Reliable numerical key rates for quantum key distribution

Adam Winick, Norbert Lütkenhaus, and Patrick J. Coles

Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, N2L3G1 Waterloo, Ontario, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

In this work, we present a reliable, efficient, and tight numerical method for calculating key rates for finite-dimensional quantum key distribution (QKD) protocols. We illustrate our approach by finding higher key rates than those previously reported in the literature for several interesting scenarios (e.g., the Trojan-horse attack and the phase-coherent BB84 protocol). Our method will ultimately improve our ability to automate key rate calculations and, hence, to develop a user-friendly software package that could be used widely by QKD researchers.

The main theoretical challenge in quantum key distribution (QKD) is to evaluate the performance of a given protocol, as quantified by the key rate (bits of secret key per transmitted quantum signal). Analytical methods for key rate calculations have made significant progress for specific
protocols, but often tend not to be robust to device imperfections or changes in protocol structure. Numerical methods naturally have more robustness, but new issues arise with numerics such as the reliability and efficiency (i.e., computation time) of the calculation. In this work, we present a reliable, efficient, and tight numerical method for calculating key rates for finite-dimensional QKD protocols. Due to its tightness, our method gives higher key rates than literature methods for several
technologically important scenarios, for example, for the Trojan-horse attack and for the phase-coherent BB84 protocol. Our method will ultimately allow researchers to automate key rate calculations and hence to develop user-friendly software for QKD security analysis.

► BibTeX data

► References

[1] Campagna, M. et al. Quantum Safe Cryptography and Security (European Telecommunications Standards Institute, 2015).

[2] Wyner, A. D. The Wire-Tap Channel. Bell System Technical Journal 54, 1355–1387 (1975). URL https:/​/​doi.org/​10.1002/​j.1538-7305.1975.tb02040.x.
https:/​/​doi.org/​10.1002/​j.1538-7305.1975.tb02040.x

[3] Scarani, V. et al. The security of practical quantum key distribution. Reviews of Modern Physics 81, 1301–1350 (2009). URL https:/​/​doi.org/​10.1103/​RevModPhys.81.1301.
https:/​/​doi.org/​10.1103/​RevModPhys.81.1301

[4] Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nature Photonics 8, 595–604 (2014). URL https:/​/​doi.org/​10.1038/​nphoton.2014.149.
https:/​/​doi.org/​10.1038/​nphoton.2014.149

[5] Xin, H. Chinese Academy Takes Space Under Its Wing. Science 332, 904–904 (2011). URL https:/​/​doi.org/​10.1126/​science.332.6032.904.
https:/​/​doi.org/​10.1126/​science.332.6032.904

[6] Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New Journal of Physics 11, 075001 (2009). URL https:/​/​doi.org/​10.1088/​1367-2630/​11/​7/​075001.
https:/​/​doi.org/​10.1088/​1367-2630/​11/​7/​075001

[7] Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD Network. Optics Express 19, 10387–10409 (2011). URL https:/​/​doi.org/​10.1364/​OE.19.010387.
https:/​/​doi.org/​10.1364/​OE.19.010387

[8] Wang, S. et al. Field and long-term demonstration of a wide area quantum key distribution network. Optics Express 22, 21739 (2014). URL https:/​/​doi.org/​10.1364/​OE.22.021739.
https:/​/​doi.org/​10.1364/​OE.22.021739

[9] Renner, R. Security of Quantum Key Distribution. Ph.D. thesis, ETH Zurich (2005). URL http:/​/​arxiv.org/​abs/​quant-ph/​0512258.
arXiv:quant-ph/0512258

[10] Renner, R., Gisin, N. & Kraus, B. Information-theoretic security proof for quantum-key-distribution protocols. Physical Review A 72, 012332 (2005). URL https:/​/​doi.org/​10.1103/​PhysRevA.72.012332.
https:/​/​doi.org/​10.1103/​PhysRevA.72.012332

[11] Watanabe, S., Matsumoto, R. & Uyematsu, T. Tomography increases key rates of quantum-key-distribution protocols. Physical Review A 78, 042316 (2008). URL https:/​/​doi.org/​10.1103/​PhysRevA.78.042316.
https:/​/​doi.org/​10.1103/​PhysRevA.78.042316

