Era Quantum Computing", arXiv:1808.10378 (2018).

[10] Dorit Aharonov and Leo Zhou, "Hamiltonian sparsification and gap-simulations", arXiv:1804.11084 (2018).

[11] Matthew Otten and Stephen Gray, "Accounting for Errors in Quantum Algorithms via Individual Error Reduction", arXiv:1804.06969 (2018).

[12] Xavier Waintal, "What determines the ultimate precision of a quantum computer?", arXiv:1702.07688 (2017).

[13] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in Hamiltonian simulation", arXiv:1808.03623 (2018).

[14] Xi Chen, Bin Cheng, Xinfang Nie, Nengkun Yu, Man-Hong Yung, and Xinhua Peng, "Experimental Cryptographic Verification for Near-Term Quantum Cloud Computing", arXiv:1808.07375 (2018).

[15] Oscar Higgott, Daochen Wang, and Stephen Brierley, "Variational Quantum Computation of Excited States", arXiv:1805.08138 (2018).

[16] Wolfgang Lechner, "Quantum Approximate Optimization with Parallelizable Gates", arXiv:1802.01157 (2018).

[17] Shusen Liu, Yinan Li, and Runyao Duan, "Distinguishing Unitary Gates on the IBM Quantum Processor", arXiv:1807.00429 (2018).

[18] David P. Franke, James S. Clarke, Lieven M. K. Vandersypen, and Menno Veldhorst, "Rent's rule and extensibility in quantum computing", arXiv:1806.02145 (2018).

[19] Iskren Vankov, Daniel Mills, Petros Wallden, and Elham Kashefi, "Methods for Classically Simulating Noisy Networked Quantum Architectures", arXiv:1803.04167 (2018).

[20] Ali Mortezapour and Rosario Lo Franco, "Protecting quantum resources via frequency modulation of qubits in leaky cavities", Scientific Reports 8, 14304 (2018).

[21] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev, "Community Detection Across Emerging Quantum Architectures", arXiv:1810.07765 (2018).

[22] Tameem Albash, Victor Martin-Mayor, and Itay Hen, "Analog Errors in Ising Machines", arXiv:1806.03744 (2018).

[23] Juan Miguel Arrazola, Thomas R. Bromley, and Patrick Rebentrost, "Quantum approximate optimization with Gaussian boson sampling", Physical Review A 98 1, 012322 (2018).

[24] Jelmer Renema, Valery Shchesnovich, and Raul Garcia-Patron, "Quantum-to-classical transition in many-body bosonic interference", arXiv:1809.01953 (2018).

[25] Zhong-Xiao Man, Yun-Jie Xia, and Rosario Lo Franco, "Temperature effects on quantum non-Markovianity via collision models", Physical Review A 97 6, 062104 (2018).

[26] Patrick Rall, "Simulating Quantum Circuits by Shuffling Paulis", arXiv:1804.05404 (2018).

[27] Alexander McCaskey, Eugene Dumitrescu, Mengsu Chen, Dmitry Lyakh, and Travis S. Humble, "Validating Quantum-Classical Programming Models with Tensor Network Simulations", arXiv:1807.07914 (2018).

[28] Eric Bersin, Michael Walsh, Sara L. Mouradian, Matthew E. Trusheim, Tim Schröder, and Dirk Englund, "Individual Control and Readout of Qubits in a Sub-Diffraction Volume", arXiv:1805.06884 (2018).

[29] Mohammad H. Ansari, "Exact quantization of superconducting circuits", arXiv:1807.00792 (2018).

[30] Zhenyu Cai and Simon Benjamin, "Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels", arXiv:1807.04973 (2018).

[31] Ramis Movassagh, "Efficient unitary paths and quantum computational supremacy: A proof of average-case hardness of Random Circuit Sampling", arXiv:1810.04681 (2018).

[32] Alwin Zulehner and Robert Wille, "Compiling SU(4) Quantum Circuits to IBM QX Architectures", arXiv:1808.05661 (2018).

[33] Keisuke Fujii, "Quantum speedup in stoquastic adiabatic quantum computation", arXiv:1803.09954 (2018).

[34] Yuxuan Du, Tongliang Liu, and Dacheng Tao, "Bayesian Quantum Circuit", arXiv:1805.11089 (2018).

[35] Beni Yoshida and Norman Y. Yao, "Disentangling Scrambling and Decoherence via Quantum Teleportation", arXiv:1803.10772 (2018).

[36] Tameem Albash and Daniel A. Lidar, "Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing", Physical Review X 8 3, 031016 (2018).

