Quantum Computing in the NISQ era and beyond

John Preskill

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.

► BibTeX data

► References

[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41, 303-332 (1999), 10.1137/​S0036144598347011.
https:/​/​doi.org/​10.1137/​S0036144598347011

[2] A. P. Lund, M. J. Bremner, and T. C. Ralph, Quantum sampling problems, BosonSampling, and quantum supremacy, npj Quantum Information 3: 15 (2017), arXiv:1702.03061, 10.1038/​s41534-017-0018-2.
https:/​/​doi.org/​10.1038/​s41534-017-0018-2
arXiv:1702.03061

[3] A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549, 203-209 (2017), 10.1038/​nature23458.
https:/​/​doi.org/​10.1038/​nature23458

[4] S. P. Jordan, Quantum algorithm zoo, http:/​/​math.nist.gov/​quantum/​zoo/​.
http:/​/​math.nist.gov/​quantum/​zoo/​

[5] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information, 15023 (2016), arXiv:1511.04206, 10.1038/​npjqi.2015.23.
https:/​/​doi.org/​10.1038/​npjqi.2015.23
arXiv:1511.04206

[6] L. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325 (1997), arXiv:quant-ph/​9706033, 10.1103/​PhysRevLett.79.325.
https:/​/​doi.org/​10.1103/​PhysRevLett.79.325
arXiv:quant-ph/9706033

[7] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26, 1510-1523 (1997), arXiv:quant-ph/​9701001, 10.1137/​S0097539796300933.
https:/​/​doi.org/​10.1137/​S0097539796300933
arXiv:quant-ph/9701001

[8] R. B. Laughlin and D. Pines, The theory of everything, PNAS 97, 28-31 (2000), 10.1073/​pnas.97.1.28.
https:/​/​doi.org/​10.1073/​pnas.97.1.28

[9] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Physics 21, 467-488 (1982).

[10] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Proceedings of Symposia in Applied Matthematics 68 (2010), arXiv:0904.2557.
arXiv:0904.2557

[11] S. Boixo, S. V. Isakov, V. N. Smelyansky, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nature Physics 14, 595-600 (2018), arXiv:1608.00263 (2016), 10.1038/​s41567-018-0124-x.
https:/​/​doi.org/​10.1038/​s41567-018-0124-x
arXiv:1608.00263

[12] S. Aaronson and L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, arXiv:1612.05903 (2017).
arXiv:1612.05903

[13] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, and R. Wisnieff, Breaking the 49-qubit barrier in the simulation of quantum circuits, arXiv:1710.05867 (2017).
arXiv:1710.05867

[14] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits, Phys. Rev. Lett. 117, 060504 (2016), arXiv:1512.04600, 10.1103/​PhysRevLett.117.060504.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.060504
arXiv:1512.04600

[15] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508, 500-503 (2014), arXiv:1402.4848, 10.1038/​nature13171.
https:/​/​doi.org/​10.1038/​nature13171
arXiv:1402.4848

[16] D. J. Bernstein, J. Buchmann, E. Dahmen, editors, Post-Quantum Cryptography, Springer (2009), 10.1007/​978-3-540-88702-7.
https:/​/​doi.org/​10.1007/​978-3-540-88702-7

[17] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, and A. Zeilinger, Using quantum key distribution for cryptographic purposes: a survey, Theoretical Computer Science 560, 62-81 (2014), arXiv:quant-ph/​0701168, 10.1016/​j.tcs.2014.09.018.
https:/​/​doi.org/​10.1016/​j.tcs.2014.09.018
arXiv:quant-ph/0701168

[18] S. Muralidharan, L. Li, J. Kim, N Lütkenhaus, M. D. Lukin, and L. Jiang, Efficient long distance quantum communication, Scientific Reports 6, 20463 (2016), arXiv:1509.08435, 10.1038/​srep20463.
https:/​/​doi.org/​10.1038/​srep20463
arXiv:1509.08435

[19] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, M. J. Stevens, and L. K. Shalm, Experimentally generated randomness certified by the impossibility of superluminal signals, Nature 556, 223-226 (2018), arXiv:1803.06219, 10.1038/​s41586-018-0019-0.
https:/​/​doi.org/​10.1038/​s41586-018-0019-0
arXiv:1803.06219

[20] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick, Certifiable randomness from a single quantum device, arXiv:1804.00640 (2018).
arXiv:1804.00640

[21] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017), arXiv:1611.04691, 10.1103/​RevModPhys.89.035002.
https:/​/​doi.org/​10.1103/​RevModPhys.89.035002
arXiv:1611.04691

[22] J. Preskill, Quantum computing and the entanglement frontier, 25th Solvay Conference on Physics (2011), arXiv:1203.5813.
arXiv:1203.5813

[23] S. Khot, Hardness of approximation, Proceedings of the International Congress of Mathematicians (2014).

[24] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028 (2014).
arXiv:1411.4028

[25] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms, New J. Phys. 18, 023023 (2016), arXiv:1509.04279, 10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213
arXiv:1509.04279

[26] D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, Journal of the ACM 51, 385-463 (2004), arXiv:cs/​0111050, 10.1145/​990308.990310.
https:/​/​doi.org/​10.1145/​990308.990310
arXiv:cs/0111050

[27] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436-444 (2015), 10.1038/​nature14539.
https:/​/​doi.org/​10.1038/​nature14539

[28] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining and detecting quantum speedup, Science 345, 420-424 (2014), 10.1126/​science.1252319.
https:/​/​doi.org/​10.1126/​science.1252319

[29] S. Mandrà, H. G. Katzgraber, and C. Thomas, The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again), Quantum Sci. Technol. 2, 038501 (2017), arXiv:1703.00622, 10.1088/​2058-9565/​aa7877.
https:/​/​doi.org/​10.1088/​2058-9565/​aa7877
arXiv:1703.00622

[30] T. Albash and D. A. Lidar, Adiabatic quantum computing, Rev. Mod. Phys. 90, 015002 (2018), arXiv:1611.04471, 10.1103/​RevModPhys.90.015002.
https:/​/​doi.org/​10.1103/​RevModPhys.90.015002
arXiv:1611.04471

[31] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, SIAM Rev. 50, 755-787 (2008), arXiv:quant-ph/​0405098.
arXiv:quant-ph/0405098

[32] S. Bravyi, D. DiVincenzo, R. I. Oliveira, and B. M. Terhal, The complexity of stoquastic local Hamiltonian problems, Quant. Inf. Comp. 8, 0361-0385 (2008), arXiv:quant-ph/​0606140.
arXiv:quant-ph/0606140

[33] M. Jarret, S. P. Jordan, and B. Lackey, Adiabatic optimization versus diffusion Monte Carlo, Phys. Rev. A 94, 042318 (2016), arXiv:1607.03389, 10.1103/​PhysRevA.94.042318.
https:/​/​doi.org/​10.1103/​PhysRevA.94.042318
arXiv:1607.03389

[34] A. D. King, J. Carrasquilla, I. Ozfidan, J. Raymond, E. Andriyash, A. Berkley, M. Reis, T. M. Lanting, R. Harris, G. Poulin-Lamarre, A. Yu. Smirnov, C. Rich, F. Altomare, P. Bunyk, J. Whittaker, L. Swenson, E. Hoskinson, Y. Sato, M. Volkmann, E. Ladizinsky, M. Johnson, J. Hilton, and M. H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits, arXiv:1803.02047 (2018).
arXiv:1803.02047

[35] I. H. Kim, Noise-resilient preparation of quantum many-body ground states, arXiv:1703.00032 (2017).
arXiv:1703.00032

