Quantum Computing in the NISQ era and beyond

John Preskill

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.

► BibTeX data

► References

[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41, 303-332 (1999), 10.1137/​S0036144598347011.
https:/​/​doi.org/​10.1137/​S0036144598347011

[2] A. P. Lund, M. J. Bremner, and T. C. Ralph, Quantum sampling problems, BosonSampling, and quantum supremacy, npj Quantum Information 3: 15 (2017), arXiv:1702.03061, 10.1038/​s41534-017-0018-2.
https:/​/​doi.org/​10.1038/​s41534-017-0018-2
arXiv:1702.03061

[3] A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549, 203-209 (2017), 10.1038/​nature23458.
https:/​/​doi.org/​10.1038/​nature23458

[4] S. P. Jordan, Quantum algorithm zoo, http:/​/​math.nist.gov/​quantum/​zoo/​.
http:/​/​math.nist.gov/​quantum/​zoo/​

[5] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information, 15023 (2016), arXiv:1511.04206, 10.1038/​npjqi.2015.23.
https:/​/​doi.org/​10.1038/​npjqi.2015.23
arXiv:1511.04206

[6] L. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325 (1997), arXiv:quant-ph/​9706033, 10.1103/​PhysRevLett.79.325.
https:/​/​doi.org/​10.1103/​PhysRevLett.79.325
arXiv:quant-ph/9706033

[7] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26, 1510-1523 (1997), arXiv:quant-ph/​9701001, 10.1137/​S0097539796300933.
https:/​/​doi.org/​10.1137/​S0097539796300933
arXiv:quant-ph/9701001

[8] R. B. Laughlin and D. Pines, The theory of everything, PNAS 97, 28-31 (2000), 10.1073/​pnas.97.1.28.
https:/​/​doi.org/​10.1073/​pnas.97.1.28

[9] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Physics 21, 467-488 (1982).

[10] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Proceedings of Symposia in Applied Matthematics 68 (2010), arXiv:0904.2557.
arXiv:0904.2557

[11] S. Boixo, S. V. Isakov, V. N. Smelyansky, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nature Physics 14, 595-600 (2018), arXiv:1608.00263 (2016), 10.1038/​s41567-018-0124-x.
https:/​/​doi.org/​10.1038/​s41567-018-0124-x
arXiv:1608.00263

[12] S. Aaronson and L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, arXiv:1612.05903 (2017).
arXiv:1612.05903

[13] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, and R. Wisnieff, Breaking the 49-qubit barrier in the simulation of quantum circuits, arXiv:1710.05867 (2017).
arXiv:1710.05867

[14] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits, Phys. Rev. Lett. 117, 060504 (2016), arXiv:1512.04600, 10.1103/​PhysRevLett.117.060504.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.060504
arXiv:1512.04600

[15] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508, 500-503 (2014), arXiv:1402.4848, 10.1038/​nature13171.
https:/​/​doi.org/​10.1038/​nature13171
arXiv:1402.4848

[16] D. J. Bernstein, J. Buchmann, E. Dahmen, editors, Post-Quantum Cryptography, Springer (2009), 10.1007/​978-3-540-88702-7.
https:/​/​doi.org/​10.1007/​978-3-540-88702-7

[17] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, and A. Zeilinger, Using quantum key distribution for cryptographic purposes: a survey, Theoretical Computer Science 560, 62-81 (2014), arXiv:quant-ph/​0701168, 10.1016/​j.tcs.2014.09.018.
https:/​/​doi.org/​10.1016/​j.tcs.2014.09.018
arXiv:quant-ph/0701168

[18] S. Muralidharan, L. Li, J. Kim, N Lütkenhaus, M. D. Lukin, and L. Jiang, Efficient long distance quantum communication, Scientific Reports 6, 20463 (2016), arXiv:1509.08435, 10.1038/​srep20463.
https:/​/​doi.org/​10.1038/​srep20463
arXiv:1509.08435

[19] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, M. J. Stevens, and L. K. Shalm, Experimentally generated randomness certified by the impossibility of superluminal signals, Nature 556, 223-226 (2018), arXiv:1803.06219, 10.1038/​s41586-018-0019-0.
https:/​/​doi.org/​10.1038/​s41586-018-0019-0
arXiv:1803.06219

[20] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick, Certifiable randomness from a single quantum device, arXiv:1804.00640 (2018).
arXiv:1804.00640

[21] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017), arXiv:1611.04691, 10.1103/​RevModPhys.89.035002.
https:/​/​doi.org/​10.1103/​RevModPhys.89.035002
arXiv:1611.04691

[22] J. Preskill, Quantum computing and the entanglement frontier, 25th Solvay Conference on Physics (2011), arXiv:1203.5813.
arXiv:1203.5813

[23] S. Khot, Hardness of approximation, Proceedings of the International Congress of Mathematicians (2014).