[12] Matsumoto, R. Improved asymptotic key rate of the B92 protocol. IEEE International Symposium on Information Theory - Proceedings 351–353 (2013). URL https:/​/​doi.org/​10.1109/​ISIT.2013.6620246.
https:/​/​doi.org/​10.1109/​ISIT.2013.6620246

[13] Vakhitov, A., Makarov, V. & Hjelme, D. R. Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. Journal of Modern Optics 48, 2023–2038 (2001). URL https:/​/​doi.org/​10.1080/​09500340108240904.
https:/​/​doi.org/​10.1080/​09500340108240904

[14] Gisin, N., Fasel, S., Kraus, B., Zbinden, H. & Ribordy, G. Trojan-horse attacks on quantum-key-distribution systems. Physical Review A 73, 022320 (2006). URL https:/​/​doi.org/​10.1103/​PhysRevA.73.022320.
https:/​/​doi.org/​10.1103/​PhysRevA.73.022320

[15] Lucamarini, M. et al. Practical Security Bounds Against the Trojan-Horse Attack in Quantum Key Distribution. Physical Review X 5, 031030 (2015). URL https:/​/​doi.org/​10.1103/​PhysRevX.5.031030.
https:/​/​doi.org/​10.1103/​PhysRevX.5.031030

[16] Huttner, B., Imoto, N., Gisin, N. & Mor, T. Quantum cryptography with coherent states. Physical Review A 51, 1863–1869 (1995). URL https:/​/​doi.org/​10.1103/​PhysRevA.51.1863.
https:/​/​doi.org/​10.1103/​PhysRevA.51.1863

[17] Lo, H. & Preskill, J. Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Information and Computation 7, 431–458 (2007). URL http:/​/​arxiv.org/​abs/​quant-ph/​0610203.
arXiv:quant-ph/0610203

[18] Fung, C. C.-H. F., Tamaki, K., Qi, B., Lo, H.-K. H. & Ma, X. Security proof of quantum key distribution with detection efficiency mismatch. Quantum Inf. Comput. 9, 0131–0165 (2009). URL http:/​/​dl.acm.org/​citation.cfm?id=2021264.
http:/​/​dl.acm.org/​citation.cfm?id=2021264

[19] Coles, P. J., Metodiev, E. M. & Lütkenhaus, N. Numerical approach for unstructured quantum key distribution. Nature Communications 7, 11712 (2016). URL https:/​/​doi.org/​10.1038/​ncomms11712.
https:/​/​doi.org/​10.1038/​ncomms11712

[20] Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge University Press, 2004). URL http:/​/​web.stanford.edu/​ boyd/​cvxbook/​.
http:/​/​web.stanford.edu/​~

[21] Devetak, I. & Winter, A. Distillation of secret key and entanglement from quantum states. Proceedings of the Royal Society A 461, 207–235 (2005). URL https:/​/​doi.org/​10.1098/​rspa.2004.1372.
https:/​/​doi.org/​10.1098/​rspa.2004.1372

[22] Renner, R. Symmetry of large physical systems implies independence of subsystems. Nature Physics 3, 645–649 (2007). URL https:/​/​doi.org/​10.1038/​nphys684.
https:/​/​doi.org/​10.1038/​nphys684

[23] Petersen, K. B. & Pedersen, M. S. The Matrix Cookbook (2012). URL http:/​/​www2.imm.dtu.dk/​pubdb/​p.php?3274.
http:/​/​www2.imm.dtu.dk/​pubdb/​p.php?3274

[24] Al-Mohy, A. H. & Higham, N. J. Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm. SIAM Journal on Scientific Computing 34, C153–C169 (2012). URL https:/​/​doi.org/​10.1137/​110852553.
https:/​/​doi.org/​10.1137/​110852553

[25] Frank, M. & Wolfe, P. An algorithm for quadratic programming. Naval Research Logistics Quarterly 3, 95–110 (1956). URL https:/​/​doi.org/​10.1002/​nav.3800030109.
https:/​/​doi.org/​10.1002/​nav.3800030109