[36] I. H. Kim and B. Swingle, Robust entanglement renormalization on a noisy quantum computer, arXiv:1711.07500 (2017).
arXiv:1711.07500

[37] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549, 195-202 (2017), arXiv:1611.09347, 10.1038/​nature23474.
https:/​/​doi.org/​10.1038/​nature23474
arXiv:1611.09347

[38] S. Aaronson, Read the fine print, Nature Physics 11, 291-293 (2015), 10.1038/​nphys3272.
https:/​/​doi.org/​10.1038/​nphys3272

[39] X. Gao, Z. Zhang, and L. Duan, An efficient quantum algorithm for generative machine learning, arXiv:1711.02038 (2017).
arXiv:1711.02038

[40] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009), arXiv:0811.3171, 10.1103/​PhysRevLett.103.150502.
https:/​/​doi.org/​10.1103/​PhysRevLett.103.150502
arXiv:0811.3171

[41] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Preconditioned quantum linear system algorithm, Phys. Rev. Lett. 110, 250504 (2013), arXiv:1301.2340, 10.1103/​PhysRevLett.110.250504.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.250504
arXiv:1301.2340

[42] A. Montanaro and S. Pallister, Quantum algorithms and the finite element method, Phys. Rev. A 93, 032324 (2016), arXiv:1512.05903, 10.1103/​PhysRevA.93.032324.
https:/​/​doi.org/​10.1103/​PhysRevA.93.032324
arXiv:1512.05903

[43] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum algorithm for simulating the wave equation, arXiv:1711.05394 (2017).
arXiv:1711.05394

[44] I. Kerenidis and A. Prakash, Quantum recommendation systems, arXiv:1603.08675 (2016).
arXiv:1603.08675

[45] E. Tang, A quantum-inspired classical algorithm for recommendation systems, Electronic Colloquium on Computational Complexity, TR18-12 (2018).

[46] F. G. S. L. Brandão and K. Svore, Quantum speed-ups for semidefinite programming, Proceedings of FOCS 2017, arXiv:1609.05537 (2017).
arXiv:1609.05537

[47] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and X. Wu, Exponential quantum speed-ups for semidefinite programming with applications to quantum learning, arXiv:1710.02581 (2017).
arXiv:1710.02581

[48] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction mechanisms on quantum computers, PNAS 117, 7555-7560 (2017), arXiv:1605.03590, 10.1073/​pnas.1619152114.
https:/​/​doi.org/​10.1073/​pnas.1619152114
arXiv:1605.03590

[49] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer, Solving strongly correlated electron models on a quantum computer, Phys. Rev. A 92, 062310 (2015), arXiv:1506.05135, 10.1103/​PhysRevA.92.062318.
https:/​/​doi.org/​10.1103/​PhysRevA.92.062318
arXiv:1506.05135

[50] J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, A. Aspuru-Guzik, Quantum information and computation for chemistry, NSF Workshop Report, arXiv:1706.05413 (2017).
arXiv:1706.05413

[51] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V Vuletić, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551, 579-584 (2017), arXiv:1707.04344, 10.1038/​nature24622.
https:/​/​doi.org/​10.1038/​nature24622
arXiv:1707.04344

[52] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, arXiv:1708.01044 (2017), 10.1038/​nature24654.
https:/​/​doi.org/​10.1038/​nature24654
arXiv:1708.01044

[53] E. T. Campbell, B. M. Terhal, and C. Vuillot, The steep road towards robust and universal quantum computation, arXiv:1612.07330 (2016).
arXiv:1612.07330

[54] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A 94, 052325 (2016), arXiv:1512:01098, 10.1103/​PhysRevA.94.052325.
https:/​/​doi.org/​10.1103/​PhysRevA.94.052325
arXiv:1512

[55] J. Combes, C. Granade, C. Ferrie, and S. T. Flammia, Logical randomized benchmarking, arXiv:1702.03688 (2017).
arXiv:1702.03688

[56] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012), arXiv:1208.0928, 10.1103/​PhysRevA.86.032324.
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324
arXiv:1208.0928

[57] S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1, 15001 (2015), arXiv:1501.02813, 10.1038/​npjqi.2015.1.
https:/​/​doi.org/​10.1038/​npjqi.2015.1
arXiv:1501.02813

Cited by

[1] Patrick Rall, Daniel Liang, Jeremy Cook, and William Kretschmer, "Simulation of qubit quantum circuits via Pauli propagation", Physical Review A 99 6, 062337 (2019).

[2] Daiqin Su, Krishna Kumar Sabapathy, Casey R. Myers, Haoyu Qi, Christian Weedbrook, and Kamil Brádler, "Implementing quantum algorithms on temporal photonic cluster states", Physical Review A 98 3, 032316 (2018).

[3] Yiğit Subaşı, Lukasz Cincio, and Patrick J Coles, "Entanglement spectroscopy with a depth-two quantum circuit", Journal of Physics A: Mathematical and Theoretical 52 4, 044001 (2019).

[4] Eyal Bairey, Itai Arad, and Netanel H. Lindner, "Learning a Local Hamiltonian from Local Measurements", arXiv:1807.04564, Physical Review Letters 122 2, 020504 (2019).

[5] Pranav Gokhale, Jonathan M. Baker, Casey Duckering, Natalie C. Brown, Kenneth R. Brown, and Frederic T. Chong, Proceedings of the 46th International Symposium on Computer Architecture - ISCA '19 554 (2019) ISBN:9781450366694.

[6] Marcello Benedetti, Edward Grant, Leonard Wossnig, and Simone Severini, "Adversarial quantum circuit learning for pure state approximation", New Journal of Physics 21 4, 043023 (2019).

[7] Jin-Guo Liu and Lei Wang, "Differentiable learning of quantum circuit Born machines", arXiv:1804.04168, Physical Review A 98 6, 062324 (2018).

[8] Xavier Waintal, "What determines the ultimate precision of a quantum computer", arXiv:1702.07688, Physical Review A 99 4, 042318 (2019).

[9] Subhayan Sahu and Shasanka M. Roy, "Maximal entanglement and state transfer using Arthurs–Kelly type interaction for qubits", The European Physical Journal D 72 12, 211 (2018).

[10] Shihao Zhang, Pengyun Li, Bo Wang, Qiang Zeng, and Xiangdong Zhang, "Implementation of quantum permutation algorithm with classical light", Journal of Physics Communications 3 1, 015008 (2019).

[11] Michał Oszmaniec, Filip B. Maciejewski, and Zbigniew Puchała, "Simulating all quantum measurements using only projective measurements and postselection", Physical Review A 100 1, 012351 (2019).

[12] Wen Wei Ho, Cheryne Jonay, and Timothy H. Hsieh, "Ultrafast variational simulation of nontrivial quantum states with long-range interactions", Physical Review A 99 5, 052332 (2019).

[13] Mark Fingerhuth, Tomáš Babej, Peter Wittek, and Leonie Anna Mueck, "Open source software in quantum computing", PLOS ONE 13 12, e0208561 (2018).

[14] Natalie Klco and Martin J. Savage, "Digitization of scalar fields for quantum computing", Physical Review A 99 5, 052335 (2019).

[15] Kazuki Ikeda, Yuma Nakamura, and Travis S. Humble, "Application of Quantum Annealing to Nurse Scheduling Problem", arXiv:1904.12139, Scientific Reports 9 1, 12837 (2019).