[24] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028 (2014).
arXiv:1411.4028

[25] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms, New J. Phys. 18, 023023 (2016), arXiv:1509.04279, 10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213
arXiv:1509.04279

[26] D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, Journal of the ACM 51, 385-463 (2004), arXiv:cs/​0111050, 10.1145/​990308.990310.
https:/​/​doi.org/​10.1145/​990308.990310
arXiv:cs/0111050

[27] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436-444 (2015), 10.1038/​nature14539.
https:/​/​doi.org/​10.1038/​nature14539

[28] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining and detecting quantum speedup, Science 345, 420-424 (2014), 10.1126/​science.1252319.
https:/​/​doi.org/​10.1126/​science.1252319

[29] S. Mandrà, H. G. Katzgraber, and C. Thomas, The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again), Quantum Sci. Technol. 2, 038501 (2017), arXiv:1703.00622, 10.1088/​2058-9565/​aa7877.
https:/​/​doi.org/​10.1088/​2058-9565/​aa7877
arXiv:1703.00622

[30] T. Albash and D. A. Lidar, Adiabatic quantum computing, Rev. Mod. Phys. 90, 015002 (2018), arXiv:1611.04471, 10.1103/​RevModPhys.90.015002.
https:/​/​doi.org/​10.1103/​RevModPhys.90.015002
arXiv:1611.04471

[31] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, SIAM Rev. 50, 755-787 (2008), arXiv:quant-ph/​0405098.
arXiv:quant-ph/0405098

[32] S. Bravyi, D. DiVincenzo, R. I. Oliveira, and B. M. Terhal, The complexity of stoquastic local Hamiltonian problems, Quant. Inf. Comp. 8, 0361-0385 (2008), arXiv:quant-ph/​0606140.
arXiv:quant-ph/0606140

[33] M. Jarret, S. P. Jordan, and B. Lackey, Adiabatic optimization versus diffusion Monte Carlo, Phys. Rev. A 94, 042318 (2016), arXiv:1607.03389, 10.1103/​PhysRevA.94.042318.
https:/​/​doi.org/​10.1103/​PhysRevA.94.042318
arXiv:1607.03389

[34] A. D. King, J. Carrasquilla, I. Ozfidan, J. Raymond, E. Andriyash, A. Berkley, M. Reis, T. M. Lanting, R. Harris, G. Poulin-Lamarre, A. Yu. Smirnov, C. Rich, F. Altomare, P. Bunyk, J. Whittaker, L. Swenson, E. Hoskinson, Y. Sato, M. Volkmann, E. Ladizinsky, M. Johnson, J. Hilton, and M. H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits, arXiv:1803.02047 (2018).
arXiv:1803.02047

[35] I. H. Kim, Noise-resilient preparation of quantum many-body ground states, arXiv:1703.00032 (2017).
arXiv:1703.00032

[36] I. H. Kim and B. Swingle, Robust entanglement renormalization on a noisy quantum computer, arXiv:1711.07500 (2017).
arXiv:1711.07500

[37] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549, 195-202 (2017), arXiv:1611.09347, 10.1038/​nature23474.
https:/​/​doi.org/​10.1038/​nature23474
arXiv:1611.09347

[38] S. Aaronson, Read the fine print, Nature Physics 11, 291-293 (2015), 10.1038/​nphys3272.
https:/​/​doi.org/​10.1038/​nphys3272

[39] X. Gao, Z. Zhang, and L. Duan, An efficient quantum algorithm for generative machine learning, arXiv:1711.02038 (2017).
arXiv:1711.02038

[40] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009), arXiv:0811.3171, 10.1103/​PhysRevLett.103.150502.
https:/​/​doi.org/​10.1103/​PhysRevLett.103.150502
arXiv:0811.3171

[41] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Preconditioned quantum linear system algorithm, Phys. Rev. Lett. 110, 250504 (2013), arXiv:1301.2340, 10.1103/​PhysRevLett.110.250504.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.250504
arXiv:1301.2340