[26] Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In International Conference on Computers, Systems & Signal Processing, Bangalore, India, 175–179 (1984). URL https:/​/​doi.org/​10.1016/​j.tcs.2011.08.039.
https:/​/​doi.org/​10.1016/​j.tcs.2011.08.039

[27] Bennett, C. H. Quantum cryptography using any two nonorthogonal states. Physical Review Letters 68, 3121–3124 (1992). URL https:/​/​doi.org/​10.1103/​PhysRevLett.68.3121.
https:/​/​doi.org/​10.1103/​PhysRevLett.68.3121

[28] Scarani, V., Acín, A., Ribordy, G. & Gisin, N. Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. Physical Review Letters 92, 057901 (2004). URL https:/​/​doi.org/​10.1103/​PhysRevLett.92.057901.
https:/​/​doi.org/​10.1103/​PhysRevLett.92.057901

[29] Bruß, D. Optimal Eavesdropping in Quantum Cryptography with Six States. Physical Review Letters 81, 3018–3021 (1998). URL https:/​/​doi.org/​10.1103/​PhysRevLett.81.3018.
https:/​/​doi.org/​10.1103/​PhysRevLett.81.3018

[30] Lo, H.-K., Ma, X. & Chen, K. Decoy State Quantum Key Distribution. Physical Review Letters 94, 230504 (2005). URL https:/​/​doi.org/​10.1103/​PhysRevLett.94.230504.
https:/​/​doi.org/​10.1103/​PhysRevLett.94.230504

[31] Lo, H.-K., Curty, M. & Qi, B. Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters 108, 130503 (2012). URL https:/​/​doi.org/​10.1103/​PhysRevLett.108.130503.
https:/​/​doi.org/​10.1103/​PhysRevLett.108.130503

[32] Stacey, W., Annabestani, R., Ma, X. & Lütkenhaus, N. Security of quantum key distribution using a simplified trusted relay. Physical Review A 91, 012338 (2015). URL https:/​/​doi.org/​10.1103/​PhysRevA.91.012338.
https:/​/​doi.org/​10.1103/​PhysRevA.91.012338

[33] Bennett, C., Brassard, G. & Mermin, N. Quantum cryptography without Bell's theorem. Physical Review Letters 68, 557–559 (1992). URL https:/​/​doi.org/​10.1103/​PhysRevLett.68.557.
https:/​/​doi.org/​10.1103/​PhysRevLett.68.557

[34] Ferenczi, A. & Lütkenhaus, N. Symmetries in quantum key distribution and the connection between optimal attacks and optimal cloning. Physical Review A 85, 052310 (2012). URL https:/​/​doi.org/​10.1103/​PhysRevA.85.052310.
https:/​/​doi.org/​10.1103/​PhysRevA.85.052310

[35] Coles, P. J. Unification of different views of decoherence and discord. Physical Review A 85, 042103 (2012). URL https:/​/​doi.org/​10.1103/​PhysRevA.85.042103.
https:/​/​doi.org/​10.1103/​PhysRevA.85.042103

[36] Sajeed, S. et al. Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch. Physical Review A 91, 062301 (2015). URL https:/​/​doi.org/​10.1103/​PhysRevA.91.062301.
https:/​/​doi.org/​10.1103/​PhysRevA.91.062301

[37] Lydersen, L. et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics 4, 686–689 (2010). URL http:/​/​dx.doi.org/​10.1038/​nphoton.2010.214.
https:/​/​doi.org/​10.1038/​nphoton.2010.214

[38] Scarani, V. & Renner, R. Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing. Physical Review Letters 100, 200501 (2008). URL https:/​/​doi.org/​10.1103/​PhysRevLett.100.200501.
https:/​/​doi.org/​10.1103/​PhysRevLett.100.200501

[39] Sano, Y., Matsumoto, R. & Uyematsu, T. Secure key rate of the BB84 protocol using finite sample bits. IEEE International Symposium on Information Theory - Proceedings 43, 2677–2681 (2010). URL https:/​/​doi.org/​10.1109/​ISIT.2010.5513653.
https:/​/​doi.org/​10.1109/​ISIT.2010.5513653