[16] Sam McArdle, Xiao Yuan, and Simon Benjamin, "Error-Mitigated Digital Quantum Simulation", Physical Review Letters 122 18, 180501 (2019).

[17] Damian S. Steiger, Thomas Häner, and Matthias Troyer, "Advantages of a modular high-level quantum programming framework", arXiv:1806.01861, Microprocessors and Microsystems 66, 81 (2019).

[18] Colin D. Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M. Sage, "Trapped-ion quantum computing: Progress and challenges", Applied Physics Reviews 6 2, 021314 (2019).

[19] Hammam Qassim, Joel J. Wallman, and Joseph Emerson, "Clifford recompilation for faster classical simulation of quantum circuits", Quantum 3, 170 (2019).

[20] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in a Hamiltonian simulation", arXiv:1808.03623, Physical Review A 99 1, 012334 (2019).

[21] Benjamin D. M. Jones, David R. White, George O. O'Brien, John A. Clark, and Earl T. Campbell, Proceedings of the Genetic and Evolutionary Computation Conference on - GECCO '19 1223 (2019) ISBN:9781450361118.

[22] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Christian F. A. Negre, Ilya Safro, Susan M. Mniszewski, and Yuri Alexeev, "A Hybrid Approach for Solving Optimization Problems on Small Quantum Computers", Computer 52 6, 18 (2019).

[23] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta, "Validating quantum computers using randomized model circuits", Physical Review A 100 3, 032328 (2019).

[24] Minsung Kim, Davide Venturelli, and Kyle Jamieson, Proceedings of the ACM Special Interest Group on Data Communication - SIGCOMM '19 241 (2019) ISBN:9781450359566.

[25] Alexandru Paler, Daniel Herr, and Simon J. Devitt, "Really Small Shoe Boxes: On Realistic Quantum Resource Estimation", Computer 52 6, 27 (2019).

[26] Angad Kalra, Faisal I Qureshi, and Michael Tisi, "Portfolio Asset Identification Using Graph Algorithms on a Quantum Annealer", SSRN Electronic Journal (2018).

[27] Alwin Zulehner, Hartwig Bauer, and Robert Wille, Lecture Notes in Computer Science 11497, 171 (2019) ISBN:978-3-030-21499-9.

[28] Ning Bao and Junyu Liu, "Quantum algorithms for conformal bootstrap", Nuclear Physics B 946, 114702 (2019).

[29] Stefan Krastanov, Victor V. Albert, and Liang Jiang, "Optimized Entanglement Purification", arXiv:1712.09762, Quantum 3, 123 (2019).

[30] R. Sagastizabal, X. Bonet-Monroig, M. Singh, M. A. Rol, C. C. Bultink, X. Fu, C. H. Price, V. P. Ostroukh, N. Muthusubramanian, A. Bruno, M. Beekman, N. Haider, T. E. O'Brien, and L. DiCarlo, "Experimental error mitigation via symmetry verification in a variational quantum eigensolver", Physical Review A 100 1, 010302 (2019).

[31] Göran Wendin, "Can Biological Quantum Networks Solve NP‐Hard Problems?", Advanced Quantum Technologies 2 7-8, 1800081 (2019).

[32] Marek Pechal, Patricio Arrangoiz-Arriola, and Amir H Safavi-Naeini, "Superconducting circuit quantum computing with nanomechanical resonators as storage", Quantum Science and Technology 4 1, 015006 (2018).

[33] Yanxiong Du, Zhentao Liang, Hui Yan, and Shiliang Zhu, "Geometric Quantum Computation with Shortcuts to Adiabaticity", Advanced Quantum Technologies 2 9, 1900013 (2019).

[34] Laszlo Gyongyosi and Sandor Imre, "State stabilization for gate-model quantum computers", Quantum Information Processing 18 9, 280 (2019).

[35] Pak Hong Leung and Kenneth R. Brown, "Entangling an arbitrary pair of qubits in a long ion crystal", Physical Review A 98 3, 032318 (2018).

[36] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani, "On the complexity and verification of quantum random circuit sampling", Nature Physics 15 2, 159 (2019).

[37] M. H. Ansari, "Superconducting qubits beyond the dispersive regime", Physical Review B 100 2, 024509 (2019).

[38] R. C. Wiersema and H. J. Kappen, "Implementing perceptron models with qubits", Physical Review A 100 2, 020301 (2019).

[39] Tao Xin, "A novel approach for emulating quantum computers on classical platforms", Quantum Engineering 1 2(2019).

[40] Koen Groenland and Kareljan Schoutens, "Quantum gates by resonantly driving many-body eigenstates, with a focus on Polychronakos’ model", Journal of Statistical Mechanics: Theory and Experiment 2019 7, 073103 (2019).

[41] Kübra Yeter-Aydeniz, Eugene F. Dumitrescu, Alex J. McCaskey, Ryan S. Bennink, Raphael C. Pooser, and George Siopsis, "Scalar quantum field theories as a benchmark for near-term quantum computers", Physical Review A 99 3, 032306 (2019).

[42] X. Fu, L. Riesebos, M. A. Rol, Jeroen van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA) 224 (2019) ISBN:978-1-7281-1444-6.

[43] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard, "Simulation of quantum circuits by low-rank stabilizer decompositions", arXiv:1808.00128, Quantum 3, 181 (2019).

[44] Mária Kieferová, Artur Scherer, and Dominic W. Berry, "Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series", Physical Review A 99 4, 042314 (2019).

[45] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete, Proceedings of the 46th International Symposium on Computer Architecture - ISCA '19 527 (2019) ISBN:9781450366694.

[46] A. Elben, B. Vermersch, C. F. Roos, and P. Zoller, "Statistical correlations between locally randomized measurements: A toolbox for probing entanglement in many-body quantum states", Physical Review A 99 5, 052323 (2019).

[47] Maria Schuld and Nathan Killoran, "Quantum Machine Learning in Feature Hilbert Spaces", arXiv:1803.07128, Physical Review Letters 122 4, 040504 (2019).

[48] Wen Wei Ho and Timothy H. Hsieh, "Efficient variational simulation of non-trivial quantum states", SciPost Physics 6 3, 029 (2019).

[49] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven, "Barren plateaus in quantum neural network training landscapes", Nature Communications 9 1, 4812 (2018).

[50] Xin Zhang, Hai-Ou Li, Gang Cao, Ming Xiao, Guang-Can Guo, and Guo-Ping Guo, "Semiconductor quantum computation", National Science Review 6 1, 32 (2019).

[51] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T. Sornborger, and Patrick J. Coles, "Quantum-assisted quantum compiling", Quantum 3, 140 (2019).

[52] Daniel C. Hackett, Kiel Howe, Ciaran Hughes, William Jay, Ethan T. Neil, and James N. Simone, "Digitizing gauge fields: Lattice Monte Carlo results for future quantum computers", Physical Review A 99 6, 062341 (2019).

[53] Pablo Andrés-Martínez and Chris Heunen, "Automated distribution of quantum circuits via hypergraph partitioning", Physical Review A 100 3, 032308 (2019).

[54] Y. Cao, J. Romero, and A. Aspuru-Guzik, "Potential of quantum computing for drug discovery", IBM Journal of Research and Development 62 6, 6:1 (2018).

[55] Yong Wan, Daniel Kienzler, Stephen D. Erickson, Karl H. Mayer, Ting Rei Tan, Jenny J. Wu, Hilma M. Vasconcelos, Scott Glancy, Emanuel Knill, David J. Wineland, Andrew C. Wilson, and Dietrich Leibfried, "Quantum gate teleportation between separated qubits in a trapped-ion processor", Science 364 6443, 875 (2019).

