Quantum Computing in the NISQ era and beyond

John Preskill

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.

► BibTeX data

► References

[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41, 303-332 (1999), 10.1137/​S0036144598347011.

[2] A. P. Lund, M. J. Bremner, and T. C. Ralph, Quantum sampling problems, BosonSampling, and quantum supremacy, npj Quantum Information 3: 15 (2017), arXiv:1702.03061, 10.1038/​s41534-017-0018-2.

[3] A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549, 203-209 (2017), 10.1038/​nature23458.

[4] S. P. Jordan, Quantum algorithm zoo, http:/​/​math.nist.gov/​quantum/​zoo/​.

[5] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information, 15023 (2016), arXiv:1511.04206, 10.1038/​npjqi.2015.23.

[6] L. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325 (1997), arXiv:quant-ph/​9706033, 10.1103/​PhysRevLett.79.325.

[7] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26, 1510-1523 (1997), arXiv:quant-ph/​9701001, 10.1137/​S0097539796300933.

[8] R. B. Laughlin and D. Pines, The theory of everything, PNAS 97, 28-31 (2000), 10.1073/​pnas.97.1.28.

[9] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Physics 21, 467-488 (1982).

[10] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Proceedings of Symposia in Applied Matthematics 68 (2010), arXiv:0904.2557.

[11] S. Boixo, S. V. Isakov, V. N. Smelyansky, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nature Physics 14, 595-600 (2018), arXiv:1608.00263 (2016), 10.1038/​s41567-018-0124-x.

[12] S. Aaronson and L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, arXiv:1612.05903 (2017).

[13] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, and R. Wisnieff, Breaking the 49-qubit barrier in the simulation of quantum circuits, arXiv:1710.05867 (2017).

[14] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits, Phys. Rev. Lett. 117, 060504 (2016), arXiv:1512.04600, 10.1103/​PhysRevLett.117.060504.

[15] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508, 500-503 (2014), arXiv:1402.4848, 10.1038/​nature13171.

[16] D. J. Bernstein, J. Buchmann, E. Dahmen, editors, Post-Quantum Cryptography, Springer (2009), 10.1007/​978-3-540-88702-7.

[17] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, and A. Zeilinger, Using quantum key distribution for cryptographic purposes: a survey, Theoretical Computer Science 560, 62-81 (2014), arXiv:quant-ph/​0701168, 10.1016/​j.tcs.2014.09.018.

[18] S. Muralidharan, L. Li, J. Kim, N Lütkenhaus, M. D. Lukin, and L. Jiang, Efficient long distance quantum communication, Scientific Reports 6, 20463 (2016), arXiv:1509.08435, 10.1038/​srep20463.

[19] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, M. J. Stevens, and L. K. Shalm, Experimentally generated randomness certified by the impossibility of superluminal signals, Nature 556, 223-226 (2018), arXiv:1803.06219, 10.1038/​s41586-018-0019-0.

[20] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick, Certifiable randomness from a single quantum device, arXiv:1804.00640 (2018).

[21] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017), arXiv:1611.04691, 10.1103/​RevModPhys.89.035002.

[22] J. Preskill, Quantum computing and the entanglement frontier, 25th Solvay Conference on Physics (2011), arXiv:1203.5813.

[23] S. Khot, Hardness of approximation, Proceedings of the International Congress of Mathematicians (2014).

[24] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028 (2014).

[25] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms, New J. Phys. 18, 023023 (2016), arXiv:1509.04279, 10.1038/​ncomms5213.

[26] D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, Journal of the ACM 51, 385-463 (2004), arXiv:cs/​0111050, 10.1145/​990308.990310.

[27] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436-444 (2015), 10.1038/​nature14539.

[28] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining and detecting quantum speedup, Science 345, 420-424 (2014), 10.1126/​science.1252319.

[29] S. Mandrà, H. G. Katzgraber, and C. Thomas, The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again), Quantum Sci. Technol. 2, 038501 (2017), arXiv:1703.00622, 10.1088/​2058-9565/​aa7877.

[30] T. Albash and D. A. Lidar, Adiabatic quantum computing, Rev. Mod. Phys. 90, 015002 (2018), arXiv:1611.04471, 10.1103/​RevModPhys.90.015002.

[31] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, SIAM Rev. 50, 755-787 (2008), arXiv:quant-ph/​0405098.