[37] Eyal Bairey, Itai Arad, and Netanel H. Lindner, "Learning a local Hamiltonian from local measurements", arXiv:1807.04564 (2018).

[38] Kostyantyn Kechedzhi, Vadim Smelyanskiy, Jarrod R. McClean, Vasil S. Denchev, Masoud Mohseni, Sergei Isakov, Sergio Boixo, Boris Altshuler, and Hartmut Neven, "Efficient population transfer via non-ergodic extended states in quantum spin glass", arXiv:1807.04792 (2018).

[39] Johannes S. Otterbach, "Optimizing Variational Quantum Circuits using Evolution Strategies", arXiv:1806.04344 (2018).

[40] Victor V. Albert, Kyungjoo Noh, Kasper Duivenvoorden, Dylan J. Young, R. T. Brierley, Philip Reinhold, Christophe Vuillot, Linshu Li, Chao Shen, S. M. Girvin, Barbara M. Terhal, and Liang Jiang, "Performance and structure of single-mode bosonic codes", Physical Review A 97 3, 032346 (2018).

[41] V. O. Shkolnikov and Guido Burkard, "Effective Hamiltonian theory of the geometric evolution of quantum systems", arXiv:1810.00193 (2018).

[42] Jinfeng Zeng, Yufeng Wu, Jin-Guo Liu, Lei Wang, and Jiangping Hu, "Learning and Inference on Generative Adversarial Quantum Circuits", arXiv:1808.03425 (2018).

[43] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T. Sornborger, and Patrick J. Coles, "Quantum-assisted quantum compiling", arXiv:1807.00800 (2018).

[44] Ling Hu, Shu-Hao Wu, Weizhou Cai, Yuwei Ma, Xianghao Mu, Yuan Xu, Haiyan Wang, Yipu Song, Dong-Ling Deng, Chang-Ling Zou, and Luyan Sun, "Quantum generative adversarial learning in a superconducting quantum circuit", arXiv:1808.02893 (2018).

[45] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard, "Simulation of quantum circuits by low-rank stabilizer decompositions", arXiv:1808.00128 (2018).

[46] Cupjin Huang, Michael Newman, and Mario Szegedy, "Explicit lower bounds on strong quantum simulation", arXiv:1804.10368 (2018).

[47] Andrew D. King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, Kelly Boothby, Paul I. Bunyk, Colin Enderud, Alexandre Fréchette, Emile Hoskinson, Nicolas Ladizinsky, Travis Oh, Gabriel Poulin-Lamarre, Christopher Rich, Yuki Sato, Anatoly Yu. Smirnov, Loren J. Swenson, Mark H. Volkmann, Jed Whittaker, Jason Yao, Eric Ladizinsky, Mark W. Johnson, Jeremy Hilton, and Mohammad H. Amin, "Observation of topological phenomena in a programmable lattice of 1,800 qubits", Nature 560 7719, 456 (2018).

[48] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and J. I. Cirac, "Analog quantum chemistry simulation", arXiv:1807.09228 (2018).

[49] Daniel C. Hackett, Kiel Howe, Ciaran Hughes, William Jay, Ethan T. Neil, and James N. Simone, "Digitizing Gauge Fields: Lattice Monte Carlo Results for Future Quantum Computers", arXiv:1811.03629 (2018).

[50] A. Garcia-Saez and J. I. Latorre, "Addressing hard classical problems with Adiabatically Assisted Variational Quantum Eigensolvers", arXiv:1806.02287 (2018).

[51] Sergey Novikov, Robert Hinkey, Steven Disseler, James I. Basham, Tameem Albash, Andrew Risinger, David Ferguson, Daniel A. Lidar, and Kenneth M. Zick, "Exploring More-Coherent Quantum Annealing", arXiv:1809.04485 (2018).

[52] Yuval R. Sanders, Guang Hao Low, Artur Scherer, and Dominic W. Berry, "Black-box quantum state preparation without arithmetic", arXiv:1807.03206 (2018).

[53] Valentin Torggler, Philipp Aumann, Helmut Ritsch, and Wolfgang Lechner, "A Quantum N-Queens Solver", arXiv:1803.00735 (2018).

[54] Zhang Jiang, Jarrod McClean, Ryan Babbush, and Hartmut Neven, "Majorana loop stabilizer codes for error correction of fermionic quantum simulations", arXiv:1812.08190 (2018).

[55] Swamit S. Tannu and Moinuddin K. Qureshi, "A Case for Variability-Aware Policies for NISQ-Era Quantum Computers", arXiv:1805.10224 (2018).

[56] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook, "Strawberry Fields: A Software Platform for Photonic Quantum Computing", arXiv:1804.03159 (2018).