[56] James R. Seddon and Earl T. Campbell, "Quantifying magic for multi-qubit operations", arXiv:1901.03322, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475 2227, 20190251 (2019).

[57] Mark Steudtner and Stephanie Wehner, "Quantum codes for quantum simulation of fermions on a square lattice of qubits", Physical Review A 99 2, 022308 (2019).

[58] Laura Ortiz Martín, Springer Theses 11 (2019) ISBN:978-3-030-23648-9.

[59] L. Riesebos, X. Fu, A. A. Moueddenne, L. Lao, S. Varsamopoulos, I. Ashraf, J. van Someren, N. Khammassi, C. G. Almudever, and K. Bertels, 2019 IEEE International Symposium on Circuits and Systems (ISCAS) 1 (2019) ISBN:978-1-7281-0397-6.

[60] Andreas Hartmann and Wolfgang Lechner, "Quantum phase transition with inhomogeneous driving in the Lechner-Hauke-Zoller model", Physical Review A 100 3, 032110 (2019).

[61] R. Paredes, L. Dueñas-Osorio, K.S. Meel, and M.Y. Vardi, "Principled network reliability approximation: A counting-based approach", Reliability Engineering & System Safety 191, 106472 (2019).

[62] Alexandra Nagy and Vincenzo Savona, "Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems", Physical Review Letters 122 25, 250501 (2019).

[63] Shusen Liu, Yinan Li, and Runyao Duan, "Distinguishing unitary gates on the IBM quantum processor", arXiv:1807.00429, Science China Information Sciences 62 7, 72502 (2019).

[64] Daniel A. Rowlands and Austen Lamacraft, "Noisy coupled qubits: Operator spreading and the Fredrickson-Andersen model", Physical Review B 98 19, 195125 (2018).

[65] Andrew D. King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, Kelly Boothby, Paul I. Bunyk, Colin Enderud, Alexandre Fréchette, Emile Hoskinson, Nicolas Ladizinsky, Travis Oh, Gabriel Poulin-Lamarre, Christopher Rich, Yuki Sato, Anatoly Yu. Smirnov, Loren J. Swenson, Mark H. Volkmann, Jed Whittaker, Jason Yao, Eric Ladizinsky, Mark W. Johnson, Jeremy Hilton, and Mohammad H. Amin, "Observation of topological phenomena in a programmable lattice of 1,800 qubits", Nature 560 7719, 456 (2018).

[66] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller, "Self-verifying variational quantum simulation of lattice models", Nature 569 7756, 355 (2019).

[67] Anne Matsuura, Sonika Johri, and Justin Hogaboam, "A systems perspective of quantum computing", Physics Today 72 3, 40 (2019).

[68] Yosep Kim, Kang-Hee Hong, Joonsuk Huh, and Yoon-Ho Kim, "Experimental linear optical computing of the matrix permanent", Physical Review A 99 5, 052308 (2019).

[69] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, "An adaptive variational algorithm for exact molecular simulations on a quantum computer", Nature Communications 10 1, 3007 (2019).

[70] Simon Milz, M. S. Kim, Felix A. Pollock, and Kavan Modi, "Completely Positive Divisibility Does Not Mean Markovianity", Physical Review Letters 123 4, 040401 (2019).

[71] N. M. Linke, S. Johri, C. Figgatt, K. A. Landsman, A. Y. Matsuura, and C. Monroe, "Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer", Physical Review A 98 5, 052334 (2018).

[72] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong Nam, and Alejandro Perdomo-Ortiz, "A generative modeling approach for benchmarking and training shallow quantum circuits", npj Quantum Information 5 1, 45 (2019).

[73] Naveed Mahmud, Esam El‐Araby, and David Caliga, "Scaling reconfigurable emulation of quantum algorithms at high precision and high throughput", Quantum Engineering 1 2(2019).

[74] Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac, "Computational Speedups Using Small Quantum Devices", Physical Review Letters 121 25, 250501 (2018).

[75] Michael J. Hartmann and Giuseppe Carleo, "Neural-Network Approach to Dissipative Quantum Many-Body Dynamics", Physical Review Letters 122 25, 250502 (2019).

[76] Robert Wille, Lukas Burgholzer, and Alwin Zulehner, Proceedings of the 56th Annual Design Automation Conference 2019 on - DAC '19 1 (2019) ISBN:9781450367257.

[77] Daniel C. Murphy and Kenneth R. Brown, "Controlling error orientation to improve quantum algorithm success rates", Physical Review A 99 3, 032318 (2019).

[78] Frank Leymann, Lecture Notes in Computer Science 11413, 218 (2019) ISBN:978-3-030-14081-6.

[79] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook, "Strawberry Fields: A Software Platform for Photonic Quantum Computing", Quantum 3, 129 (2019).

[80] Hayata Yamasaki and Mio Murao, "Quantum State Merging for Arbitrarily Small-Dimensional Systems", IEEE Transactions on Information Theory 65 6, 3950 (2019).

[81] Jacob D. Biamonte, Pavel Dorozhkin, and Igor Zacharov, "Keep quantum computing global and open", Nature 573 7773, 190 (2019).

[82] Kamil Korzekwa, Christopher T. Chubb, and Marco Tomamichel, "Avoiding Irreversibility: Engineering Resonant Conversions of Quantum Resources", Physical Review Letters 122 11, 110403 (2019).

[83] Laszlo Gyongyosi and Sandor Imre, "Dense Quantum Measurement Theory", Scientific Reports 9 1, 6755 (2019).

[84] Valentin Torggler, Philipp Aumann, Helmut Ritsch, and Wolfgang Lechner, "A Quantum N-Queens Solver", Quantum 3, 149 (2019).

[85] Syed Junaid Nawaz, Shree Krishna Sharma, Shurjeel Wyne, Mohammad N. Patwary, and Md. Asaduzzaman, "Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future", IEEE Access 7, 46317 (2019).

[86] Jinfeng Zeng, Yufeng Wu, Jin-Guo Liu, Lei Wang, and Jiangping Hu, "Learning and inference on generative adversarial quantum circuits", Physical Review A 99 5, 052306 (2019).

[87] Kenji Sugisaki, Shigeaki Nakazawa, Kazuo Toyota, Kazunobu Sato, Daisuke Shiomi, and Takeji Takui, "Quantum chemistry on quantum computers: quantum simulations of the time evolution of wave functions under the S2 operator and determination of the spin quantum number S", Physical Chemistry Chemical Physics 21 28, 15356 (2019).

[88] Andreas Fischer and Alexandra Paler, Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing - SAC '19 1378 (2019) ISBN:9781450359337.

[89] Eric Bersin, Michael Walsh, Sara L. Mouradian, Matthew E. Trusheim, Tim Schröder, and Dirk Englund, "Individual control and readout of qubits in a sub-diffraction volume", npj Quantum Information 5 1, 38 (2019).

[90] Hendrik Bluhm and Lars R. Schreiber, 2019 IEEE International Symposium on Circuits and Systems (ISCAS) 1 (2019) ISBN:978-1-7281-0397-6.

[91] Zhi-Yuan Li, Hai-Feng Yu, Xin-Sheng Tan, Shi-Ping Zhao, and Yang Yu, "Manipulation of superconducting qubit with direct digital synthesis", Chinese Physics B 28 9, 098505 (2019).

[92] Bibek Pokharel, Namit Anand, Benjamin Fortman, and Daniel A. Lidar, "Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits", Physical Review Letters 121 22, 220502 (2018).