[32] S. Bravyi, D. DiVincenzo, R. I. Oliveira, and B. M. Terhal, The complexity of stoquastic local Hamiltonian problems, Quant. Inf. Comp. 8, 0361-0385 (2008), arXiv:quant-ph/​0606140.

[33] M. Jarret, S. P. Jordan, and B. Lackey, Adiabatic optimization versus diffusion Monte Carlo, Phys. Rev. A 94, 042318 (2016), arXiv:1607.03389, 10.1103/​PhysRevA.94.042318.

[34] A. D. King, J. Carrasquilla, I. Ozfidan, J. Raymond, E. Andriyash, A. Berkley, M. Reis, T. M. Lanting, R. Harris, G. Poulin-Lamarre, A. Yu. Smirnov, C. Rich, F. Altomare, P. Bunyk, J. Whittaker, L. Swenson, E. Hoskinson, Y. Sato, M. Volkmann, E. Ladizinsky, M. Johnson, J. Hilton, and M. H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits, arXiv:1803.02047 (2018).

[35] I. H. Kim, Noise-resilient preparation of quantum many-body ground states, arXiv:1703.00032 (2017).

[36] I. H. Kim and B. Swingle, Robust entanglement renormalization on a noisy quantum computer, arXiv:1711.07500 (2017).

[37] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549, 195-202 (2017), arXiv:1611.09347, 10.1038/​nature23474.

[38] S. Aaronson, Read the fine print, Nature Physics 11, 291-293 (2015), 10.1038/​nphys3272.

[39] X. Gao, Z. Zhang, and L. Duan, An efficient quantum algorithm for generative machine learning, arXiv:1711.02038 (2017).

[40] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009), arXiv:0811.3171, 10.1103/​PhysRevLett.103.150502.

[41] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Preconditioned quantum linear system algorithm, Phys. Rev. Lett. 110, 250504 (2013), arXiv:1301.2340, 10.1103/​PhysRevLett.110.250504.

[42] A. Montanaro and S. Pallister, Quantum algorithms and the finite element method, Phys. Rev. A 93, 032324 (2016), arXiv:1512.05903, 10.1103/​PhysRevA.93.032324.

[43] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum algorithm for simulating the wave equation, arXiv:1711.05394 (2017).

[44] I. Kerenidis and A. Prakash, Quantum recommendation systems, arXiv:1603.08675 (2016).

[45] E. Tang, A quantum-inspired classical algorithm for recommendation systems, Electronic Colloquium on Computational Complexity, TR18-12 (2018).

[46] F. G. S. L. Brandão and K. Svore, Quantum speed-ups for semidefinite programming, Proceedings of FOCS 2017, arXiv:1609.05537 (2017).

[47] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and X. Wu, Exponential quantum speed-ups for semidefinite programming with applications to quantum learning, arXiv:1710.02581 (2017).

[48] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction mechanisms on quantum computers, PNAS 117, 7555-7560 (2017), arXiv:1605.03590, 10.1073/​pnas.1619152114.

[49] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer, Solving strongly correlated electron models on a quantum computer, Phys. Rev. A 92, 062310 (2015), arXiv:1506.05135, 10.1103/​PhysRevA.92.062318.

[50] J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, A. Aspuru-Guzik, Quantum information and computation for chemistry, NSF Workshop Report, arXiv:1706.05413 (2017).

[51] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V Vuletić, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551, 579-584 (2017), arXiv:1707.04344, 10.1038/​nature24622.

[52] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, arXiv:1708.01044 (2017), 10.1038/​nature24654.

[53] E. T. Campbell, B. M. Terhal, and C. Vuillot, The steep road towards robust and universal quantum computation, arXiv:1612.07330 (2016).

[54] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A 94, 052325 (2016), arXiv:1512:01098, 10.1103/​PhysRevA.94.052325.

[55] J. Combes, C. Granade, C. Ferrie, and S. T. Flammia, Logical randomized benchmarking, arXiv:1702.03688 (2017).

[56] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012), arXiv:1208.0928, 10.1103/​PhysRevA.86.032324.

[57] S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1, 15001 (2015), arXiv:1501.02813, 10.1038/​npjqi.2015.1.

Cited by

[1] Stefano Gandolfi, "Cloud Quantum Computing Tackles Simple Nucleus", Physics Online Journal 11, 51 (2018).

[2] Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic T. Chong, "Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures", arXiv:1809.01302 (2018).