[57] Yosi Atia, Yonathan Oren, and Nadav Katz, "Robust Diabatic Quantum Search by Landau-Zener-St\"uckelberg Oscillations", arXiv:1811.04636 (2018).

[58] Brian Swingle and Nicole Yunger Halpern, "Resilience of scrambling measurements", Physical Review A 97 6, 062113 (2018).

[59] Guillaume Verdon, Jason Pye, and Michael Broughton, "A Universal Training Algorithm for Quantum Deep Learning", arXiv:1806.09729 (2018).

[60] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo, "Quantum algorithms to simulate many-body physics of correlated fermions", arXiv:1711.05395 (2017).

[61] Javier Gil Vidal and Dirk Oliver Theis, "Calculus on parameterized quantum circuits", arXiv:1812.06323 (2018).

[62] Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic T. Chong, "Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures", arXiv:1809.01302 (2018).

[63] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio Mezzacapo, Stefan Filipp, and Ivano Tavernelli, "Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions", Physical Review A 98 2, 022322 (2018).

[64] Eric R. Anschuetz, Jonathan P. Olson, Alán Aspuru-Guzik, and Yudong Cao, "Variational Quantum Factoring", arXiv:1808.08927 (2018).

[65] Ning Bao and Junyu Liu, "Quantum algorithms for conformal bootstrap", arXiv:1811.05675 (2018).

[66] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev, "Network Community Detection On Small Quantum Computers", arXiv:1810.12484 (2018).

[67] Suguru Endo, Ying Li, Simon Benjamin, and Xiao Yuan, "Variational quantum simulation of general processes", arXiv:1812.08778 (2018).

[68] John Preskill, "Simulating quantum field theory with a quantum computer", arXiv:1811.10085 (2018).

[69] Kentaro Heya, Yasunari Suzuki, Yasunobu Nakamura, and Keisuke Fujii, "Variational Quantum Gate Optimization", arXiv:1810.12745 (2018).

[70] Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac, "Computational speedups using small quantum devices", Physical Review Letters 121 25, 250501 arXiv:1807.08970 (2018).

[71] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", arXiv:1812.09976 (2018).

[72] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao, "The Expressive Power of Parameterized Quantum Circuits", arXiv:1810.11922 (2018).

[73] Aniruddha Bapat and Stephen Jordan, "Bang-bang control as a design principle for classical and quantum optimization algorithms", arXiv:1812.02746 (2018).

[74] Juan Carrasquilla, Giacomo Torlai, Roger G. Melko, and Leandro Aolita, "Reconstructing quantum states with generative models", arXiv:1810.10584 (2018).

[75] Kosuke Mitarai, Tennin Yan, and Keisuke Fujii, "Generalization of the output of variational quantum eigensolver by parameter interpolation with low-depth ansatz", arXiv:1810.04482 (2018).

[76] Abhinav Kandala, Kristan Temme, Antonio D. Corcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta, "Extending the computational reach of a noisy superconducting quantum processor", arXiv:1805.04492 (2018).

[77] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, "eQASM: An Executable Quantum Instruction Set Architecture", arXiv:1808.02449 (2018).

[78] Mark Fingerhuth, Tomáš Babej, and Christopher Ing, "A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding", arXiv:1810.13411 (2018).

[79] Pierre-Luc Dallaire-Demers and Nathan Killoran, "Quantum generative adversarial networks", Physical Review A 98 1, 012324 (2018).

[80] Jin-Guo Liu and Lei Wang, "Differentiable Learning of Quantum Circuit Born Machine", Physical Review A 98 6, 062324 arXiv:1804.04168 (2018).

[81] G. G. Guerreschi and A. Y. Matsuura, "QAOA for Max-Cut requires hundreds of qubits for quantum speed-up", arXiv:1812.07589 (2018).

[82] C. M. Wilson, J. S. Otterbach, N. Tezak, R. S. Smith, G. E. Crooks, and M. P. da Silva, "Quantum Kitchen Sinks: An algorithm for machine learning on near-term quantum computers", arXiv:1806.08321 (2018).

[83] Xiao Yuan, Suguru Endo, Qi Zhao, Simon Benjamin, and Ying Li, "Theory of variational quantum simulation", arXiv:1812.08767 (2018).

[84] Ciarán Ryan-Anderson, "Quantum Algorithms, Architecture, and Error Correction", arXiv:1812.04735 (2018).

[85] Ewin Tang, "A quantum-inspired classical algorithm for recommendation systems", arXiv:1807.04271 (2018).

[86] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini, "Hierarchical quantum classifiers", npj Quantum Information 4, 65 (2018).