[42] A. Montanaro and S. Pallister, Quantum algorithms and the finite element method, Phys. Rev. A 93, 032324 (2016), arXiv:1512.05903, 10.1103/​PhysRevA.93.032324.
https:/​/​doi.org/​10.1103/​PhysRevA.93.032324
arXiv:1512.05903

[43] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum algorithm for simulating the wave equation, arXiv:1711.05394 (2017).
arXiv:1711.05394

[44] I. Kerenidis and A. Prakash, Quantum recommendation systems, arXiv:1603.08675 (2016).
arXiv:1603.08675

[45] E. Tang, A quantum-inspired classical algorithm for recommendation systems, Electronic Colloquium on Computational Complexity, TR18-12 (2018).

[46] F. G. S. L. Brandão and K. Svore, Quantum speed-ups for semidefinite programming, Proceedings of FOCS 2017, arXiv:1609.05537 (2017).
arXiv:1609.05537

[47] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and X. Wu, Exponential quantum speed-ups for semidefinite programming with applications to quantum learning, arXiv:1710.02581 (2017).
arXiv:1710.02581

[48] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction mechanisms on quantum computers, PNAS 117, 7555-7560 (2017), arXiv:1605.03590, 10.1073/​pnas.1619152114.
https:/​/​doi.org/​10.1073/​pnas.1619152114
arXiv:1605.03590

[49] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer, Solving strongly correlated electron models on a quantum computer, Phys. Rev. A 92, 062310 (2015), arXiv:1506.05135, 10.1103/​PhysRevA.92.062318.
https:/​/​doi.org/​10.1103/​PhysRevA.92.062318
arXiv:1506.05135

[50] J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, A. Aspuru-Guzik, Quantum information and computation for chemistry, NSF Workshop Report, arXiv:1706.05413 (2017).
arXiv:1706.05413

[51] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V Vuletić, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551, 579-584 (2017), arXiv:1707.04344, 10.1038/​nature24622.
https:/​/​doi.org/​10.1038/​nature24622
arXiv:1707.04344

[52] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, arXiv:1708.01044 (2017), 10.1038/​nature24654.
https:/​/​doi.org/​10.1038/​nature24654
arXiv:1708.01044

[53] E. T. Campbell, B. M. Terhal, and C. Vuillot, The steep road towards robust and universal quantum computation, arXiv:1612.07330 (2016).
arXiv:1612.07330

[54] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A 94, 052325 (2016), arXiv:1512:01098, 10.1103/​PhysRevA.94.052325.
https:/​/​doi.org/​10.1103/​PhysRevA.94.052325
arXiv:1512

[55] J. Combes, C. Granade, C. Ferrie, and S. T. Flammia, Logical randomized benchmarking, arXiv:1702.03688 (2017).
arXiv:1702.03688

[56] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012), arXiv:1208.0928, 10.1103/​PhysRevA.86.032324.
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324
arXiv:1208.0928

[57] S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1, 15001 (2015), arXiv:1501.02813, 10.1038/​npjqi.2015.1.
https:/​/​doi.org/​10.1038/​npjqi.2015.1
arXiv:1501.02813

Cited by

[1] Patrick Rall, Daniel Liang, Jeremy Cook, and William Kretschmer, "Simulation of qubit quantum circuits via Pauli propagation", Physical Review A 99 6, 062337 (2019).

[2] Daiqin Su, Krishna Kumar Sabapathy, Casey R. Myers, Haoyu Qi, Christian Weedbrook, and Kamil Brádler, "Implementing quantum algorithms on temporal photonic cluster states", Physical Review A 98 3, 032316 (2018).

[3] Yiğit Subaşı, Lukasz Cincio, and Patrick J Coles, "Entanglement spectroscopy with a depth-two quantum circuit", Journal of Physics A: Mathematical and Theoretical 52 4, 044001 (2019).

[4] Eyal Bairey, Itai Arad, and Netanel H. Lindner, "Learning a Local Hamiltonian from Local Measurements", Physical Review Letters 122 2, 020504 (2019).

[5] Pranav Gokhale, Jonathan M. Baker, Casey Duckering, Natalie C. Brown, Kenneth R. Brown, and Frederic T. Chong, Proceedings of the 46th International Symposium on Computer Architecture - ISCA '19 554 (2019) ISBN:9781450366694.