[3] Zhang Jiang, Jarrod McClean, Ryan Babbush, and Hartmut Neven, "Majorana loop stabilizer codes for error correction of fermionic quantum simulations", arXiv:1812.08190 (2018).

[4] Kostyantyn Kechedzhi, Vadim Smelyanskiy, Jarrod R. McClean, Vasil S. Denchev, Masoud Mohseni, Sergei Isakov, Sergio Boixo, Boris Altshuler, and Hartmut Neven, "Efficient population transfer via non-ergodic extended states in quantum spin glass", arXiv:1807.04792 (2018).

[5] A. Garcia-Saez and J. I. Latorre, "Addressing hard classical problems with Adiabatically Assisted Variational Quantum Eigensolvers", arXiv:1806.02287 (2018).

[6] Patrick Rall, "Simulating Quantum Circuits by Shuffling Paulis", arXiv:1804.05404 (2018).

[7] Zhenyu Cai and Simon Benjamin, "Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels", arXiv:1807.04973 (2018).

[8] Alexandru Paler, Alwin Zulehner, and Robert Wille, "NISQ circuit compilers: search space structure and heuristics", arXiv:1806.07241 (2018).

[9] Johannes S. Otterbach, "Optimizing Variational Quantum Circuits using Evolution Strategies", arXiv:1806.04344 (2018).

[10] Aniruddha Bapat and Stephen Jordan, "Bang-bang control as a design principle for classical and quantum optimization algorithms", arXiv:1812.02746 (2018).

[11] Keisuke Fujii, "Quantum speedup in stoquastic adiabatic quantum computation", arXiv:1803.09954 (2018).

[12] Xun Gao and Luming Duan, "Efficient classical simulation of noisy quantum computation", arXiv:1810.03176 (2018).

[13] Ciarán Ryan-Anderson, "Quantum Algorithms, Architecture, and Error Correction", arXiv:1812.04735 (2018).

[14] Kentaro Heya, Yasunari Suzuki, Yasunobu Nakamura, and Keisuke Fujii, "Variational Quantum Gate Optimization", arXiv:1810.12745 (2018).

[15] Taewan Kim and Byung-Soo Choi, "Efficient decomposition methods for controlled-R<SUB>n</SUB> using a single ancillary qubit", Scientific Reports 8, 5445 (2018).

[16] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev, "Community Detection Across Emerging Quantum Architectures", arXiv:1810.07765 (2018).

[17] Shusen Liu, Yinan Li, and Runyao Duan, "Distinguishing Unitary Gates on the IBM Quantum Processor", arXiv:1807.00429 (2018).

[18] Valentin Torggler, Philipp Aumann, Helmut Ritsch, and Wolfgang Lechner, "A Quantum N-Queens Solver", arXiv:1803.00735 (2018).

[19] Yosi Atia, Yonathan Oren, and Nadav Katz, "Robust Diabatic Quantum Search by Landau-Zener-St\"uckelberg Oscillations", arXiv:1811.04636 (2018).

[20] Eyal Bairey, Itai Arad, and Netanel H. Lindner, "Learning a local Hamiltonian from local measurements", arXiv:1807.04564 (2018).

[21] Brian Swingle and Nicole Yunger Halpern, "Resilience of scrambling measurements", Physical Review A 97 6, 062113 (2018).

[22] Eric Bersin, Michael Walsh, Sara L. Mouradian, Matthew E. Trusheim, Tim Schröder, and Dirk Englund, "Individual Control and Readout of Qubits in a Sub-Diffraction Volume", arXiv:1805.06884 (2018).

[23] Juan Miguel Arrazola, Thomas R. Bromley, and Patrick Rebentrost, "Quantum approximate optimization with Gaussian boson sampling", Physical Review A 98 1, 012322 (2018).

[24] Zhong-Xiao Man, Yun-Jie Xia, and Rosario Lo Franco, "Temperature effects on quantum non-Markovianity via collision models", Physical Review A 97 6, 062104 (2018).

[25] Xiao Yuan, Suguru Endo, Qi Zhao, Simon Benjamin, and Ying Li, "Theory of variational quantum simulation", arXiv:1812.08767 (2018).

[26] Alexander McCaskey, Eugene Dumitrescu, Mengsu Chen, Dmitry Lyakh, and Travis Humble, "Validating quantum-classical programming models with tensor network simulations", PLoS ONE 13 12, e0206704 (2018).

[27] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo, "Quantum algorithms to simulate many-body physics of correlated fermions", arXiv:1711.05395 (2017).