[87] Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun Shi, "Classical Simulation of Intermediate-Size Quantum Circuits", arXiv:1805.01450 (2018).

[88] Maria Schuld and Nathan Killoran, "Quantum machine learning in feature Hilbert spaces", arXiv:1803.07128 (2018).

[89] Cristian S. Calude and Elena Calude, "The Road to Quantum Computational Supremacy", arXiv:1712.01356 (2017).

[90] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven, "Barren plateaus in quantum neural network training landscapes", Nature Communications 9 1, 4812 arXiv:1803.11173 (2018).

[91] Vojtech Havlicek, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta, "Supervised learning with quantum enhanced feature spaces", arXiv:1804.11326 (2018).

[92] Xun Gao and Luming Duan, "Efficient classical simulation of noisy quantum computation", arXiv:1810.03176 (2018).

[93] Seth Lloyd and Christian Weedbrook, "Quantum Generative Adversarial Learning", Physical Review Letters 121 4, 040502 (2018).

[94] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402 (2018).

[95] Pak Hong Leung and Kenneth R. Brown, "Entangling an arbitrary pair of qubits in a long ion crystal", Physical Review A 98 3, 032318 (2018).

[96] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani, "On the complexity and verification of quantum random circuit sampling", Nature Physics (2018).

[97] Beni Yoshida and Norman Y. Yao, "Disentangling Scrambling and Decoherence via Quantum Teleportation", Physical Review X 9 1, 011006 (2019).

[98] Bibek Pokharel, Namit Anand, Benjamin Fortman, and Daniel A. Lidar, "Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits", Physical Review Letters 121 22, 220502 (2018).

[99] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O'Brien, "Low-cost error mitigation by symmetry verification", Physical Review A 98 6, 062339 (2018).

[100] N. M. Linke, S. Johri, C. Figgatt, K. A. Landsman, A. Y. Matsuura, and C. Monroe, "Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer", Physical Review A 98 5, 052334 (2018).

[101] Daiqin Su, Krishna Kumar Sabapathy, Casey R. Myers, Haoyu Qi, Christian Weedbrook, and Kamil Brádler, "Implementing quantum algorithms on temporal photonic cluster states", Physical Review A 98 3, 032316 (2018).

[102] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in a Hamiltonian simulation", Physical Review A 99 1, 012334 (2019).

[103] Yiğit Subaşı, Lukasz Cincio, and Patrick J Coles, "Entanglement spectroscopy with a depth-two quantum circuit", Journal of Physics A: Mathematical and Theoretical 52 4, 044001 (2019).

[104] Eyal Bairey, Itai Arad, and Netanel H. Lindner, "Learning a Local Hamiltonian from Local Measurements", Physical Review Letters 122 2, 020504 (2019).

[105] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage, "Quantum-classical computation of Schwinger model dynamics using quantum computers", Physical Review A 98 3, 032331 (2018).

[106] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and Xiaodi Wu, "Quantitative robustness analysis of quantum programs", Proceedings of the ACM on Programming Languages 3 POPL, 1 (2019).

[107] Subhayan Sahu and Shasanka M. Roy, "Maximal entanglement and state transfer using Arthurs–Kelly type interaction for qubits", The European Physical Journal D 72 12, 211 (2018).

[108] Shihao Zhang, Pengyun Li, Bo Wang, Qiang Zeng, and Xiangdong Zhang, "Implementation of quantum permutation algorithm with classical light", Journal of Physics Communications 3 1, 015008 (2019).

[109] Daniel A. Rowlands and Austen Lamacraft, "Noisy coupled qubits: Operator spreading and the Fredrickson-Andersen model", Physical Review B 98 19, 195125 (2018).

[110] Mark Fingerhuth, Tomáš Babej, Peter Wittek, and Leonie Anna Mueck, "Open source software in quantum computing", PLOS ONE 13 12, e0208561 (2018).

[111] Marek Pechal, Patricio Arrangoiz-Arriola, and Amir H Safavi-Naeini, "Superconducting circuit quantum computing with nanomechanical resonators as storage", Quantum Science and Technology 4 1, 015006 (2018).

[112] Leonardo Novo, Shantanav Chakraborty, Masoud Mohseni, and Yasser Omar, "Environment-assisted analog quantum search", Physical Review A 98 2, 022316 (2018).

The above citations are from Crossref's cited-by service (last updated 2019-01-23 00:46:20) and SAO/NASA ADS (last updated 2019-01-23 00:46:22). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “Quantum Computing in the NISQ era and beyond

  1. Pingback: January 9, 2019 – NRS Notes