Distribution of entanglement and correlations in all finite dimensions

Christopher Eltschka1 and Jens Siewert2,3

1Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
2Departamento de Química Física, Universidad del País Vasco UPV/EHU, E-48080 Bilbao, Spain
3IKERBASQUE Basque Foundation for Science, E-48013 Bilbao, Spain

full text pdf

The physics of a many-particle system is determined by the correlations in its quantum state. Therefore, analyzing these correlations is the foremost task of many-body physics. Any 'a priori' constraint for the properties of the global vs. the local states-the so-called marginals-would help in order to narrow down the wealth of possible solutions for a given many-body problem, however, little is known about such constraints. We derive an equality for correlation-related quantities of any multipartite quantum system composed of finite-dimensional local parties. This relation defines a necessary condition for the compatibility of the marginal properties with those of the joint state. While the equality holds both for pure and mixed states, the pure-state version containing only entanglement measures represents a fully general monogamy relation for entanglement. These findings have interesting implications in terms of conservation laws for correlations, and also with respect to topology.


► BibTeX data

► References

[1] E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23 (49), 53 (1935).

[2] A. Peres, Quantum Theory: Concepts and Methods, (Kluwer Academic Publishers, New York, 2002).

[3] H.M. Wiseman, S.J. Jones, and A.C. Doherty, Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox, Phys. Rev. Lett. 98, 140402 (2007).

[4] R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989).

[5] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[6] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[7] C. Eltschka and J. Siewert, Quantifying entanglement resources, J. Phys. A: Math. Theor. 47, 424005 (2014).

[8] A. Streltsov, Quantum Correlations Beyond Entanglement, SpringerBriefs in Physics, (Springer International Publishing, 2015).

[9] G. Adesso, C.R. Bromley, and M. Cianciaruso, Measures and applications of quantum correlations, J. Phys. A: Math. Theor. 49, 473001 (2016).

[10] V. Coffman, J. Kundu, and W.K. Wootters, Distributed entanglement, Phys. Rev. A 61, 052306 (2000).

[11] M. Koashi and A. Winter, Monogamy of entanglement and other correlations, Phys. Rev. A 69, 022309 (2004).

[12] T.J. Osborne and F. Verstraete, General Monogamy Inequality for Bipartite Qubit Entanglement, Phys. Rev. Lett. 96, 220503, (2006).

[13] Y.-K. Bai, Y.-F. Xu, and Z.D. Wang, General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems, Phys. Rev. Lett. 113, 100503 (2014).

[14] B. Regula, S. Di Martino, S.-J. Lee, and G. Adesso, Strong monogamy conjecture for multiqubit entanglement: The four-qubit case, Phys. Rev. Lett. 113, 110501 (2014).

[15] H.S. Dhar, A. Kumar Pal, D. Rakshit, A. Sen De, and U. Sen, Monogamy of quantum correlations - a review, Lectures on General Quantum Correlations and their Applications, Springer International Publishing, 23 (2017).

[16] B. Toner, Monogamy of nonlocal correlations, Proc. R. Soc. A 465, 59 (2009).

[17] M.P. Seevinck, Monogamy of Correlations vs. Monogamy of Entanglement Quant. Inf. Proc. 9, 273 (2010).

[18] C. Eltschka and J. Siewert, Monogamy equalities for qubit entanglement from Lorentz invariance, Phys. Rev. Lett. 114, 140402 (2015).

[19] A.A. Klyachko, Quantum marginal problem and N-representability, J. Phys.: Conf. Ser. 36, 72 (2006).

[20] A. Wong and N. Christensen, Potential multiparticle entanglement measure, Phys. Rev. A 63, 044301 (2001).

[21] M. Horodecki and P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols, Phys. Rev. A 59, 4206 (1999).

[22] P. Rungta, V. Buzek, C.M. Caves, M. Hillery, and G.J. Milburn, Universal state inversion and concurrence in arbitrary dimensions, Phys. Rev. A 64, 042315 (2001).

[23] W. Hall, Multipartite reduction criteria for separability, Phys. Rev. A 72, 022311 (2005).

[24] W. Hall, A new criterion for indecomposability of positive maps, J. Phys. A: Math. Gen. 39, 14119 (2006).

[25] H.-P. Breuer, Optimal Entanglement Criterion for Mixed Quantum States, Phys. Rev. Lett. 97, 080501 (2006).

[26] M. Lewenstein, R. Augusiak, D. Chruściński, S. Rana, and J. Samsonowicz, Sufficient separability criteria and linear maps, Phys. Rev. A 93, 042335 (2016).

[27] W.K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Phys. Rev. Lett. 80, 2245 (1998).

[28] H. Georgi, Lie algebras in particle physics, Frontiers in physics, vol. 54. (Addison-Wesley, Redwood City, 1982).

[29] S. Albeverio and S.-M. Fei, A note on invariants and entanglements, J. Opt. B 3, 223 (2001).

[30] S.J. Akhtarshenas, Concurrence vectors in arbitrary multipartite quantum systems, J. Phys. A: Math. Gen. 38, 6777 (2005).

[31] Y.-Q. Li and G.-Q. Zhu, Concurrence vectors for entanglement of high-dimensional systems, Front. Phys. China 3, 250 (2008).

[32] G. Vidal, Entanglement monotones, J. Mod. Opt. 47, 355 (2000).

[33] W. Dür, G. Vidal, and J.I. Cirac, Three qubits can be entangled in two different ways, Phys. Rev. A 62, 062314 (2000).

[34] A. Uhlmann, Roofs and convexity, Entropy 12, 1799 (2010).

[35] C. Eltschka, T. Bastin, A. Osterloh, and J. Siewert, Multipartite-entanglement monotones and polynomial invariants, Phys. Rev. A 85, 022301, (2012); Erratum, ibid., 059903 (2012).

[36] J.-M. Cai, Z.-W. Zhou, S. Zhang, and G.-C. Guo, Compatibility conditions from multipartite entanglement measures, Phys. Rev. A 75, 052324 (2007).

[37] E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14, 1938 (1973).

[38] M.D. Crossley, Essential topology, Springer Undergraduate Mathematics Series (Springer, London, 2005).

► Cited by (beta)

[1] Nikolai Wyderka, Felix Huber, Otfried Gühne, "Constraints on correlations in multiqubit systems", Physical Review A 97, 060101 (2018).

(The above data is from Crossref's cited-by service. Unfortunately not all publishers provide suitable and complete citation data so that some citing works or bibliographic details may be missing.)