Reliable numerical key rates for quantum key distribution

Adam Winick, Norbert Lütkenhaus, and Patrick J. Coles

Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L3G1 Waterloo, Ontario, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

In this work, we present a reliable, efficient, and tight numerical method for calculating key rates for finite-dimensional quantum key distribution (QKD) protocols. We illustrate our approach by finding higher key rates than those previously reported in the literature for several interesting scenarios (e.g., the Trojan-horse attack and the phase-coherent BB84 protocol). Our method will ultimately improve our ability to automate key rate calculations and, hence, to develop a user-friendly software package that could be used widely by QKD researchers.

The main theoretical challenge in quantum key distribution (QKD) is to evaluate the performance of a given protocol, as quantified by the key rate (bits of secret key per transmitted quantum signal). Analytical methods for key rate calculations have made significant progress for specific
protocols, but often tend not to be robust to device imperfections or changes in protocol structure. Numerical methods naturally have more robustness, but new issues arise with numerics such as the reliability and efficiency (i.e., computation time) of the calculation. In this work, we present a reliable, efficient, and tight numerical method for calculating key rates for finite-dimensional QKD protocols. Due to its tightness, our method gives higher key rates than literature methods for several
technologically important scenarios, for example, for the Trojan-horse attack and for the phase-coherent BB84 protocol. Our method will ultimately allow researchers to automate key rate calculations and hence to develop user-friendly software for QKD security analysis.

► BibTeX data

► References

[1] Campagna, M. et al. Quantum Safe Cryptography and Security (European Telecommunications Standards Institute, 2015).

[2] Wyner, A. D. The Wire-Tap Channel. Bell System Technical Journal 54, 1355–1387 (1975). URL https:/​/​doi.org/​10.1002/​j.1538-7305.1975.tb02040.x.
https:/​/​doi.org/​10.1002/​j.1538-7305.1975.tb02040.x

[3] Scarani, V. et al. The security of practical quantum key distribution. Reviews of Modern Physics 81, 1301–1350 (2009). URL https:/​/​doi.org/​10.1103/​RevModPhys.81.1301.
https:/​/​doi.org/​10.1103/​RevModPhys.81.1301

[4] Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nature Photonics 8, 595–604 (2014). URL https:/​/​doi.org/​10.1038/​nphoton.2014.149.
https:/​/​doi.org/​10.1038/​nphoton.2014.149

[5] Xin, H. Chinese Academy Takes Space Under Its Wing. Science 332, 904–904 (2011). URL https:/​/​doi.org/​10.1126/​science.332.6032.904.
https:/​/​doi.org/​10.1126/​science.332.6032.904

[6] Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New Journal of Physics 11, 075001 (2009). URL https:/​/​doi.org/​10.1088/​1367-2630/​11/​7/​075001.
https:/​/​doi.org/​10.1088/​1367-2630/​11/​7/​075001

[7] Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD Network. Optics Express 19, 10387–10409 (2011). URL https:/​/​doi.org/​10.1364/​OE.19.010387.
https:/​/​doi.org/​10.1364/​OE.19.010387

[8] Wang, S. et al. Field and long-term demonstration of a wide area quantum key distribution network. Optics Express 22, 21739 (2014). URL https:/​/​doi.org/​10.1364/​OE.22.021739.
https:/​/​doi.org/​10.1364/​OE.22.021739

[9] Renner, R. Security of Quantum Key Distribution. Ph.D. thesis, ETH Zurich (2005). URL http:/​/​arxiv.org/​abs/​quant-ph/​0512258.
arXiv:quant-ph/0512258

[10] Renner, R., Gisin, N. & Kraus, B. Information-theoretic security proof for quantum-key-distribution protocols. Physical Review A 72, 012332 (2005). URL https:/​/​doi.org/​10.1103/​PhysRevA.72.012332.
https:/​/​doi.org/​10.1103/​PhysRevA.72.012332

[11] Watanabe, S., Matsumoto, R. & Uyematsu, T. Tomography increases key rates of quantum-key-distribution protocols. Physical Review A 78, 042316 (2008). URL https:/​/​doi.org/​10.1103/​PhysRevA.78.042316.
https:/​/​doi.org/​10.1103/​PhysRevA.78.042316

[12] Matsumoto, R. Improved asymptotic key rate of the B92 protocol. IEEE International Symposium on Information Theory - Proceedings 351–353 (2013). URL https:/​/​doi.org/​10.1109/​ISIT.2013.6620246.
https:/​/​doi.org/​10.1109/​ISIT.2013.6620246