[93] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O'Brien, "Low-cost error mitigation by symmetry verification", Physical Review A 98 6, 062339 (2018).

[94] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, and Cyril Allouche, Lecture Notes in Computer Science 11537, 3 (2019) ISBN:978-3-030-22740-1.

[95] Christopher Monroe, Michael G. Raymer, and Jacob Taylor, "The U.S. National Quantum Initiative: From Act to action", Science 364 6439, 440 (2019).

[96] Oscar Higgott, Daochen Wang, and Stephen Brierley, "Variational Quantum Computation of Excited States", Quantum 3, 156 (2019).

[97] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and Xiaodi Wu, "Quantitative robustness analysis of quantum programs", Proceedings of the ACM on Programming Languages 3 POPL, 1 (2019).

[98] Kosuke Mitarai, Tennin Yan, and Keisuke Fujii, "Generalization of the Output of a Variational Quantum Eigensolver by Parameter Interpolation with a Low-depth Ansatz", Physical Review Applied 11 4, 044087 (2019).

[99] Robert Wille, Rod Van Meter, and Yehuda Naveh, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1234 (2019) ISBN:978-3-9819263-2-3.

[100] Joel J. Wallman and Joseph Emerson, Quantum Information and Measurement (QIM) V: Quantum Technologies S3B.2 (2019) ISBN:978-1-943580-56-9.

[101] Vladimir M. Stojanović, "Feasibility of single-shot realizations of conditional three-qubit gates in exchange-coupled qubit arrays with local control", Physical Review A 99 1, 012345 (2019).

[102] Thomas E O’Brien, Brian Tarasinski, and Barbara M Terhal, "Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments", New Journal of Physics 21 2, 023022 (2019).

[103] Johanna Barzen and Frank Leymann, "Quantum humanities: a vision for quantum computing in digital humanities", SICS Software-Intensive Cyber-Physical Systems (2019).

[104] Clemens Dlaska, Lukas M. Sieberer, and Wolfgang Lechner, "Designing ground states of Hopfield networks for quantum state preparation", Physical Review A 99 3, 032342 (2019).

[105] Youngkyu Sung, Félix Beaudoin, Leigh M. Norris, Fei Yan, David K. Kim, Jack Y. Qiu, Uwe von Lüpke, Jonilyn L. Yoder, Terry P. Orlando, Simon Gustavsson, Lorenza Viola, and William D. Oliver, "Non-Gaussian noise spectroscopy with a superconducting qubit sensor", Nature Communications 10 1, 3715 (2019).

[106] Alwin Zulehner, Philipp Niemann, Rolf Drechsler, and Robert Wille, 2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL) 1 (2019) ISBN:978-1-7281-0092-0.

[107] Leo Rogers and John McAllister, Lecture Notes in Computer Science 11733, 348 (2019) ISBN:978-3-030-27561-7.

[108] Hai-Jin Ding and Re-Bing Wu, "Robust quantum control against clock noises in multiqubit systems", Physical Review A 100 2, 022302 (2019).

[109] Kosuke Mitarai and Keisuke Fujii, "Methodology for replacing indirect measurements with direct measurements", arXiv:1901.00015, Physical Review Research 1 1, 013006 (2019).

[110] Prabha Mandayam, Krishna Jagannathan, and Avhishek Chatterjee, 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 1 (2019) ISBN:978-1-5386-6528-2.

[111] Jonathan J. Burnett, Andreas Bengtsson, Marco Scigliuzzo, David Niepce, Marina Kudra, Per Delsing, and Jonas Bylander, "Decoherence benchmarking of superconducting qubits", npj Quantum Information 5 1, 54 (2019).

[112] Sam Morley-Short, Mercedes Gimeno-Segovia, Terry Rudolph, and Hugo Cable, "Loss-tolerant teleportation on large stabilizer states", Quantum Science and Technology 4 2, 025014 (2019).

[113] William A. Borders, Ahmed Z. Pervaiz, Shunsuke Fukami, Kerem Y. Camsari, Hideo Ohno, and Supriyo Datta, "Integer factorization using stochastic magnetic tunnel junctions", Nature 573 7774, 390 (2019).

[114] Gregory R. Steinbrecher, Jonathan P. Olson, Dirk Englund, and Jacques Carolan, "Quantum optical neural networks", npj Quantum Information 5 1, 60 (2019).

[115] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage, "Quantum-classical computation of Schwinger model dynamics using quantum computers", Physical Review A 98 3, 032331 (2018).

[116] Matthew Amy, Lecture Notes in Computer Science 11497, 87 (2019) ISBN:978-3-030-21499-9.

[117] Zhenyu Cai and Simon C. Benjamin, "Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels", Scientific Reports 9 1, 11281 (2019).

[118] Laszlo Gyongyosi and Sandor Imre, "Quantum circuit design for objective function maximization in gate-model quantum computers", Quantum Information Processing 18 7, 225 (2019).

[119] Asif Shakeel, "Neighborhood-history quantum walk", Physica Scripta 94 6, 065207 (2019).

[120] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh, Proceedings of the 56th Annual Design Automation Conference 2019 on - DAC '19 1 (2019) ISBN:9781450367257.

[121] Beni Yoshida and Norman Y. Yao, "Disentangling Scrambling and Decoherence via Quantum Teleportation", Physical Review X 9 1, 011006 (2019).

[122] Laszlo Gyongyosi and Sandor Imre, "Training Optimization for Gate-Model Quantum Neural Networks", Scientific Reports 9 1, 12679 (2019).

[123] Fei Yan, Abdullah M. Iliyasu, Sihao Jiao, and Huamin Yang, "Quantum Structure for Modelling Emotion Space of Robots", Applied Sciences 9 16, 3351 (2019).

[124] G. G. Guerreschi and A. Y. Matsuura, "QAOA for Max-Cut requires hundreds of qubits for quantum speed-up", Scientific Reports 9 1, 6903 (2019).

[125] S V Remizov, A A Zhukov, W V Pogosov, and Yu E Lozovik, "Radiation trapping effect versus superradiance in quantum simulation of light-matter interaction", Laser Physics Letters 16 6, 065205 (2019).

[126] Yipeng Huang and Margaret Martonosi, Proceedings of the 46th International Symposium on Computer Architecture - ISCA '19 541 (2019) ISBN:9781450366694.

[127] Will Powell, Jason Riedy, Jeffrey S. Young, and Thomas M. Conte, Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) - PEARC '19 1 (2019) ISBN:9781450372275.

[128] Jacques Carolan, Masoud Mosheni, Jonathan P. Olson, Mihika Prabhu, Changchen Chen, Darius Bunandar, Nicholas C. Harris, Franco N. C. Wong, Michael Hochberg, Seth Lloyd, and Dirk Englund, Conference on Lasers and Electro-Optics FTh3A.3 (2019) ISBN:978-1-943580-57-6.

[129] Jose P. Pinilla and Steven J. E. Wilton, Lecture Notes in Computer Science 11501, 121 (2019) ISBN:978-3-030-20655-0.

[130] Andrew Arrasmith, Lukasz Cincio, Andrew T. Sornborger, Wojciech H. Zurek, and Patrick J. Coles, "Variational consistent histories as a hybrid algorithm for quantum foundations", Nature Communications 10 1, 3438 (2019).

[131] Chungwei Lin, Yebin Wang, Grigory Kolesov, and Uroš Kalabić, "Application of Pontryagin's minimum principle to Grover's quantum search problem", Physical Review A 100 2, 022327 (2019).