[40] Tomamichel, M., Ci, C., Lim, W., Gisin, N. & Renner, R. Tight finite-key analysis for quantum cryptography. Nature Communications 3, 634 (2012). URL http:/​/​dx.doi.org/​10.1038/​ncomms1631.
https:/​/​doi.org/​10.1038/​ncomms1631

[41] Coles, P. J., Kaniewski, J. & Wehner, S. Equivalence of wave–particle duality to entropic uncertainty. Nature Communications 5, 5814 (2014). URL http:/​/​dx.doi.org/​10.1038/​ncomms6814.
https:/​/​doi.org/​10.1038/​ncomms6814

[42] Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge University Press, 2000).

[43] Lo, H.-K., Chau, H. & Ardehali, M. Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security. Journal of Cryptology 18, 133–165 (2005). URL https:/​/​doi.org/​10.1007/​s00145-004-0142-y.
https:/​/​doi.org/​10.1007/​s00145-004-0142-y

[44] Gittsovich, O. et al. Squashing model for detectors and applications to quantum-key-distribution protocols. Physical Review A 89, 012325 (2014). URL https:/​/​doi.org/​10.1103/​PhysRevA.89.012325.
https:/​/​doi.org/​10.1103/​PhysRevA.89.012325

Cited by

[1] Ian George, Jie Lin, and Norbert Lütkenhaus, "Numerical calculations of the finite key rate for general quantum key distribution protocols", Physical Review Research 3 1, 013274 (2021).

[2] Xingjian Zhang, Yunchao Liu, and Xiao Yuan, "Estimating Coherence Measures with Untrusted Devices", Advanced Quantum Technologies 4 6, 2000153 (2021).

[3] Feihu Xu, Xiongfeng Ma, Qiang Zhang, Hoi-Kwong Lo, and Jian-Wei Pan, "Secure quantum key distribution with realistic devices", Reviews of Modern Physics 92 2, 025002 (2020).

[4] L. C. G. Govia, D. Bunandar, J. Lin, D. Englund, N. Lütkenhaus, and H. Krovi, "Clifford-group-restricted eavesdroppers in quantum key distribution", Physical Review A 101 6, 062318 (2020).

[5] Darius Bunandar, Luke C. G. Govia, Hari Krovi, and Dirk Englund, "Numerical finite-key analysis of quantum key distribution", npj Quantum Information 6 1, 104 (2020).

[6] Zhang-Dong Ye, Dong Pan, Zhen Sun, Chun-Guang Du, Liu-Guo Yin, and Gui-Lu Long, "Generic security analysis framework for quantum secure direct communication", Frontiers of Physics 16 2, 21503 (2021).

[7] Wei-Min Lv, Chao Zhang, Xiao-Min Hu, Yun-Feng Huang, Huan Cao, Jian Wang, Zhi-Bo Hou, Bi-Heng Liu, Chuan-Feng Li, and Guang-Can Guo, "Experimental test of fine-grained entropic uncertainty relation in the presence of quantum memory", Scientific Reports 9 1, 8748 (2019).

[8] Jiapeng Zhao, Mohammad Mirhosseini, Boris Braverman, Yiyu Zhou, Seyed Mohammad Hashemi Rafsanjani, Yongxiong Ren, Nicholas K. Steinhoff, Glenn A. Tyler, Alan E. Willner, and Robert W. Boyd, "Performance analysis of d -dimensional quantum cryptography under state-dependent diffraction", Physical Review A 100 3, 032319 (2019).

[9] Twesh Upadhyaya, Thomas van Himbeeck, Jie Lin, and Norbert Lütkenhaus, "Dimension Reduction in Quantum Key Distribution for Continuous- and Discrete-Variable Protocols", PRX Quantum 2 2, 020325 (2021).

[10] Yukun Wang, Ignatius William Primaatmaja, Emilien Lavie, Antonios Varvitsiotis, and Charles Ci Wen Lim, "Characterising the correlations of prepare-and-measure quantum networks", npj Quantum Information 5 1, 17 (2019).