[13] Vakhitov, A., Makarov, V. & Hjelme, D. R. Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. Journal of Modern Optics 48, 2023–2038 (2001). URL https:/​/​doi.org/​10.1080/​09500340108240904.
https:/​/​doi.org/​10.1080/​09500340108240904

[14] Gisin, N., Fasel, S., Kraus, B., Zbinden, H. & Ribordy, G. Trojan-horse attacks on quantum-key-distribution systems. Physical Review A 73, 022320 (2006). URL https:/​/​doi.org/​10.1103/​PhysRevA.73.022320.
https:/​/​doi.org/​10.1103/​PhysRevA.73.022320

[15] Lucamarini, M. et al. Practical Security Bounds Against the Trojan-Horse Attack in Quantum Key Distribution. Physical Review X 5, 031030 (2015). URL https:/​/​doi.org/​10.1103/​PhysRevX.5.031030.
https:/​/​doi.org/​10.1103/​PhysRevX.5.031030

[16] Huttner, B., Imoto, N., Gisin, N. & Mor, T. Quantum cryptography with coherent states. Physical Review A 51, 1863–1869 (1995). URL https:/​/​doi.org/​10.1103/​PhysRevA.51.1863.
https:/​/​doi.org/​10.1103/​PhysRevA.51.1863

[17] Lo, H. & Preskill, J. Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Information and Computation 7, 431–458 (2007). URL http:/​/​arxiv.org/​abs/​quant-ph/​0610203.
arXiv:quant-ph/0610203

[18] Fung, C. C.-H. F., Tamaki, K., Qi, B., Lo, H.-K. H. & Ma, X. Security proof of quantum key distribution with detection efficiency mismatch. Quantum Inf. Comput. 9, 0131–0165 (2009). URL http:/​/​dl.acm.org/​citation.cfm?id=2021264.
http:/​/​dl.acm.org/​citation.cfm?id=2021264

[19] Coles, P. J., Metodiev, E. M. & Lütkenhaus, N. Numerical approach for unstructured quantum key distribution. Nature Communications 7, 11712 (2016). URL https:/​/​doi.org/​10.1038/​ncomms11712.
https:/​/​doi.org/​10.1038/​ncomms11712

[20] Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge University Press, 2004). URL http:/​/​web.stanford.edu/​ boyd/​cvxbook/​.
http:/​/​web.stanford.edu/​~

[21] Devetak, I. & Winter, A. Distillation of secret key and entanglement from quantum states. Proceedings of the Royal Society A 461, 207–235 (2005). URL https:/​/​doi.org/​10.1098/​rspa.2004.1372.
https:/​/​doi.org/​10.1098/​rspa.2004.1372

[22] Renner, R. Symmetry of large physical systems implies independence of subsystems. Nature Physics 3, 645–649 (2007). URL https:/​/​doi.org/​10.1038/​nphys684.
https:/​/​doi.org/​10.1038/​nphys684

[23] Petersen, K. B. & Pedersen, M. S. The Matrix Cookbook (2012). URL http:/​/​www2.imm.dtu.dk/​pubdb/​p.php?3274.
http:/​/​www2.imm.dtu.dk/​pubdb/​p.php?3274

[24] Al-Mohy, A. H. & Higham, N. J. Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm. SIAM Journal on Scientific Computing 34, C153–C169 (2012). URL https:/​/​doi.org/​10.1137/​110852553.
https:/​/​doi.org/​10.1137/​110852553

[25] Frank, M. & Wolfe, P. An algorithm for quadratic programming. Naval Research Logistics Quarterly 3, 95–110 (1956). URL https:/​/​doi.org/​10.1002/​nav.3800030109.
https:/​/​doi.org/​10.1002/​nav.3800030109

[26] Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In International Conference on Computers, Systems & Signal Processing, Bangalore, India, 175–179 (1984). URL https:/​/​doi.org/​10.1016/​j.tcs.2011.08.039.
https:/​/​doi.org/​10.1016/​j.tcs.2011.08.039

[27] Bennett, C. H. Quantum cryptography using any two nonorthogonal states. Physical Review Letters 68, 3121–3124 (1992). URL https:/​/​doi.org/​10.1103/​PhysRevLett.68.3121.
https:/​/​doi.org/​10.1103/​PhysRevLett.68.3121

