Precision and Work Fluctuations in Gaussian Battery Charging

Nicolai Friis1,2 and Marcus Huber1

1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
2Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria

One of the most fundamental tasks in quantum thermodynamics is extracting energy from one system and subsequently storing this energy in an appropriate battery. Both of these steps, work extraction and charging, can be viewed as cyclic Hamiltonian processes acting on individual quantum systems. Interestingly, so-called passive states exist, whose energy cannot be lowered by unitary operations, but it is safe to assume that the energy of any not fully charged battery may be increased unitarily. However, unitaries raising the average energy by the same amount may differ in qualities such as their precision, fluctuations, and charging power. Moreover, some unitaries may be extremely difficult to realize in practice. It is hence of crucial importance to understand the qualities that can be expected from practically implementable transformations. Here, we consider the limitations on charging batteries when restricting to the feasibly realizable family of Gaussian unitaries. We derive optimal protocols for general unitary operations as well as for the restriction to easier implementable Gaussian unitaries. We find that practical Gaussian battery charging, while performing significantly less well than is possible in principle, still offers asymptotically vanishing relative charge variances and fluctuations.

► BibTeX data

► References

[1] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk, The role of quantum information in thermodynamics — a topical review, J. Phys. A: Math. Theor. 49, 143001 (2016) [arXiv:1505.07835].
https://doi.org/10.1088/1751-8113/49/14/143001
arXiv:1505.07835

[2] J. Millen and A. Xuereb, Perspective on quantum thermodynamics, New J. Phys. 18, 011002 (2016) [arXiv:1509.01086].
https://doi.org/10.1088/1367-2630/18/1/011002
arXiv:1509.01086

[3] S. Vinjanampathy and J. Anders, Quantum Thermodynamics, Contemp. Phys. 57, 1 (2016) [arXiv:1508.06099].
https://doi.org/10.1080/00107514.2016.1201896
arXiv:1508.06099

[4] F. G. S. L. Brandão, M. Horodecki, N. H. Y. Ng, J. Oppenheim, and S. Wehner, The second laws of quantum thermodynamics, Proc. Natl. Acad. Sci. U.S.A. 112, 3275 (2015) [arXiv:1305.5278].
https://doi.org/10.1073/pnas.1411728112
arXiv:1305.5278

[5] F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M. Renes, and R. W. Spekkens, The Resource Theory of Quantum States Out of Thermal Equilibrium, Phys. Rev. Lett. 111, 250404 (2013) [arXiv:1111.3882].
https://doi.org/10.1103/PhysRevLett.111.250404
arXiv:1111.3882

[6] M. P. Müller, Correlating thermal machines and the second law at the nanoscale, e-print arXiv:1707.03451 [quant-ph] (2017).
arXiv:1707.03451

[7] C. Gogolin and J. Eisert, Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems, Rep. Prog. Phys. 79, 056001 (2016) [arXiv:1503.07538].
https://doi.org/10.1088/0034-4885/79/5/056001
arXiv:1503.07538

[8] W. Pusz and S. L. Woronowicz, Passive states and KMS states for general quantum systems, Commun. Math. Phys. 58, 273 (1978).
https://doi.org/10.1007/BF01614224

[9] M. Perarnau-Llobet, K. V. Hovhannisyan, M. Huber, P. Skrzypczyk, J. Tura, and A. Acín, Most energetic passive states, Phys. Rev. E 92, 042147 (2015) [arXiv:1502.07311].
https://doi.org/10.1103/PhysRevE.92.042147
arXiv:1502.07311

[10] E. G. Brown, N. Friis, and M. Huber, Passivity and practical work extraction using Gaussian operations, New J. Phys. 18, 113028 (2016) [arXiv:1608.04977].
https://doi.org/10.1088/1367-2630/18/11/113028
arXiv:1608.04977

[11] C. Perry, P. Ć wikliński, J. Anders, M. Horodecki, and J. Oppenheim, A sufficient set of experimentally implementable thermal operations, e-print arXiv:1511.06553 [quant-ph] (2017).
arXiv:1511.06553

[12] M. Lostaglio, Á. M. Alhambra, and C. Perry, Elementary Thermal Operations, Quantum 2, 52 (2018) [arXiv:1607.00394].
https://doi.org/10.22331/q-2018-02-08-52
arXiv:1607.00394