[28] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in Hamiltonian simulation", arXiv:1808.03623 (2018).

[29] Wolfgang Lechner, "Quantum Approximate Optimization with Parallelizable Gates", arXiv:1802.01157 (2018).

[30] Alwin Zulehner and Robert Wille, "Compiling SU(4) Quantum Circuits to IBM QX Architectures", arXiv:1808.05661 (2018).

[31] Juan Carrasquilla, Giacomo Torlai, Roger G. Melko, and Leandro Aolita, "Reconstructing quantum states with generative models", arXiv:1810.10584 (2018).

[32] Stefan Krastanov, Victor V. Albert, and Liang Jiang, "Optimized Entanglement Purification", arXiv:1712.09762 (2017).

[33] Cupjin Huang, Michael Newman, and Mario Szegedy, "Explicit lower bounds on strong quantum simulation", arXiv:1804.10368 (2018).

[34] Ali Mortezapour and Rosario Lo Franco, "Protecting quantum resources via frequency modulation of qubits in leaky cavities", Scientific Reports 8, 14304 (2018).

[35] Dorit Aharonov and Leo Zhou, "Hamiltonian sparsification and gap-simulations", arXiv:1804.11084 (2018).

[36] Natalie Klco and Martin Savage, "Digitization of Scalar Fields for NISQ-Era Quantum Computing", arXiv:1808.10378 (2018).

[37] Eric R. Anschuetz, Jonathan P. Olson, Alán Aspuru-Guzik, and Yudong Cao, "Variational Quantum Factoring", arXiv:1808.08927 (2018).

[38] Javier Gil Vidal and Dirk Oliver Theis, "Calculus on parameterized quantum circuits", arXiv:1812.06323 (2018).

[39] Mohammad H. Ansari, "Exact quantization of superconducting circuits", arXiv:1807.00792 (2018).

[40] Iskren Vankov, Daniel Mills, Petros Wallden, and Elham Kashefi, "Methods for Classically Simulating Noisy Networked Quantum Architectures", arXiv:1803.04167 (2018).

[41] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and J. I. Cirac, "Analog quantum chemistry simulation", arXiv:1807.09228 (2018).

[42] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao, "The Expressive Power of Parameterized Quantum Circuits", arXiv:1810.11922 (2018).

[43] Daniel C. Hackett, Kiel Howe, Ciaran Hughes, William Jay, Ethan T. Neil, and James N. Simone, "Digitizing Gauge Fields: Lattice Monte Carlo Results for Future Quantum Computers", arXiv:1811.03629 (2018).

[44] Ramis Movassagh, "Efficient unitary paths and quantum computational supremacy: A proof of average-case hardness of Random Circuit Sampling", arXiv:1810.04681 (2018).

[45] Oscar Higgott, Daochen Wang, and Stephen Brierley, "Variational Quantum Computation of Excited States", arXiv:1805.08138 (2018).

[46] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini, "Hierarchical quantum classifiers", npj Quantum Information 4, 65 (2018).

[47] Marina Radulaski, Jingyuan Linda Zhang, Yan-Kai Tzeng, Konstantinos G. Lagoudakis, Hitoshi Ishiwata, Constantin Dory, Kevin A. Fischer, Yousif A. Kelaita, Shuo Sun, Peter C. Maurer, Kassem Alassaad, Gabriel Ferro, Zhi-Xun Shen, Nicholas Melosh, Steven Chu, and Jelena Vučković, "Nanodiamond integration with photonic devices", arXiv:1610.03183 (2016).

[48] Yuxuan Du, Tongliang Liu, and Dacheng Tao, "Bayesian Quantum Circuit", arXiv:1805.11089 (2018).

[49] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", arXiv:1812.09976 (2018).

[50] Mark Fingerhuth, Tomáš Babej, and Christopher Ing, "A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding", arXiv:1810.13411 (2018).

[51] G. G. Guerreschi and A. Y. Matsuura, "QAOA for Max-Cut requires hundreds of qubits for quantum speed-up", arXiv:1812.07589 (2018).

[52] C. M. Wilson, J. S. Otterbach, N. Tezak, R. S. Smith, G. E. Crooks, and M. P. da Silva, "Quantum Kitchen Sinks: An algorithm for machine learning on near-term quantum computers", arXiv:1806.08321 (2018).