[132] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C. Benjamin, and Xiao Yuan, "Variational ansatz-based quantum simulation of imaginary time evolution", npj Quantum Information 5 1, 75 (2019).

[133] Leonardo Novo, Shantanav Chakraborty, Masoud Mohseni, and Yasser Omar, "Environment-assisted analog quantum search", Physical Review A 98 2, 022316 (2018).

[134] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini, "Hierarchical quantum classifiers", npj Quantum Information 4, 65 (2018).

[135] Seth Lloyd and Christian Weedbrook, "Quantum Generative Adversarial Learning", Physical Review Letters 121 4, 040502 (2018).

[136] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402.

[137] Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun Shi, "Classical Simulation of Intermediate-Size Quantum Circuits", arXiv:1805.01450.

[138] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", arXiv:1812.09976.

[139] K. Bertels, I. Ashraf, R. Nane, S. Varsamopoulos, A. Mouedenne, A. Sarkar, and N. Khammassi, "Quantum Computer Architecture: Towards Full-Stack Quantum Accelerators", arXiv:1903.09575.

[140] Aram Harrow and John Napp, "Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms", arXiv:1901.05374.

[141] Eric R. Anschuetz, Jonathan P. Olson, Alán Aspuru-Guzik, and Yudong Cao, "Variational Quantum Factoring", arXiv:1808.08927.

[142] Yunseong Nam, Jwo-Sy Chen, Neal C. Pisenti, Kenneth Wright, Conor Delaney, Dmitri Maslov, Kenneth R. Brown, Stewart Allen, Jason M. Amini, Joel Apisdorf, Kristin M. Beck, Aleksey Blinov, Vandiver Chaplin, Mika Chmielewski, Coleman Collins, Shantanu Debnath, Andrew M. Ducore, Kai M. Hudek, Matthew Keesan, Sarah M. Kreikemeier, Jonathan Mizrahi, Phil Solomon, Mike Williams, Jaime David Wong-Campos, Christopher Monroe, and Jungsang Kim, "Ground-state energy estimation of the water molecule on a trapped ion quantum computer", arXiv:1902.10171.

[143] James Stokes and John Terilla, "Probabilistic Modeling with Matrix Product States", arXiv:1902.06888.

[144] Jonathan Romero and Alan Aspuru-Guzik, "Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions", arXiv:1901.00848.

[145] Pierre-Luc Dallaire-Demers and Nathan Killoran, "Quantum generative adversarial networks", Physical Review A 98 1, 012324 (2018).

[146] Jacob Biamonte, "Universal Variational Quantum Computation", arXiv:1903.04500.

[147] Zhang Jiang, Jarrod McClean, Ryan Babbush, and Hartmut Neven, "Majorana loop stabilizer codes for error correction of fermionic quantum simulations", arXiv:1812.08190.

[148] Neal Solmeyer, Norbert M. Linke, Caroline Figgatt, Kevin A. Landsman, Radhakrishnan Balu, George Siopsis, and C. Monroe, "Demonstration of a Bayesian quantum game on an ion-trap quantum computer", Quantum Science and Technology 3 4, 045002 (2018).

[149] Xun Gao and Luming Duan, "Efficient classical simulation of noisy quantum computation", arXiv:1810.03176.

[150] Bryan O'Gorman, William J. Huggins, Eleanor G. Rieffel, and K. Birgitta Whaley, "Generalized swap networks for near-term quantum computing", arXiv:1905.05118.

[151] Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, and Lei Wang, "Variational Quantum Eigensolver with Fewer Qubits", arXiv:1902.02663.

[152] Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Meter, "Extracting Success from IBM's 20-Qubit Machines Using Error-Aware Compilation", arXiv:1903.10963.

[153] Jarrod R. McClean, Zhang Jiang, Nicholas C. Rubin, Ryan Babbush, and Hartmut Neven, "Decoding quantum errors with subspace expansions", arXiv:1903.05786.

[154] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao, "The Expressive Power of Parameterized Quantum Circuits", arXiv:1810.11922.

[155] Gushu Li, Yufei Ding, and Yuan Xie, "Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices", arXiv:1809.02573.

[156] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and J. I. Cirac, "Analog quantum chemistry simulation", arXiv:1807.09228.

[157] Mohammad H. Ansari, "Exact quantization of superconducting circuits", arXiv:1807.00792.

[158] Ian C. Cloët, Matthew R. Dietrich, John Arrington, Alexei Bazavov, Michael Bishof, Adam Freese, Alexey V. Gorshkov, Anna Grassellino, Kawtar Hafidi, Zubin Jacob, Michael McGuigan, Yannick Meurice, Zein-Eddine Meziani, Peter Mueller, Christine Muschik, James Osborn, Matthew Otten, Peter Petreczky, Tomas Polakovic, Alan Poon, Raphael Pooser, Alessandro Roggero, Mark Saffman, Brent VanDevender, Jiehang Zhang, and Erez Zohar, "Opportunities for Nuclear Physics & Quantum Information Science", arXiv:1903.05453.

[159] Victor V. Albert, Kyungjoo Noh, Kasper Duivenvoorden, Dylan J. Young, R. T. Brierley, Philip Reinhold, Christophe Vuillot, Linshu Li, Chao Shen, S. M. Girvin, Barbara M. Terhal, and Liang Jiang, "Performance and structure of single-mode bosonic codes", Physical Review A 97 3, 032346 (2018).

[160] Brian Coyle, Daniel Mills, Vincent Danos, and Elham Kashefi, "The Born Supremacy: Quantum Advantage and Training of an Ising Born Machine", arXiv:1904.02214.

[161] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio Mezzacapo, Stefan Filipp, and Ivano Tavernelli, "Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions", Physical Review A 98 2, 022322 (2018).

[162] Ming-Cheng Chen, Riling Li, Lin Gan, Xiaobo Zhu, Guangwen Yang, Chao-Yang Lu, and Jian-Wei Pan, "Quantum Teleportation-Inspired Algorithm for Sampling Large Random Quantum Circuits", arXiv:1901.05003.

[163] Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu, "Sublinear quantum algorithms for training linear and kernel-based classifiers", arXiv:1904.02276.

[164] Prakash Murali, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi, "Formal Constraint-based Compilation for Noisy Intermediate-Scale Quantum Systems", arXiv:1903.03276.

[165] Abhinav Kandala, Kristan Temme, Antonio D. Corcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta, "Extending the computational reach of a noisy superconducting quantum processor", arXiv:1805.04492.

[166] Brian Swingle and Nicole Yunger Halpern, "Resilience of scrambling measurements", Physical Review A 97 6, 062113 (2018).

[167] Valery Shchesnovich, "Quantum advantage with noisy boson sampling and density of bosons", arXiv:1905.11458.

[168] Swamit S. Tannu and Moinuddin K. Qureshi, "A Case for Variability-Aware Policies for NISQ-Era Quantum Computers", arXiv:1805.10224.

[169] Seth Lloyd and Reevu Maity, "Efficient implementation of unitary transformations", arXiv:1901.03431.

[170] Guillaume Verdon, Jason Pye, and Michael Broughton, "A Universal Training Algorithm for Quantum Deep Learning", arXiv:1806.09729.

[171] Valery Shchesnovich, "On the classical complexity of sampling from quantum interference of indistinguishable bosons", arXiv:1904.02013.

[172] Ryan Bennink, Ajay Jasra, Kody J. H. Law, and Pavel Lougovski, "Estimation and uncertainty quantification for the output from quantum simulators", arXiv:1903.02964.