[28] Scarani, V., Acín, A., Ribordy, G. & Gisin, N. Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. Physical Review Letters 92, 057901 (2004). URL https:/​/​doi.org/​10.1103/​PhysRevLett.92.057901.
https:/​/​doi.org/​10.1103/​PhysRevLett.92.057901

[29] Bruß, D. Optimal Eavesdropping in Quantum Cryptography with Six States. Physical Review Letters 81, 3018–3021 (1998). URL https:/​/​doi.org/​10.1103/​PhysRevLett.81.3018.
https:/​/​doi.org/​10.1103/​PhysRevLett.81.3018

[30] Lo, H.-K., Ma, X. & Chen, K. Decoy State Quantum Key Distribution. Physical Review Letters 94, 230504 (2005). URL https:/​/​doi.org/​10.1103/​PhysRevLett.94.230504.
https:/​/​doi.org/​10.1103/​PhysRevLett.94.230504

[31] Lo, H.-K., Curty, M. & Qi, B. Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters 108, 130503 (2012). URL https:/​/​doi.org/​10.1103/​PhysRevLett.108.130503.
https:/​/​doi.org/​10.1103/​PhysRevLett.108.130503

[32] Stacey, W., Annabestani, R., Ma, X. & Lütkenhaus, N. Security of quantum key distribution using a simplified trusted relay. Physical Review A 91, 012338 (2015). URL https:/​/​doi.org/​10.1103/​PhysRevA.91.012338.
https:/​/​doi.org/​10.1103/​PhysRevA.91.012338

[33] Bennett, C., Brassard, G. & Mermin, N. Quantum cryptography without Bell's theorem. Physical Review Letters 68, 557–559 (1992). URL https:/​/​doi.org/​10.1103/​PhysRevLett.68.557.
https:/​/​doi.org/​10.1103/​PhysRevLett.68.557

[34] Ferenczi, A. & Lütkenhaus, N. Symmetries in quantum key distribution and the connection between optimal attacks and optimal cloning. Physical Review A 85, 052310 (2012). URL https:/​/​doi.org/​10.1103/​PhysRevA.85.052310.
https:/​/​doi.org/​10.1103/​PhysRevA.85.052310

[35] Coles, P. J. Unification of different views of decoherence and discord. Physical Review A 85, 042103 (2012). URL https:/​/​doi.org/​10.1103/​PhysRevA.85.042103.
https:/​/​doi.org/​10.1103/​PhysRevA.85.042103

[36] Sajeed, S. et al. Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch. Physical Review A 91, 062301 (2015). URL https:/​/​doi.org/​10.1103/​PhysRevA.91.062301.
https:/​/​doi.org/​10.1103/​PhysRevA.91.062301

[37] Lydersen, L. et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics 4, 686–689 (2010). URL http:/​/​dx.doi.org/​10.1038/​nphoton.2010.214.
https:/​/​doi.org/​10.1038/​nphoton.2010.214

[38] Scarani, V. & Renner, R. Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing. Physical Review Letters 100, 200501 (2008). URL https:/​/​doi.org/​10.1103/​PhysRevLett.100.200501.
https:/​/​doi.org/​10.1103/​PhysRevLett.100.200501

[39] Sano, Y., Matsumoto, R. & Uyematsu, T. Secure key rate of the BB84 protocol using finite sample bits. IEEE International Symposium on Information Theory - Proceedings 43, 2677–2681 (2010). URL https:/​/​doi.org/​10.1109/​ISIT.2010.5513653.
https:/​/​doi.org/​10.1109/​ISIT.2010.5513653

[40] Tomamichel, M., Ci, C., Lim, W., Gisin, N. & Renner, R. Tight finite-key analysis for quantum cryptography. Nature Communications 3, 634 (2012). URL http:/​/​dx.doi.org/​10.1038/​ncomms1631.
https:/​/​doi.org/​10.1038/​ncomms1631

[41] Coles, P. J., Kaniewski, J. & Wehner, S. Equivalence of wave–particle duality to entropic uncertainty. Nature Communications 5, 5814 (2014). URL http:/​/​dx.doi.org/​10.1038/​ncomms6814.
https:/​/​doi.org/​10.1038/​ncomms6814

[42] Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge University Press, 2000).