[53] Damian S. Steiger, Thomas Häner, and Matthias Troyer, "Advantages of a modular high-level quantum programming framework", arXiv:1806.01861 (2018).

[54] David P. Franke, James S. Clarke, Lieven M. K. Vandersypen, and Menno Veldhorst, "Rent's rule and extensibility in quantum computing", arXiv:1806.02145 (2018).

[55] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, "eQASM: An Executable Quantum Instruction Set Architecture", arXiv:1808.02449 (2018).

[56] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev, "Network Community Detection On Small Quantum Computers", arXiv:1810.12484 (2018).

[57] John Preskill, "Simulating quantum field theory with a quantum computer", arXiv:1811.10085 (2018).

[58] V. O. Shkolnikov and Guido Burkard, "Effective Hamiltonian theory of the geometric evolution of quantum systems", arXiv:1810.00193 (2018).

[59] Pierre-Luc Dallaire-Demers and Nathan Killoran, "Quantum generative adversarial networks", Physical Review A 98 1, 012324 (2018).

[60] Xi Chen, Bin Cheng, Xinfang Nie, Nengkun Yu, Man-Hong Yung, and Xinhua Peng, "Experimental Cryptographic Verification for Near-Term Quantum Cloud Computing", arXiv:1808.07375 (2018).

[61] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402 (2018).

[62] Jin-Guo Liu and Lei Wang, "Differentiable Learning of Quantum Circuit Born Machine", arXiv:1804.04168 (2018).

[63] Swamit S. Tannu and Moinuddin K. Qureshi, "A Case for Variability-Aware Policies for NISQ-Era Quantum Computers", arXiv:1805.10224 (2018).

[64] Guillaume Verdon, Jason Pye, and Michael Broughton, "A Universal Training Algorithm for Quantum Deep Learning", arXiv:1806.09729 (2018).

[65] Seth Lloyd and Christian Weedbrook, "Quantum Generative Adversarial Learning", Physical Review Letters 121 4, 040502 (2018).

[66] Victor V. Albert, Kyungjoo Noh, Kasper Duivenvoorden, Dylan J. Young, R. T. Brierley, Philip Reinhold, Christophe Vuillot, Linshu Li, Chao Shen, S. M. Girvin, Barbara M. Terhal, and Liang Jiang, "Performance and structure of single-mode bosonic codes", Physical Review A 97 3, 032346 (2018).

[67] Gushu Li, Yufei Ding, and Yuan Xie, "Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices", arXiv:1809.02573 (2018).

[68] Sergey Novikov, Robert Hinkey, Steven Disseler, James I. Basham, Tameem Albash, Andrew Risinger, David Ferguson, Daniel A. Lidar, and Kenneth M. Zick, "Exploring More-Coherent Quantum Annealing", arXiv:1809.04485 (2018).

[69] Suguru Endo, Ying Li, Simon Benjamin, and Xiao Yuan, "Variational quantum simulation of general processes", arXiv:1812.08778 (2018).

[70] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard, "Simulation of quantum circuits by low-rank stabilizer decompositions", arXiv:1808.00128 (2018).

[71] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo, "Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions", Physical Review Applied 9 4, 044036 (2018).

[72] Cristian S. Calude and Elena Calude, "The Road to Quantum Computational Supremacy", arXiv:1712.01356 (2017).

[73] Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun Shi, "Classical Simulation of Intermediate-Size Quantum Circuits", arXiv:1805.01450 (2018).

[74] Abhinav Kandala, Kristan Temme, Antonio D. Corcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta, "Extending the computational reach of a noisy superconducting quantum processor", arXiv:1805.04492 (2018).

[75] Ning Bao and Junyu Liu, "Quantum algorithms for conformal bootstrap", arXiv:1811.05675 (2018).

[76] Xavier Waintal, "What determines the ultimate precision of a quantum computer?", arXiv:1702.07688 (2017).

[77] Andrew D. King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, Kelly Boothby, Paul I. Bunyk, Colin Enderud, Alexandre Fréchette, Emile Hoskinson, Nicolas Ladizinsky, Travis Oh, Gabriel Poulin-Lamarre, Christopher Rich, Yuki Sato, Anatoly Yu. Smirnov, Loren J. Swenson, Mark H. Volkmann, Jed Whittaker, Jason Yao, Eric Ladizinsky, Mark W. Johnson, Jeremy Hilton, and Mohammad H. Amin, "Observation of topological phenomena in a programmable lattice of 1,800 qubits", Nature 560 7719, 456 (2018).