[11] Nicky Kai Hong Li and Norbert Lütkenhaus, "Improving key rates of the unbalanced phase-encoded BB84 protocol using the flag-state squashing model", Physical Review Research 2 4, 043172 (2020).

[12] Wenyuan Wang, Feihu Xu, and Hoi-Kwong Lo, "Asymmetric Protocols for Scalable High-Rate Measurement-Device-Independent Quantum Key Distribution Networks", Physical Review X 9 4, 041012 (2019).

[13] J. Eli Bourassa, Ignatius William Primaatmaja, Charles Ci Wen Lim, and Hoi-Kwong Lo, "Loss-tolerant quantum key distribution with mixed signal states", Physical Review A 102 6, 062607 (2020).

[14] Jing-Yang Liu, Xing-Yu Zhou, and Qin Wang, "Reference-frame-independent measurement-device-independent quantum key distribution using fewer states", Physical Review A 103 2, 022602 (2021).

[15] Ramy Tannous, Zhangdong Ye, Jeongwan Jin, Katanya B. Kuntz, Norbert Lütkenhaus, and Thomas Jennewein, "Demonstration of a 6 state-4 state reference frame independent channel for quantum key distribution", Applied Physics Letters 115 21, 211103 (2019).

[16] Jie Lin, Twesh Upadhyaya, and Norbert Lütkenhaus, "Asymptotic Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution", Physical Review X 9 4, 041064 (2019).

[17] Jie Lin and Norbert Lütkenhaus, "Simple security analysis of phase-matching measurement-device-independent quantum key distribution", Physical Review A 98 4, 042332 (2018).

[18] Yanbao Zhang, Patrick J. Coles, Adam Winick, Jie Lin, and Norbert Lütkenhaus, "Security proof of practical quantum key distribution with detection-efficiency mismatch", Physical Review Research 3 1, 013076 (2021).

[19] M. K. Bochkov and A. S. Trushechkin, "Security of quantum key distribution with detection-efficiency mismatch in the single-photon case: Tight bounds", Physical Review A 99 3, 032308 (2019).

[20] Ignatius William Primaatmaja, Emilien Lavie, Koon Tong Goh, Chao Wang, and Charles Ci Wen Lim, "Versatile security analysis of measurement-device-independent quantum key distribution", Physical Review A 99 6, 062332 (2019).

[21] Leonid Faybusovich and Cunlu Zhou, "Long-step path-following algorithm for quantum information theory: Some numerical aspects and applications", Numerical Algebra, Control & Optimization (2021).

[22] Margarida Pereira, Go Kato, Akihiro Mizutani, Marcos Curty, and Kiyoshi Tamaki, "Quantum key distribution with correlated sources", Science Advances 6 37, eaaz4487 (2020).

[23] Margarida Pereira, Marcos Curty, and Kiyoshi Tamaki, "Quantum key distribution with flawed and leaky sources", npj Quantum Information 5 1, 62 (2019).

[24] Jie Lin and Norbert Lütkenhaus, "Trusted Detector Noise Analysis for Discrete Modulation Schemes of Continuous-Variable Quantum Key Distribution", Physical Review Applied 14 6, 064030 (2020).

[25] Calvin Leung, Amy Brown, Hien Nguyen, Andrew S. Friedman, David I. Kaiser, and Jason Gallicchio, "Astronomical random numbers for quantum foundations experiments", Physical Review A 97 4, 042120 (2018).

[26] Rotem Arnon-Friedman, "Reductions to IID in Device-independent Quantum Information Processing", arXiv:1812.10922.

[27] Sumeet Khatri, Eneet Kaur, Saikat Guha, and Mark M. Wilde, "Second-order coding rates for key distillation in quantum key distribution", arXiv:1910.03883.

[28] Michele Masini, Stefano Pironio, and Erik Woodhead, "Simple and practical DIQKD security analysis via BB84-type uncertainty relations and Pauli correlation constraints", arXiv:2107.08894.

The above citations are from Crossref's cited-by service (last updated successfully 2021-10-20 06:38:37) and SAO/NASA ADS (last updated successfully 2021-10-20 06:38:38). The list may be incomplete as not all publishers provide suitable and complete citation data.