[173] Xilin Zhang, "Extracting free-space observables from trapped interacting clusters", arXiv:1905.05275.

[174] Oleksandr Kyriienko, "Quantum inverse iteration algorithm for near-term quantum devices", arXiv:1901.09988.

[175] Adam Smith, M. S. Kim, Frank Pollmann, and Johannes Knolle, "Simulating quantum many-body dynamics on a current digital quantum computer", arXiv:1906.06343.

[176] Siddhartha Das, "Bipartite Quantum Interactions: Entangling and Information Processing Abilities", arXiv:1901.05895.

[177] P. A. M. Casares and M. A. Martin-Delgado, "A Quantum IP Predictor-Corrector Algorithm for Linear Programming", arXiv:1902.06749.

[178] F. Tacchino, A. Chiesa, M. D. LaHaye, I. Tavernelli, S. Carretta, and D. Gerace, "Digital Quantum Simulations of Spin Models on Hybrid Platform and Near-Term Quantum Processors", arXiv:1902.04971.

[179] David P. Franke, James S. Clarke, Lieven M. K. Vandersypen, and Menno Veldhorst, "Rent's rule and extensibility in quantum computing", arXiv:1806.02145.

[180] Tianyi Peng, Aram Harrow, Maris Ozols, and Xiaodi Wu, "Simulating large quantum circuits on a small quantum computer", arXiv:1904.00102.

[181] Wolfgang Lechner, "Quantum Approximate Optimization with Parallelizable Gates", arXiv:1802.01157.

[182] Juan Carrasquilla, Giacomo Torlai, Roger G. Melko, and Leandro Aolita, "Reconstructing quantum states with generative models", arXiv:1810.10584.

[183] Salonik Resch and Ulya R. Karpuzcu, "Quantum Computing: An Overview Across the System Stack", arXiv:1905.07240.

[184] Sergey Novikov, Robert Hinkey, Steven Disseler, James I. Basham, Tameem Albash, Andrew Risinger, David Ferguson, Daniel A. Lidar, and Kenneth M. Zick, "Exploring More-Coherent Quantum Annealing", arXiv:1809.04485.

[185] Yuxuan Du, Min-Hsiu Hsieh, and Dacheng Tao, "Efficient Online Quantum Generative Adversarial Learning Algorithms with Applications", arXiv:1904.09602.

[186] Tameem Albash and Daniel A. Lidar, "Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing", Physical Review X 8 3, 031016 (2018).

[187] Mark Fingerhuth, Tomáš Babej, and Christopher Ing, "A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding", arXiv:1810.13411.

[188] Alexander McCaskey, Eugene Dumitrescu, Mengsu Chen, Dmitry Lyakh, and Travis Humble, "Validating quantum-classical programming models with tensor network simulations", PLoS ONE 13 12, e0206704 (2018).

[189] Ulysse Chabaud, Tom Douce, Frédéric Grosshans, Elham Kashefi, and Damian Markham, "Building trust for continuous variable quantum states", arXiv:1905.12700.

[190] Ruslan Shaydulin, Caleb Thomas, and Paige Rodeghero, "Making Quantum Computing Open: Lessons from Open-Source Projects", arXiv:1902.00991.

[191] Yanzhu Chen, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei, "Detector Tomography on IBM 5-qubit Quantum Computers and Mitigation of Imperfect Measurement", arXiv:1904.11935.

[192] Xiao Yuan, Suguru Endo, Qi Zhao, Simon Benjamin, and Ying Li, "Theory of variational quantum simulation", arXiv:1812.08767.

[193] J. Preskill, "Simulating quantum field theory with a quantum computer", The 36th Annual International Symposium on Lattice Field Theory. 22-28 July 24 (2018).

[194] C. M. Wilson, J. S. Otterbach, N. Tezak, R. S. Smith, G. E. Crooks, and M. P. da Silva, "Quantum Kitchen Sinks: An algorithm for machine learning on near-term quantum computers", arXiv:1806.08321.

[195] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo, "Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions", arXiv:1711.05395, Physical Review Applied 9 4, 044036 (2018).

[196] Marina Radulaski, Jingyuan Linda Zhang, Yan-Kai Tzeng, Konstantinos G. Lagoudakis, Hitoshi Ishiwata, Constantin Dory, Kevin A. Fischer, Yousif A. Kelaita, Shuo Sun, Peter C. Maurer, Kassem Alassaad, Gabriel Ferro, Zhi-Xun Shen, Nicholas Melosh, Steven Chu, and Jelena Vučković, "Nanodiamond integration with photonic devices", arXiv:1610.03183.

[197] Johannes S. Otterbach, "Optimizing Variational Quantum Circuits using Evolution Strategies", arXiv:1806.04344.

[198] Kaitlin Smith, Mathias Soeken, Bruno Schmitt, Giovanni De Micheli, and Mitchell Thornton, "Using ZDDs in the mapping of quantum circuits", arXiv:1901.02406.

[199] Frederic Bapst, Wahid Bhimji, Paolo Calafiura, Heather Gray, Wim Lavrijsen, and Lucy Linder, "A pattern recognition algorithm for quantum annealers", arXiv:1902.08324.

[200] Juan Miguel Arrazola, Thomas R. Bromley, and Patrick Rebentrost, "Quantum approximate optimization with Gaussian boson sampling", Physical Review A 98 1, 012322 (2018).

[201] Omar Shehab, Isaac H. Kim, Nhung H. Nguyen, Kevin Landsman, Cinthia H. Alderete, Daiwei Zhu, C. Monroe, and Norbert M. Linke, "Noise reduction using past causal cones in variational quantum algorithms", arXiv:1906.00476.

[202] Freek Witteveen, Volkher Scholz, Brian Swingle, and Michael Walter, "Quantum circuit approximations and entanglement renormalization for the Dirac field in 1+1 dimensions", arXiv:1905.08821.

[203] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete, "Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights", arXiv:1905.11349.

[204] A. Garcia-Saez and J. I. Latorre, "Addressing hard classical problems with Adiabatically Assisted Variational Quantum Eigensolvers", arXiv:1806.02287.

[205] Suguru Endo, Ying Li, Simon Benjamin, and Xiao Yuan, "Variational quantum simulation of general processes", arXiv:1812.08778.

[206] Ali Mortezapour and Rosario Lo Franco, "Protecting quantum resources via frequency modulation of qubits in leaky cavities", Scientific Reports 8, 14304 (2018).

[207] Cupjin Huang, Michael Newman, and Mario Szegedy, "Explicit lower bounds on strong quantum simulation", arXiv:1804.10368.

[208] Gushu Li, Yufei Ding, and Yuan Xie, "SANQ: A Simulation Framework for Architecting Noisy Intermediate-Scale Quantum Computing System", arXiv:1904.11590.

[209] Olivier Pfister, "Continuous-variable quantum computing in the quantum optical frequency comb", arXiv:1907.09832.

[210] Cristian S. Calude and Elena Calude, "The Road to Quantum Computational Supremacy", arXiv:1712.01356.

[211] Alexandru Paler, "SurfBraid: A concept tool for preparing and resource estimating quantum circuits protected by the surface code", arXiv:1902.02417.

[212] Aniruddha Bapat and Stephen Jordan, "Bang-bang control as a design principle for classical and quantum optimization algorithms", arXiv:1812.02746.

[213] Ciarán Ryan-Anderson, "Quantum Algorithms, Architecture, and Error Correction", arXiv:1812.04735.

[214] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev, "Network Community Detection On Small Quantum Computers", arXiv:1810.12484.