[78] Tameem Albash and Daniel A. Lidar, "Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing", Physical Review X 8 3, 031016 (2018).

[79] Vojtech Havlicek, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta, "Supervised learning with quantum enhanced feature spaces", arXiv:1804.11326 (2018).

[80] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio Mezzacapo, Stefan Filipp, and Ivano Tavernelli, "Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions", Physical Review A 98 2, 022322 (2018).

[81] Maria Schuld and Nathan Killoran, "Quantum machine learning in feature Hilbert spaces", arXiv:1803.07128 (2018).

[82] Yosep Kim, Kang-Hee Hong, Joonsuk Huh, and Yoon-Ho Kim, "Experimental linear optical computing of the matrix permanent", Physical Review A 99 5, 052308 (2019).

[83] N. M. Linke, S. Johri, C. Figgatt, K. A. Landsman, A. Y. Matsuura, and C. Monroe, "Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer", Physical Review A 98 5, 052334 (2018).

[84] Daiqin Su, Krishna Kumar Sabapathy, Casey R. Myers, Haoyu Qi, Christian Weedbrook, and Kamil Brádler, "Implementing quantum algorithms on temporal photonic cluster states", Physical Review A 98 3, 032316 (2018).

[85] Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac, "Computational Speedups Using Small Quantum Devices", Physical Review Letters 121 25, 250501 (2018).

[86] Yiğit Subaşı, Lukasz Cincio, and Patrick J Coles, "Entanglement spectroscopy with a depth-two quantum circuit", Journal of Physics A: Mathematical and Theoretical 52 4, 044001 (2019).

[87] Eyal Bairey, Itai Arad, and Netanel H. Lindner, "Learning a Local Hamiltonian from Local Measurements", Physical Review Letters 122 2, 020504 (2019).

[88] Marcello Benedetti, Edward Grant, Leonard Wossnig, and Simone Severini, "Adversarial quantum circuit learning for pure state approximation", New Journal of Physics 21 4, 043023 (2019).

[89] Daniel C. Murphy and Kenneth R. Brown, "Controlling error orientation to improve quantum algorithm success rates", Physical Review A 99 3, 032318 (2019).

[90] Frank Leymann, Lecture Notes in Computer Science 11413, 218 (2019) ISBN:978-3-030-14081-6.

[91] Jin-Guo Liu and Lei Wang, "Differentiable learning of quantum circuit Born machines", Physical Review A 98 6, 062324 (2018).

[92] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook, "Strawberry Fields: A Software Platform for Photonic Quantum Computing", Quantum 3, 129 (2019).

[93] Xavier Waintal, "What determines the ultimate precision of a quantum computer", Physical Review A 99 4, 042318 (2019).

[94] Subhayan Sahu and Shasanka M. Roy, "Maximal entanglement and state transfer using Arthurs–Kelly type interaction for qubits", The European Physical Journal D 72 12, 211 (2018).

[95] Shihao Zhang, Pengyun Li, Bo Wang, Qiang Zeng, and Xiangdong Zhang, "Implementation of quantum permutation algorithm with classical light", Journal of Physics Communications 3 1, 015008 (2019).

[96] Mark Fingerhuth, Tomáš Babej, Peter Wittek, and Leonie Anna Mueck, "Open source software in quantum computing", PLOS ONE 13 12, e0208561 (2018).

[97] Kamil Korzekwa, Christopher T. Chubb, and Marco Tomamichel, "Avoiding Irreversibility: Engineering Resonant Conversions of Quantum Resources", Physical Review Letters 122 11, 110403 (2019).

[98] Laszlo Gyongyosi and Sandor Imre, "Dense Quantum Measurement Theory", Scientific Reports 9 1, 6755 (2019).

[99] Syed Junaid Nawaz, Shree Krishna Sharma, Shurjeel Wyne, Mohammad N. Patwary, and Md. Asaduzzaman, "Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future", IEEE Access 7, 46317 (2019).

[100] Jinfeng Zeng, Yufeng Wu, Jin-Guo Liu, Lei Wang, and Jiangping Hu, "Learning and inference on generative adversarial quantum circuits", Physical Review A 99 5, 052306 (2019).

[101] Andreas Fischer and Alexandra Paler, Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing - SAC '19 1378 (2019) ISBN:9781450359337.