[6] Marcello Benedetti, Edward Grant, Leonard Wossnig, and Simone Severini, "Adversarial quantum circuit learning for pure state approximation", New Journal of Physics 21 4, 043023 (2019).

[7] Jin-Guo Liu and Lei Wang, "Differentiable learning of quantum circuit Born machines", Physical Review A 98 6, 062324 (2018).

[8] Xavier Waintal, "What determines the ultimate precision of a quantum computer", Physical Review A 99 4, 042318 (2019).

[9] Subhayan Sahu and Shasanka M. Roy, "Maximal entanglement and state transfer using Arthurs–Kelly type interaction for qubits", The European Physical Journal D 72 12, 211 (2018).

[10] Shihao Zhang, Pengyun Li, Bo Wang, Qiang Zeng, and Xiangdong Zhang, "Implementation of quantum permutation algorithm with classical light", Journal of Physics Communications 3 1, 015008 (2019).

[11] Wen Wei Ho, Cheryne Jonay, and Timothy H. Hsieh, "Ultrafast variational simulation of nontrivial quantum states with long-range interactions", Physical Review A 99 5, 052332 (2019).

[12] Mark Fingerhuth, Tomáš Babej, Peter Wittek, and Leonie Anna Mueck, "Open source software in quantum computing", PLOS ONE 13 12, e0208561 (2018).

[13] Natalie Klco and Martin J. Savage, "Digitization of scalar fields for quantum computing", Physical Review A 99 5, 052335 (2019).

[14] Sam McArdle, Xiao Yuan, and Simon Benjamin, "Error-Mitigated Digital Quantum Simulation", Physical Review Letters 122 18, 180501 (2019).

[15] Damian S. Steiger, Thomas Häner, and Matthias Troyer, "Advantages of a modular high-level quantum programming framework", Microprocessors and Microsystems 66, 81 (2019).

[16] Colin D. Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M. Sage, "Trapped-ion quantum computing: Progress and challenges", Applied Physics Reviews 6 2, 021314 (2019).

[17] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, "Mitigating algorithmic errors in a Hamiltonian simulation", Physical Review A 99 1, 012334 (2019).

[18] Benjamin D. M. Jones, David R. White, George O. O'Brien, John A. Clark, and Earl T. Campbell, Proceedings of the Genetic and Evolutionary Computation Conference on - GECCO '19 1223 (2019) ISBN:9781450361118.

[19] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Christian F. A. Negre, Ilya Safro, Susan M. Mniszewski, and Yuri Alexeev, "A Hybrid Approach for Solving Optimization Problems on Small Quantum Computers", Computer 52 6, 18 (2019).

[20] Alexandru Paler, Daniel Herr, and Simon J. Devitt, "Really Small Shoe Boxes: On Realistic Quantum Resource Estimation", Computer 52 6, 27 (2019).

[21] Angad Kalra, Faisal I Qureshi, and Michael Tisi, "Portfolio Asset Identification Using Graph Algorithms on a Quantum Annealer", SSRN Electronic Journal (2018).

[22] Alwin Zulehner, Hartwig Bauer, and Robert Wille, Lecture Notes in Computer Science 11497, 171 (2019) ISBN:978-3-030-21499-9.

[23] Stefan Krastanov, Victor V. Albert, and Liang Jiang, "Optimized Entanglement Purification", Quantum 3, 123 (2019).

[24] Göran Wendin, "Can Biological Quantum Networks Solve NP-Hard Problems?", Advanced Quantum Technologies 1800081 (2019).

[25] Marek Pechal, Patricio Arrangoiz-Arriola, and Amir H Safavi-Naeini, "Superconducting circuit quantum computing with nanomechanical resonators as storage", Quantum Science and Technology 4 1, 015006 (2018).

[26] Yanxiong Du, Zhentao Liang, Hui Yan, and Shiliang Zhu, "Geometric Quantum Computation with Shortcuts to Adiabaticity", Advanced Quantum Technologies 1900013 (2019).

[27] Pak Hong Leung and Kenneth R. Brown, "Entangling an arbitrary pair of qubits in a long ion crystal", Physical Review A 98 3, 032318 (2018).

[28] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani, "On the complexity and verification of quantum random circuit sampling", Nature Physics 15 2, 159 (2019).

[29] Kübra Yeter-Aydeniz, Eugene F. Dumitrescu, Alex J. McCaskey, Ryan S. Bennink, Raphael C. Pooser, and George Siopsis, "Scalar quantum field theories as a benchmark for near-term quantum computers", Physical Review A 99 3, 032306 (2019).