[43] Lo, H.-K., Chau, H. & Ardehali, M. Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security. Journal of Cryptology 18, 133–165 (2005). URL https:/​/​doi.org/​10.1007/​s00145-004-0142-y.
https:/​/​doi.org/​10.1007/​s00145-004-0142-y

[44] Gittsovich, O. et al. Squashing model for detectors and applications to quantum-key-distribution protocols. Physical Review A 89, 012325 (2014). URL https:/​/​doi.org/​10.1103/​PhysRevA.89.012325.
https:/​/​doi.org/​10.1103/​PhysRevA.89.012325

Cited by

[1] Zhang-Dong Ye, Dong Pan, Zhen Sun, Chun-Guang Du, Liu-Guo Yin, and Gui-Lu Long, "Generic security analysis framework for quantum secure direct communication", Frontiers of Physics 16 2, 21503 (2021).

[2] Guillermo Currás-Lorenzo, Shlok Nahar, Norbert Lütkenhaus, Kiyoshi Tamaki, and Marcos Curty, "Security of quantum key distribution with imperfect phase randomisation", Quantum Science and Technology 9 1, 015025 (2024).

[3] Jing-Yang Liu, Xing-Yu Zhou, and Qin Wang, "Reference-frame-independent measurement-device-independent quantum key distribution using fewer states", Physical Review A 103 2, 022602 (2021).

[4] Florian Kanitschar and Christoph Pacher, "Optimizing Continuous-Variable Quantum Key Distribution with Phase-Shift Keying Modulation and Postselection", Physical Review Applied 18 3, 034073 (2022).

[5] Hamza Fawzi and James Saunderson, "Optimal Self-Concordant Barriers for Quantum Relative Entropies", SIAM Journal on Optimization 33 4, 2858 (2023).

[6] Ramy Tannous, Zhangdong Ye, Jeongwan Jin, Katanya B. Kuntz, Norbert Lütkenhaus, and Thomas Jennewein, "Demonstration of a 6 state-4 state reference frame independent channel for quantum key distribution", Applied Physics Letters 115 21, 211103 (2019).

[7] J. Eli Bourassa, Amita Gnanapandithan, Li Qian, and Hoi-Kwong Lo, "Measurement-device-independent quantum key distribution with passive time-dependent source side channels", Physical Review A 106 6, 062618 (2022).

[8] Renato Renner and Ramona Wolf, "Quantum Advantage in Cryptography", AIAA Journal 61 5, 1895 (2023).

[9] Ignatius W. Primaatmaja, Koon Tong Goh, Ernest Y.-Z. Tan, John T.-F. Khoo, Shouvik Ghorai, and Charles C.-W. Lim, "Security of device-independent quantum key distribution protocols: a review", Quantum 7, 932 (2023).

[10] Devashish Tupkary and Norbert Lütkenhaus, "Using Cascade in quantum key distribution", Physical Review Applied 20 6, 064040 (2023).

[11] Yanbao Zhang, Patrick J. Coles, Adam Winick, Jie Lin, and Norbert Lütkenhaus, "Security proof of practical quantum key distribution with detection-efficiency mismatch", Physical Review Research 3 1, 013076 (2021).

[12] Ignatius William Primaatmaja, Emilien Lavie, Koon Tong Goh, Chao Wang, and Charles Ci Wen Lim, "Versatile security analysis of measurement-device-independent quantum key distribution", Physical Review A 99 6, 062332 (2019).

[13] Leonid Faybusovich and Cunlu Zhou, "Long-step path-following algorithm for quantum information theory: Some numerical aspects and applications", Numerical Algebra, Control & Optimization 12 2, 445 (2022).

[14] Junyu Zhang, Xiangyu Wang, Fan Xia, Song Yu, and Ziyang Chen, "Multiple-quadrature-amplitude-modulation continuous-variable quantum key distribution realization with a downstream-access network", Physical Review A 109 5, 052429 (2024).

[15] Ye Chen, Chunfeng Huang, Zihao Chen, Wenjie He, Chengxian Zhang, Shihai Sun, and Kejin Wei, "Experimental study of secure quantum key distribution with source and detection imperfections", Physical Review A 106 2, 022614 (2022).

[16] Florian Kanitschar, Ian George, Jie Lin, Twesh Upadhyaya, and Norbert Lütkenhaus, "Finite-Size Security for Discrete-Modulated Continuous-Variable Quantum Key Distribution Protocols", PRX Quantum 4 4, 040306 (2023).