[102] Eric Bersin, Michael Walsh, Sara L. Mouradian, Matthew E. Trusheim, Tim Schröder, and Dirk Englund, "Individual control and readout of qubits in a sub-diffraction volume", npj Quantum Information 5 1, 38 (2019).

[103] Hendrik Bluhm and Lars R. Schreiber, 2019 IEEE International Symposium on Circuits and Systems (ISCAS) 1 (2019) ISBN:978-1-7281-0397-6.

[104] Bibek Pokharel, Namit Anand, Benjamin Fortman, and Daniel A. Lidar, "Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits", Physical Review Letters 121 22, 220502 (2018).

[105] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O'Brien, "Low-cost error mitigation by symmetry verification", Physical Review A 98 6, 062339 (2018).

[106] Sam McArdle, Xiao Yuan, and Simon Benjamin, "Error-Mitigated Digital Quantum Simulation", Physical Review Letters 122 18, 180501 (2019).

[107] Damian S. Steiger, Thomas Häner, and Matthias Troyer, "Advantages of a modular high-level quantum programming framework", Microprocessors and Microsystems 66, 81 (2019).

[108] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in a Hamiltonian simulation", Physical Review A 99 1, 012334 (2019).

[109] Christopher Monroe, Michael G. Raymer, and Jacob Taylor, "The U.S. National Quantum Initiative: From Act to action", Science 364 6439, 440 (2019).

[110] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and Xiaodi Wu, "Quantitative robustness analysis of quantum programs", Proceedings of the ACM on Programming Languages 3 POPL, 1 (2019).

[111] Kosuke Mitarai, Tennin Yan, and Keisuke Fujii, "Generalization of the Output of a Variational Quantum Eigensolver by Parameter Interpolation with a Low-depth Ansatz", Physical Review Applied 11 4, 044087 (2019).

[112] Robert Wille, Rod Van Meter, and Yehuda Naveh, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1234 (2019) ISBN:978-3-9819263-2-3.

[113] Joel J. Wallman and Joseph Emerson, Quantum Information and Measurement (QIM) V: Quantum Technologies S3B.2 (2019) ISBN:978-1-943580-56-9.

[114] Vladimir M. Stojanović, "Feasibility of single-shot realizations of conditional three-qubit gates in exchange-coupled qubit arrays with local control", Physical Review A 99 1, 012345 (2019).

[115] Angad Kalra, Faisal I Qureshi, and Michael Tisi, "Portfolio Asset Identification Using Graph Algorithms on a Quantum Annealer", SSRN Electronic Journal (2018).

[116] Thomas E O’Brien, Brian Tarasinski, and Barbara M Terhal, "Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments", New Journal of Physics 21 2, 023022 (2019).

[117] Stefan Krastanov, Victor V. Albert, and Liang Jiang, "Optimized Entanglement Purification", Quantum 3, 123 (2019).

[118] Göran Wendin, "Can Biological Quantum Networks Solve NP-Hard Problems?", Advanced Quantum Technologies 1800081 (2019).

[119] Clemens Dlaska, Lukas M. Sieberer, and Wolfgang Lechner, "Designing ground states of Hopfield networks for quantum state preparation", Physical Review A 99 3, 032342 (2019).

[120] Marek Pechal, Patricio Arrangoiz-Arriola, and Amir H Safavi-Naeini, "Superconducting circuit quantum computing with nanomechanical resonators as storage", Quantum Science and Technology 4 1, 015006 (2018).

[121] Pak Hong Leung and Kenneth R. Brown, "Entangling an arbitrary pair of qubits in a long ion crystal", Physical Review A 98 3, 032318 (2018).

[122] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani, "On the complexity and verification of quantum random circuit sampling", Nature Physics 15 2, 159 (2019).

[123] Kübra Yeter-Aydeniz, Eugene F. Dumitrescu, Alex J. McCaskey, Ryan S. Bennink, Raphael C. Pooser, and George Siopsis, "Scalar quantum field theories as a benchmark for near-term quantum computers", Physical Review A 99 3, 032306 (2019).

[124] X. Fu, L. Riesebos, M. A. Rol, Jeroen van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA) 224 (2019) ISBN:978-1-7281-1444-6.

[125] Mária Kieferová, Artur Scherer, and Dominic W. Berry, "Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series", Physical Review A 99 4, 042314 (2019).

[126] Sam Morley-Short, Mercedes Gimeno-Segovia, Terry Rudolph, and Hugo Cable, "Loss-tolerant teleportation on large stabilizer states", Quantum Science and Technology 4 2, 025014 (2019).