[30] X. Fu, L. Riesebos, M. A. Rol, Jeroen van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA) 224 (2019) ISBN:978-1-7281-1444-6.

[31] Mária Kieferová, Artur Scherer, and Dominic W. Berry, "Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series", Physical Review A 99 4, 042314 (2019).

[32] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete, Proceedings of the 46th International Symposium on Computer Architecture - ISCA '19 527 (2019) ISBN:9781450366694.

[33] A. Elben, B. Vermersch, C. F. Roos, and P. Zoller, "Statistical correlations between locally randomized measurements: A toolbox for probing entanglement in many-body quantum states", Physical Review A 99 5, 052323 (2019).

[34] Maria Schuld and Nathan Killoran, "Quantum Machine Learning in Feature Hilbert Spaces", Physical Review Letters 122 4, 040504 (2019).

[35] Wen Wei Ho and Timothy H. Hsieh, "Efficient variational simulation of non-trivial quantum states", SciPost Physics 6 3, 029 (2019).

[36] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven, "Barren plateaus in quantum neural network training landscapes", Nature Communications 9 1, 4812 (2018).

[37] Xin Zhang, Hai-Ou Li, Gang Cao, Ming Xiao, Guang-Can Guo, and Guo-Ping Guo, "Semiconductor quantum computation", National Science Review 6 1, 32 (2019).

[38] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T. Sornborger, and Patrick J. Coles, "Quantum-assisted quantum compiling", Quantum 3, 140 (2019).

[39] Daniel C. Hackett, Kiel Howe, Ciaran Hughes, William Jay, Ethan T. Neil, and James N. Simone, "Digitizing gauge fields: Lattice Monte Carlo results for future quantum computers", Physical Review A 99 6, 062341 (2019).

[40] Y. Cao, J. Romero, and A. Aspuru-Guzik, "Potential of quantum computing for drug discovery", IBM Journal of Research and Development 62 6, 6:1 (2018).

[41] Yong Wan, Daniel Kienzler, Stephen D. Erickson, Karl H. Mayer, Ting Rei Tan, Jenny J. Wu, Hilma M. Vasconcelos, Scott Glancy, Emanuel Knill, David J. Wineland, Andrew C. Wilson, and Dietrich Leibfried, "Quantum gate teleportation between separated qubits in a trapped-ion processor", Science 364 6443, 875 (2019).

[42] Mark Steudtner and Stephanie Wehner, "Quantum codes for quantum simulation of fermions on a square lattice of qubits", Physical Review A 99 2, 022308 (2019).

[43] Laura Ortiz Martín, Springer Theses 11 (2019) ISBN:978-3-030-23648-9.

[44] L. Riesebos, X. Fu, A. A. Moueddenne, L. Lao, S. Varsamopoulos, I. Ashraf, J. van Someren, N. Khammassi, C. G. Almudever, and K. Bertels, 2019 IEEE International Symposium on Circuits and Systems (ISCAS) 1 (2019) ISBN:978-1-7281-0397-6.

[45] R. Paredes, L. Dueñas-Osorio, K.S. Meel, and M.Y. Vardi, "Principled network reliability approximation: A counting-based approach", Reliability Engineering & System Safety 191, 106472 (2019).

[46] Alexandra Nagy and Vincenzo Savona, "Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems", Physical Review Letters 122 25, 250501 (2019).

[47] Shusen Liu, Yinan Li, and Runyao Duan, "Distinguishing unitary gates on the IBM quantum processor", Science China Information Sciences 62 7, 72502 (2019).

[48] Daniel A. Rowlands and Austen Lamacraft, "Noisy coupled qubits: Operator spreading and the Fredrickson-Andersen model", Physical Review B 98 19, 195125 (2018).

[49] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller, "Self-verifying variational quantum simulation of lattice models", Nature 569 7756, 355 (2019).

[50] Anne Matsuura, Sonika Johri, and Justin Hogaboam, "A systems perspective of quantum computing", Physics Today 72 3, 40 (2019).

[51] Yosep Kim, Kang-Hee Hong, Joonsuk Huh, and Yoon-Ho Kim, "Experimental linear optical computing of the matrix permanent", Physical Review A 99 5, 052308 (2019).