[17] Ian George, Jie Lin, and Norbert Lütkenhaus, "Numerical calculations of the finite key rate for general quantum key distribution protocols", Physical Review Research 3 1, 013274 (2021).

[18] Darius Bunandar, Luke C. G. Govia, Hari Krovi, and Dirk Englund, "Numerical finite-key analysis of quantum key distribution", npj Quantum Information 6 1, 104 (2020).

[19] Shlok Nahar, Twesh Upadhyaya, and Norbert Lütkenhaus, "Imperfect phase randomization and generalized decoy-state quantum key distribution", Physical Review Applied 20 6, 064031 (2023).

[20] Wei-Min Lv, Chao Zhang, Xiao-Min Hu, Yun-Feng Huang, Huan Cao, Jian Wang, Zhi-Bo Hou, Bi-Heng Liu, Chuan-Feng Li, and Guang-Can Guo, "Experimental test of fine-grained entropic uncertainty relation in the presence of quantum memory", Scientific Reports 9 1, 8748 (2019).

[21] Twesh Upadhyaya, Thomas van Himbeeck, Jie Lin, and Norbert Lütkenhaus, "Dimension Reduction in Quantum Key Distribution for Continuous- and Discrete-Variable Protocols", PRX Quantum 2 2, 020325 (2021).

[22] Feng-Yu Lu, Ze-Hao Wang, Zhen-Qiang Yin, Shuang Wang, Rong Wang, Guan-Jie Fan-Yuan, Xiao-Juan Huang, De-Yong He, Wei Chen, Zheng Zhou, Guang-Can Guo, and Zheng-Fu Han, "Unbalanced-basis-misalignment-tolerant measurement-device-independent quantum key distribution", Optica 9 8, 886 (2022).

[23] Yukun Wang, Ignatius William Primaatmaja, Emilien Lavie, Antonios Varvitsiotis, and Charles Ci Wen Lim, "Characterising the correlations of prepare-and-measure quantum networks", npj Quantum Information 5 1, 17 (2019).

[24] Zijian Li, Bingbing Zheng, Chengxian Zhang, Zhenrong Zhang, Hong-Bo Xie, and Kejin Wei, "Improved security bounds against the Trojan-horse attack in decoy-state quantum key distribution", Quantum Information Processing 23 2, 40 (2024).

[25] J. Eli Bourassa, Ignatius William Primaatmaja, Charles Ci Wen Lim, and Hoi-Kwong Lo, "Loss-tolerant quantum key distribution with mixed signal states", Physical Review A 102 6, 062607 (2020).

[26] Tony Metger and Renato Renner, "Security of quantum key distribution from generalised entropy accumulation", Nature Communications 14 1, 5272 (2023).

[27] Hongyi Zhou, Toshihiko Sasaki, and Masato Koashi, "Numerical method for finite-size security analysis of quantum key distribution", Physical Review Research 4 3, 033126 (2022).

[28] Dingmin Cheng, Yewei Guo, Jiayang Dai, Hao Wu, and Ying Guo, "Neural network method: withstanding noise for continuous-variable quantum key distribution with discrete modulation", Journal of the Optical Society of America B 41 4, 879 (2024).

[29] Daniel A. Vajner, Lucas Rickert, Timm Gao, Koray Kaymazlar, and Tobias Heindel, "Quantum Communication Using Semiconductor Quantum Dots", Advanced Quantum Technologies 5 7, 2100116 (2022).

[30] Jie Lin and Norbert Lütkenhaus, "Simple security analysis of phase-matching measurement-device-independent quantum key distribution", Physical Review A 98 4, 042332 (2018).

[31] Ernest Y.-Z. Tan, Pavel Sekatski, Jean-Daniel Bancal, René Schwonnek, Renato Renner, Nicolas Sangouard, and Charles C.-W. Lim, "Improved DIQKD protocols with finite-size analysis", Quantum 6, 880 (2022).

[32] Margarida Pereira, Go Kato, Akihiro Mizutani, Marcos Curty, and Kiyoshi Tamaki, "Quantum key distribution with correlated sources", Science Advances 6 37, eaaz4487 (2020).

[33] Zehong Chang, Fumin Wang, Junliang Jia, Xiaoli Wang, Yi Lv, and Pei Zhang, "Security analysis for a mutually partially unbiased bases–based protocol", Journal of the Optical Society of America B 39 10, 2823 (2022).