[127] A. Elben, B. Vermersch, C. F. Roos, and P. Zoller, "Statistical correlations between locally randomized measurements: A toolbox for probing entanglement in many-body quantum states", Physical Review A 99 5, 052323 (2019).

[128] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage, "Quantum-classical computation of Schwinger model dynamics using quantum computers", Physical Review A 98 3, 032331 (2018).

[129] Maria Schuld and Nathan Killoran, "Quantum Machine Learning in Feature Hilbert Spaces", Physical Review Letters 122 4, 040504 (2019).

[130] Wen Wei Ho and Timothy H. Hsieh, "Efficient variational simulation of non-trivial quantum states", SciPost Physics 6 3, 029 (2019).

[131] Asif Shakeel, "Neighborhood-history quantum walk", Physica Scripta 94 6, 065207 (2019).

[132] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven, "Barren plateaus in quantum neural network training landscapes", Nature Communications 9 1, 4812 (2018).

[133] Xin Zhang, Hai-Ou Li, Gang Cao, Ming Xiao, Guang-Can Guo, and Guo-Ping Guo, "Semiconductor quantum computation", National Science Review 6 1, 32 (2019).

[134] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T. Sornborger, and Patrick J. Coles, "Quantum-assisted quantum compiling", Quantum 3, 140 (2019).

[135] Beni Yoshida and Norman Y. Yao, "Disentangling Scrambling and Decoherence via Quantum Teleportation", Physical Review X 9 1, 011006 (2019).

[136] Y. Cao, J. Romero, and A. Aspuru-Guzik, "Potential of quantum computing for drug discovery", IBM Journal of Research and Development 62 6, 6:1 (2018).

[137] Mark Steudtner and Stephanie Wehner, "Quantum codes for quantum simulation of fermions on a square lattice of qubits", Physical Review A 99 2, 022308 (2019).

[138] L. Riesebos, X. Fu, A. A. Moueddenne, L. Lao, S. Varsamopoulos, I. Ashraf, J. van Someren, N. Khammassi, C. G. Almudever, and K. Bertels, 2019 IEEE International Symposium on Circuits and Systems (ISCAS) 1 (2019) ISBN:978-1-7281-0397-6.

[139] G. G. Guerreschi and A. Y. Matsuura, "QAOA for Max-Cut requires hundreds of qubits for quantum speed-up", Scientific Reports 9 1, 6903 (2019).

[140] S V Remizov, A A Zhukov, W V Pogosov, and Yu E Lozovik, "Radiation trapping effect versus superradiance in quantum simulation of light-matter interaction", Laser Physics Letters 16 6, 065205 (2019).

[141] R. Paredes, L. Dueñas-Osorio, K.S. Meel, and M.Y. Vardi, "Principled Network Reliability Approximation: A Counting-Based Approach", Reliability Engineering & System Safety (2019).

[142] Jacques Carolan, Masoud Mosheni, Jonathan P. Olson, Mihika Prabhu, Changchen Chen, Darius Bunandar, Nicholas C. Harris, Franco N. C. Wong, Michael Hochberg, Seth Lloyd, and Dirk Englund, Conference on Lasers and Electro-Optics FTh3A.3 (2019) ISBN:978-1-943580-57-6.

[143] Shusen Liu, Yinan Li, and Runyao Duan, "Distinguishing unitary gates on the IBM quantum processor", Science China Information Sciences 62 7, 72502 (2019).

[144] Daniel A. Rowlands and Austen Lamacraft, "Noisy coupled qubits: Operator spreading and the Fredrickson-Andersen model", Physical Review B 98 19, 195125 (2018).

[145] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller, "Self-verifying variational quantum simulation of lattice models", Nature 569 7756, 355 (2019).

[146] Leonardo Novo, Shantanav Chakraborty, Masoud Mohseni, and Yasser Omar, "Environment-assisted analog quantum search", Physical Review A 98 2, 022316 (2018).

[147] Anne Matsuura, Sonika Johri, and Justin Hogaboam, "A systems perspective of quantum computing", Physics Today 72 3, 40 (2019).

The above citations are from Crossref's cited-by service (last updated 2019-05-21 04:04:41) and SAO/NASA ADS (last updated 2019-05-21 04:04:43). The list may be incomplete as not all publishers provide suitable and complete citation data.