[215] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, "eQASM: An Executable Quantum Instruction Set Architecture", arXiv:1808.02449.

[216] Alwin Zulehner and Robert Wille, "Compiling SU(4) Quantum Circuits to IBM QX Architectures", arXiv:1808.05661.

[217] Javier Gil Vidal and Dirk Oliver Theis, "Calculus on parameterized quantum circuits", arXiv:1812.06323.

[218] Kentaro Heya, Yasunari Suzuki, Yasunobu Nakamura, and Keisuke Fujii, "Variational Quantum Gate Optimization", arXiv:1810.12745.

[219] V. O. Shkolnikov and Guido Burkard, "Effective Hamiltonian theory of the geometric evolution of quantum systems", arXiv:1810.00193.

[220] Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic T. Chong, "Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures", arXiv:1809.01302.

[221] Kostyantyn Kechedzhi, Vadim Smelyanskiy, Jarrod R. McClean, Vasil S. Denchev, Masoud Mohseni, Sergei Isakov, Sergio Boixo, Boris Altshuler, and Hartmut Neven, "Efficient population transfer via non-ergodic extended states in quantum spin glass", arXiv:1807.04792.

[222] Zhong-Xiao Man, Yun-Jie Xia, and Rosario Lo Franco, "Temperature effects on quantum non-Markovianity via collision models", Physical Review A 97 6, 062104 (2018).

[223] Dorit Aharonov and Leo Zhou, "Hamiltonian sparsification and gap-simulations", arXiv:1804.11084.

[224] Ruslan Shaydulin, Ilya Safro, and Jeffrey Larson, "Multistart Methods for Quantum Approximate Optimization", arXiv:1905.08768.

[225] Ajinkya Borle and Josh McCarter, "On Post-Processing the Results of Quantum Optimizers", arXiv:1905.13107.

[226] Yuxuan Du, Tongliang Liu, and Dacheng Tao, "Bayesian Quantum Circuit", arXiv:1805.11089.

[227] Ramis Movassagh, "Efficient unitary paths and quantum computational supremacy: A proof of average-case hardness of Random Circuit Sampling", arXiv:1810.04681.

[228] Patrick Rall, "Simulating Quantum Circuits by Shuffling Paulis", arXiv:1804.05404.

[229] Iskren Vankov, Daniel Mills, Petros Wallden, and Elham Kashefi, "Methods for Classically Simulating Noisy Networked Quantum Architectures", arXiv:1803.04167.

[230] Keisuke Fujii, "Quantum speedup in stoquastic adiabatic quantum computation", arXiv:1803.09954.

[231] Adam Holmes, Yongshan Ding, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic T. Chong, "Resource Optimized Quantum Architectures for Surface Code Implementations of Magic-State Distillation", arXiv:1904.11528.

[232] Gavin E. Crooks, "Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition", arXiv:1905.13311.

[233] Alexandru Paler, Alwin Zulehner, and Robert Wille, "NISQ circuit compilers: search space structure and heuristics", arXiv:1806.07241.

[234] Xi Chen, Bin Cheng, Zhaokai Li, Xinfang Nie, Nengkun Yu, Man-Hong Yung, and Xinhua Peng, "Experimental Cryptographic Verification for Near-Term Quantum Cloud Computing", arXiv:1808.07375.

[235] Yosi Atia, Yonathan Oren, and Nadav Katz, "Robust Diabatic Quantum Search by Landau-Zener-Stückelberg Oscillations", arXiv:1811.04636.

[236] Stefano Gandolfi, "Cloud Quantum Computing Tackles Simple Nucleus", Physics Online Journal 11, 51 (2018).

[237] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev, "Community Detection Across Emerging Quantum Architectures", arXiv:1810.07765.

[238] Taewan Kim and Byung-Soo Choi, "Efficient decomposition methods for controlled-R<SUB>n</SUB> using a single ancillary qubit", Scientific Reports 8, 5445 (2018).

[239] Guillaume Verdon, Michael Broughton, Jarrod R. McClean, Kevin J. Sung, Ryan Babbush, Zhang Jiang, Hartmut Neven, and Masoud Mohseni, "Learning to learn with quantum neural networks via classical neural networks", arXiv:1907.05415.

[240] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo, "Optimization of Quantum Circuit Mapping using Gate Transformation and Commutation", arXiv:1907.02686.

[241] Abdullah Ash Saki, Mahabubul Alam, and Swaroop Ghosh, "Study of Decoherence in Quantum Computers: A Circuit-Design Perspective", arXiv:1904.04323.

[242] Anurag Mishra and Alireza Shabani, "High-Quality Protein Force Fields with Noisy Quantum Processors", arXiv:1907.07128.

[243] Narayanan Rengaswamy, Robert Calderbank, Swanand Kadhe, and Henry D. Pfister, "Logical Clifford Synthesis for Stabilizer Codes", arXiv:1907.00310.

[244] Lasse Bjørn Kristensen, Matthias Degroote, Peter Wittek, Alán Aspuru-Guzik, and Nikolaj T. Zinner, "An Artificial Spiking Quantum Neuron", arXiv:1907.06269.

[245] Jiayin Chen and Hendra I. Nurdin, "Learning nonlinear input-output maps with dissipative quantum systems", Quantum Information Processing 18 7, 198 (2019).

[246] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta, "Supervised learning with quantum-enhanced feature spaces", Nature 567 7747, 209 (2019).

[247] Ling Hu, Shu-Hao Wu, Weizhou Cai, Yuwei Ma, Xianghao Mu, Yuan Xu, Haiyan Wang, Yipu Song, Dong-Ling Deng, Chang-Ling Zou, and Luyan Sun, "Quantum generative adversarial learning in a superconducting quantum circuit", Science Advances 5 1, eaav2761 (2019).

[248] Matthew Otten and Stephen K. Gray, "Accounting for errors in quantum algorithms via individual error reduction", npj Quantum Information 5, 11 (2019).

[249] Tameem Albash, Victor Martin-Mayor, and Itay Hen, "Analog errors in Ising machines", Quantum Science and Technology 4 2, 02LT03 (2019).

[250] V. E. Zobov and I. S. Pichkovskiy, "Sequences of selective rotation operators to engineer interactions for quantum annealing on three qutrits", Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 11022, 110222V (2019).

[251] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta, "Error mitigation extends the computational reach of a noisy quantum processor", Nature 567 7749, 491 (2019).

[252] Justin E. Christensen, David Hucul, Wesley C. Campbell, and Eric R. Hudson, "High fidelity manipulation of a qubit built from a synthetic nucleus", arXiv:1907.13331.

[253] Ramis Movassagh, "Cayley path and quantum computational supremacy: A proof of average-case $\#P-$hardness of Random Circuit Sampling with quantified robustness", arXiv:1909.06210.

[254] Kyle Cormier, Riccardo Di Sipio, and Peter Wittek, "Unfolding as Quantum Annealing", arXiv:1908.08519.

[255] Anton Robert, Panagiotis Kl. Barkoutsos, Stefan Woerner, and Ivano Tavernelli, "Resource-Efficient Quantum Algorithm for Protein Folding", arXiv:1908.02163.

[256] Travis L. Scholten, Yi-Kai Liu, Kevin Young, and Robin Blume-Kohout, "Classifying single-qubit noise using machine learning", arXiv:1908.11762.

The above citations are from Crossref's cited-by service (last updated 2019-09-22 02:36:18) and SAO/NASA ADS (last updated 2019-09-22 02:36:20). The list may be incomplete as not all publishers provide suitable and complete citation data.