[34] Margarida Pereira, Marcos Curty, and Kiyoshi Tamaki, "Quantum key distribution with flawed and leaky sources", npj Quantum Information 5 1, 62 (2019).

[35] Jie Lin and Norbert Lütkenhaus, "Trusted Detector Noise Analysis for Discrete Modulation Schemes of Continuous-Variable Quantum Key Distribution", Physical Review Applied 14 6, 064030 (2020).

[36] Zijian Li, Bingbing Zheng, Heqian Zhang, Zhenrong Zhang, and Kejin Wei, "Boosting asymmetric measurement-device-independent quantum key distribution via numerical-analysis technology", Physica Scripta 99 5, 055103 (2024).

[37] Feihu Xu, Xiongfeng Ma, Qiang Zhang, Hoi-Kwong Lo, and Jian-Wei Pan, "Secure quantum key distribution with realistic devices", Reviews of Modern Physics 92 2, 025002 (2020).

[38] L. C. G. Govia, D. Bunandar, J. Lin, D. Englund, N. Lütkenhaus, and H. Krovi, "Clifford-group-restricted eavesdroppers in quantum key distribution", Physical Review A 101 6, 062318 (2020).

[39] Mateus Araújo, Marcus Huber, Miguel Navascués, Matej Pivoluska, and Armin Tavakoli, "Quantum key distribution rates from semidefinite programming", Quantum 7, 1019 (2023).

[40] Devashish Tupkary, Ernest Y.-Z. Tan, and Norbert Lütkenhaus, "Security proof for variable-length quantum key distribution", Physical Review Research 6 2, 023002 (2024).

[41] Jiapeng Zhao, Mohammad Mirhosseini, Boris Braverman, Yiyu Zhou, Seyed Mohammad Hashemi Rafsanjani, Yongxiong Ren, Nicholas K. Steinhoff, Glenn A. Tyler, Alan E. Willner, and Robert W. Boyd, "Performance analysis of d -dimensional quantum cryptography under state-dependent diffraction", Physical Review A 100 3, 032319 (2019).

[42] Pu Wang, Yu Zhang, Zhenguo Lu, Xuyang Wang, and Yongmin Li, "Discrete-modulation continuous-variable quantum key distribution with a high key rate", New Journal of Physics 25 2, 023019 (2023).

[43] Nicky Kai Hong Li and Norbert Lütkenhaus, "Improving key rates of the unbalanced phase-encoded BB84 protocol using the flag-state squashing model", Physical Review Research 2 4, 043172 (2020).

[44] Wenyuan Wang and Norbert Lütkenhaus, "Numerical security proof for the decoy-state BB84 protocol and measurement-device-independent quantum key distribution resistant against large basis misalignment", Physical Review Research 4 4, 043097 (2022).

[45] M. K. Bochkov and A. S. Trushechkin, "Security of quantum key distribution with detection-efficiency mismatch in the single-photon case: Tight bounds", Physical Review A 99 3, 032308 (2019).

[46] Mehdi Karimi and Levent Tunçel, "Domain-Driven Solver (DDS) Version 2.1: a MATLAB-based software package for convex optimization problems in domain-driven form", Mathematical Programming Computation 16 1, 37 (2024).

[47] Min-Gang Zhou, Zhi-Ping Liu, Wen-Bo Liu, Chen-Long Li, Jun-Lin Bai, Yi-Ran Xue, Yao Fu, Hua-Lei Yin, and Zeng-Bing Chen, "Neural network-based prediction of the secret-key rate of quantum key distribution", Scientific Reports 12 1, 8879 (2022).

[48] Sirui Peng, Xiaoming Sun, and Hongyi Zhou, "Numerical security analysis of the three-state quantum key distribution protocol with realistic devices", Journal of the Optical Society of America B 41 1, 258 (2024).

[49] Emilien Lavie and Charles C.-W. Lim, "Improved Coherent One-Way Quantum key Distribution for High-Loss Channels", Physical Review Applied 18 6, 064053 (2022).

[50] N. Ivankov, R. Goncharov, and D. Tupyakov, 2023 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF) 1 (2023) ISBN:979-8-3503-4829-3.

[51] Xingjian Zhang, Yunchao Liu, and Xiao Yuan, "Estimating Coherence Measures with Untrusted Devices", Advanced Quantum Technologies 4 6, 2000153 (2021).