[52] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, "An adaptive variational algorithm for exact molecular simulations on a quantum computer", Nature Communications 10 1, 3007 (2019).

[53] N. M. Linke, S. Johri, C. Figgatt, K. A. Landsman, A. Y. Matsuura, and C. Monroe, "Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer", Physical Review A 98 5, 052334 (2018).

[54] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong Nam, and Alejandro Perdomo-Ortiz, "A generative modeling approach for benchmarking and training shallow quantum circuits", npj Quantum Information 5 1, 45 (2019).

[55] Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac, "Computational Speedups Using Small Quantum Devices", Physical Review Letters 121 25, 250501 (2018).

[56] Michael J. Hartmann and Giuseppe Carleo, "Neural-Network Approach to Dissipative Quantum Many-Body Dynamics", Physical Review Letters 122 25, 250502 (2019).

[57] Robert Wille, Lukas Burgholzer, and Alwin Zulehner, Proceedings of the 56th Annual Design Automation Conference 2019 on - DAC '19 1 (2019) ISBN:9781450367257.

[58] Daniel C. Murphy and Kenneth R. Brown, "Controlling error orientation to improve quantum algorithm success rates", Physical Review A 99 3, 032318 (2019).

[59] Frank Leymann, Lecture Notes in Computer Science 11413, 218 (2019) ISBN:978-3-030-14081-6.

[60] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook, "Strawberry Fields: A Software Platform for Photonic Quantum Computing", Quantum 3, 129 (2019).

[61] Hayata Yamasaki and Mio Murao, "Quantum State Merging for Arbitrarily Small-Dimensional Systems", IEEE Transactions on Information Theory 65 6, 3950 (2019).

[62] Kamil Korzekwa, Christopher T. Chubb, and Marco Tomamichel, "Avoiding Irreversibility: Engineering Resonant Conversions of Quantum Resources", Physical Review Letters 122 11, 110403 (2019).

[63] Laszlo Gyongyosi and Sandor Imre, "Dense Quantum Measurement Theory", Scientific Reports 9 1, 6755 (2019).

[64] Valentin Torggler, Philipp Aumann, Helmut Ritsch, and Wolfgang Lechner, "A Quantum N-Queens Solver", Quantum 3, 149 (2019).

[65] Syed Junaid Nawaz, Shree Krishna Sharma, Shurjeel Wyne, Mohammad N. Patwary, and Md. Asaduzzaman, "Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future", IEEE Access 7, 46317 (2019).

[66] Jinfeng Zeng, Yufeng Wu, Jin-Guo Liu, Lei Wang, and Jiangping Hu, "Learning and inference on generative adversarial quantum circuits", Physical Review A 99 5, 052306 (2019).

[67] Kenji Sugisaki, Shigeaki Nakazawa, Kazuo Toyota, Kazunobu Sato, Daisuke Shiomi, and Takeji Takui, "Quantum chemistry on quantum computers: quantum simulations of the time evolution of wave functions under the S2 operator and determination of the spin quantum number S", Physical Chemistry Chemical Physics (2019).

[68] Andreas Fischer and Alexandra Paler, Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing - SAC '19 1378 (2019) ISBN:9781450359337.

[69] Eric Bersin, Michael Walsh, Sara L. Mouradian, Matthew E. Trusheim, Tim Schröder, and Dirk Englund, "Individual control and readout of qubits in a sub-diffraction volume", npj Quantum Information 5 1, 38 (2019).

[70] Hendrik Bluhm and Lars R. Schreiber, 2019 IEEE International Symposium on Circuits and Systems (ISCAS) 1 (2019) ISBN:978-1-7281-0397-6.

[71] Bibek Pokharel, Namit Anand, Benjamin Fortman, and Daniel A. Lidar, "Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits", Physical Review Letters 121 22, 220502 (2018).

[72] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O'Brien, "Low-cost error mitigation by symmetry verification", Physical Review A 98 6, 062339 (2018).

[73] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, and Cyril Allouche, Lecture Notes in Computer Science 11537, 3 (2019) ISBN:978-3-030-22740-1.

[74] Christopher Monroe, Michael G. Raymer, and Jacob Taylor, "The U.S. National Quantum Initiative: From Act to action", Science 364 6439, 440 (2019).

[75] Oscar Higgott, Daochen Wang, and Stephen Brierley, "Variational Quantum Computation of Excited States", Quantum 3, 156 (2019).