[52] Zhi-Ping Liu, Min-Gang Zhou, Wen-Bo Liu, Chen-Long Li, Jie Gu, Hua-Lei Yin, and Zeng-Bing Chen, "Automated machine learning for secure key rate in discrete-modulated continuous-variable quantum key distribution", Optics Express 30 9, 15024 (2022).

[53] Hao Hu, Jiyoung Im, Jie Lin, Norbert Lütkenhaus, and Henry Wolkowicz, "Robust Interior Point Method for Quantum Key Distribution Rate Computation", Quantum 6, 792 (2022).

[54] Wen-Bo Liu, Chen-Long Li, Zhi-Ping Liu, Min-Gang Zhou, Hua-Lei Yin, and Zeng-Bing Chen, "Theoretical development of discrete-modulated continuous-variable quantum key distribution", Frontiers in Quantum Science and Technology 1, 985276 (2022).

[55] Margarida Pereira, Guillermo Currás-Lorenzo, Álvaro Navarrete, Akihiro Mizutani, Go Kato, Marcos Curty, and Kiyoshi Tamaki, "Modified BB84 quantum key distribution protocol robust to source imperfections", Physical Review Research 5 2, 023065 (2023).

[56] Wenyuan Wang, Feihu Xu, and Hoi-Kwong Lo, "Asymmetric Protocols for Scalable High-Rate Measurement-Device-Independent Quantum Key Distribution Networks", Physical Review X 9 4, 041012 (2019).

[57] Víctor Zapatero, Álvaro Navarrete, and Marcos Curty, "Implementation Security in Quantum Key Distribution", Advanced Quantum Technologies 2300380 (2024).

[58] Jie Lin, Twesh Upadhyaya, and Norbert Lütkenhaus, "Asymptotic Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution", Physical Review X 9 4, 041064 (2019).

[59] Masoud Ghalaii, Sima Bahrani, Carlo Liorni, Federico Grasselli, Hermann Kampermann, Lewis Wooltorton, Rupesh Kumar, Stefano Pirandola, Timothy P. Spiller, Alexander Ling, Bruno Huttner, and Mohsen Razavi, "Satellite-Based Quantum Key Distribution in the Presence of Bypass Channels", PRX Quantum 4 4, 040320 (2023).

[60] Ernest Y.-Z. Tan, René Schwonnek, Koon Tong Goh, Ignatius William Primaatmaja, and Charles C.-W. Lim, "Computing secure key rates for quantum cryptography with untrusted devices", npj Quantum Information 7 1, 158 (2021).

[61] Wen-Bo Liu, Chen-Long Li, Yuan-Mei Xie, Chen-Xun Weng, Jie Gu, Xiao-Yu Cao, Yu-Shuo Lu, Bing-Hong Li, Hua-Lei Yin, and Zeng-Bing Chen, "Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance", PRX Quantum 2 4, 040334 (2021).

[62] Michele Masini, Stefano Pironio, and Erik Woodhead, "Simple and practical DIQKD security analysis via BB84-type uncertainty relations and Pauli correlation constraints", Quantum 6, 843 (2022).

[63] Anton Trushechkin, "Security of quantum key distribution with detection-efficiency mismatch in the multiphoton case", Quantum 6, 771 (2022).

[64] Calvin Leung, Amy Brown, Hien Nguyen, Andrew S. Friedman, David I. Kaiser, and Jason Gallicchio, "Astronomical random numbers for quantum foundations experiments", Physical Review A 97 4, 042120 (2018).

[65] Sumeet Khatri, Eneet Kaur, Saikat Guha, and Mark M. Wilde, "Second-order coding rates for key distillation in quantum key distribution", arXiv:1910.03883, (2019).

[66] Rotem Arnon-Friedman, "Reductions to IID in Device-independent Quantum Information Processing", arXiv:1812.10922, (2018).

[67] Mehdi Karimi and Levent Tuncel, "Efficient Implementation of Interior-Point Methods for Quantum Relative Entropy", arXiv:2312.07438, (2023).

[68] Jerome Wiesemann, Jan Krause, Davide Rusca, and Nino Walenta, "A consolidated and accessible security proof for finite-size decoy-state quantum key distribution", arXiv:2405.16578, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-12 15:17:36) and SAO/NASA ADS (last updated successfully 2024-06-12 15:17:38). The list may be incomplete as not all publishers provide suitable and complete citation data.