[76] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and Xiaodi Wu, "Quantitative robustness analysis of quantum programs", Proceedings of the ACM on Programming Languages 3 POPL, 1 (2019).

[77] Kosuke Mitarai, Tennin Yan, and Keisuke Fujii, "Generalization of the Output of a Variational Quantum Eigensolver by Parameter Interpolation with a Low-depth Ansatz", Physical Review Applied 11 4, 044087 (2019).

[78] Robert Wille, Rod Van Meter, and Yehuda Naveh, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1234 (2019) ISBN:978-3-9819263-2-3.

[79] Joel J. Wallman and Joseph Emerson, Quantum Information and Measurement (QIM) V: Quantum Technologies S3B.2 (2019) ISBN:978-1-943580-56-9.

[80] Vladimir M. Stojanović, "Feasibility of single-shot realizations of conditional three-qubit gates in exchange-coupled qubit arrays with local control", Physical Review A 99 1, 012345 (2019).

[81] Thomas E O’Brien, Brian Tarasinski, and Barbara M Terhal, "Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments", New Journal of Physics 21 2, 023022 (2019).

[82] Clemens Dlaska, Lukas M. Sieberer, and Wolfgang Lechner, "Designing ground states of Hopfield networks for quantum state preparation", Physical Review A 99 3, 032342 (2019).

[83] Alwin Zulehner, Philipp Niemann, Rolf Drechsler, and Robert Wille, 2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL) 1 (2019) ISBN:978-1-7281-0092-0.

[84] Jonathan J. Burnett, Andreas Bengtsson, Marco Scigliuzzo, David Niepce, Marina Kudra, Per Delsing, and Jonas Bylander, "Decoherence benchmarking of superconducting qubits", npj Quantum Information 5 1, 54 (2019).

[85] Sam Morley-Short, Mercedes Gimeno-Segovia, Terry Rudolph, and Hugo Cable, "Loss-tolerant teleportation on large stabilizer states", Quantum Science and Technology 4 2, 025014 (2019).

[86] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage, "Quantum-classical computation of Schwinger model dynamics using quantum computers", Physical Review A 98 3, 032331 (2018).

[87] Matthew Amy, Lecture Notes in Computer Science 11497, 87 (2019) ISBN:978-3-030-21499-9.

[88] Laszlo Gyongyosi and Sandor Imre, "Quantum circuit design for objective function maximization in gate-model quantum computers", Quantum Information Processing 18 7, 225 (2019).

[89] Asif Shakeel, "Neighborhood-history quantum walk", Physica Scripta 94 6, 065207 (2019).

[90] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh, Proceedings of the 56th Annual Design Automation Conference 2019 on - DAC '19 1 (2019) ISBN:9781450367257.

[91] Beni Yoshida and Norman Y. Yao, "Disentangling Scrambling and Decoherence via Quantum Teleportation", Physical Review X 9 1, 011006 (2019).

[92] G. G. Guerreschi and A. Y. Matsuura, "QAOA for Max-Cut requires hundreds of qubits for quantum speed-up", Scientific Reports 9 1, 6903 (2019).

[93] S V Remizov, A A Zhukov, W V Pogosov, and Yu E Lozovik, "Radiation trapping effect versus superradiance in quantum simulation of light-matter interaction", Laser Physics Letters 16 6, 065205 (2019).

[94] Yipeng Huang and Margaret Martonosi, Proceedings of the 46th International Symposium on Computer Architecture - ISCA '19 541 (2019) ISBN:9781450366694.

[95] Jacques Carolan, Masoud Mosheni, Jonathan P. Olson, Mihika Prabhu, Changchen Chen, Darius Bunandar, Nicholas C. Harris, Franco N. C. Wong, Michael Hochberg, Seth Lloyd, and Dirk Englund, Conference on Lasers and Electro-Optics FTh3A.3 (2019) ISBN:978-1-943580-57-6.

[96] Jose P. Pinilla and Steven J. E. Wilton, Lecture Notes in Computer Science 11501, 121 (2019) ISBN:978-3-030-20655-0.

[97] Leonardo Novo, Shantanav Chakraborty, Masoud Mohseni, and Yasser Omar, "Environment-assisted analog quantum search", Physical Review A 98 2, 022316 (2018).

The above citations are from Crossref's cited-by service (last updated 2019-07-15 13:29:14). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch ADS cited-by data (last attempt 2019-07-15 13:29:14): No response from ADS or unable to decode the received json data.