[13] P. Mazurek and M. Horodecki, Decomposability and Convex Structure of Thermal Processes, e-print arXiv:1707.06869 [quant-ph] (2017).
arXiv:1707.06869

[14] F. Clivaz, R. Silva, G. Haack, J. Bohr Brask, N. Brunner, and M. Huber, Unifying paradigms of quantum refrigeration: resource-dependent limits, e-print arXiv:1710.11624 [quant-ph] (2017).
arXiv:1710.11624

[15] M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics, Nat. Commun. 4, 2059 (2013) [arXiv:1111.3834].
https://doi.org/10.1038/ncomms3059
arXiv:1111.3834

[16] G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, and N. Yunger Halpern, The resource theory of informational nonequilibrium in thermodynamics, Phys. Rep. 583, 1-58 (2015) [arXiv:1309.6586].
https://doi.org/10.1016/j.physrep.2015.04.003
arXiv:1309.6586

[17] J. Åberg, Catalytic Coherence, Phys. Rev. Lett. 113, 150402 (2014), [arXiv:1304.1060].
https://doi.org/10.1103/PhysRevLett.113.150402
arXiv:1304.1060

[18] A. S. L. Malabarba, A. J. Short, and P. Kammerlander, Clock-Driven Quantum Thermal Engines, New J. Phys. 17, 045027 (2015) [arXiv:1412.1338].
https://doi.org/10.1088/1367-2630/17/4/045027
arXiv:1412.1338

[19] P. Skrzypczyk, A. J. Short, and S. Popescu, Extracting work from quantum systems, e-print arXiv:1302.2811 [quant-ph] (2013).
arXiv:1302.2811

[20] P. Skrzypczyk, A. J. Short, and S. Popescu, Work extraction and thermodynamics for individual quantum systems, Nat. Commun. 5, 4185 (2014) [arXiv:1307.1558].
https://doi.org/10.1038/ncomms5185
arXiv:1307.1558

[21] F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quantacell: Powerful charging of quantum batteries, New J. Phys. 17, 075015 (2015) [arXiv:1503.07005].
https://doi.org/10.1088/1367-2630/17/7/075015
arXiv:1503.07005

[22] F. Campaioli, F. A. Pollock, F. C. Binder, L. C. Céleri, J. Goold, S. Vinjanampathy, and K. Modi, Enhancing the charging power of quantum batteries, Phys. Rev. Lett. 118, 150601 (2017) [arXiv:1612.04991].
https://doi.org/10.1103/PhysRevLett.118.150601
arXiv:1612.04991

[23] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M. Polini, High-Power Collective Charging of a Solid-State Quantum Battery, Phys. Rev. Lett. 120, 117702 (2018) [arXiv:1707.04930].
https://doi.org/10.1103/PhysRevLett.120.117702
arXiv:1707.04930

[24] P. P. Hofer, J.-R. Souquet, and A. A. Clerk, Quantum heat engine based on photon-assisted Cooper pair tunneling, Phys. Rev. B 93, 041418 (2016) [arXiv:1512.02165].
https://doi.org/10.1103/PhysRevB.93.041418
arXiv:1512.02165

[25] P. P. Hofer, M. Perarnau-Llobet, J. Bohr Brask, R. Silva, M. Huber, and N. Brunner, Autonomous Quantum Refrigerator in a Circuit-QED Architecture Based on a Josephson Junction, Phys. Rev. B 94, 235420 (2016) [arXiv:1607.05218].
https://doi.org/10.1103/PhysRevB.94.235420
arXiv:1607.05218

[26] M. T. Mitchison, M. Huber, J. Prior, M. P. Woods, and M. B. Plenio, Realising a quantum absorption refrigerator with an atom-cavity system, Quantum Sci. Technol. 1, 015001 (2016) [arXiv:1603.02082].
https://doi.org/10.1088/2058-9565/1/1/015001
arXiv:1603.02082

[27] G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, and D. Matsukevich, Quantum absorption refrigerator with trapped ions, e-print arXiv:1702.08672 [quant-ph] (2017).
arXiv:1702.08672

[28] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, A single-atom heat engine, Science 352, 325 (2016) [arXiv:1510.03681].
https://doi.org/10.1126/science.aad6320
arXiv:1510.03681

[29] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84, 621 (2012) [arXiv:1110.3234].
https://doi.org/10.1103/RevModPhys.84.621
arXiv:1110.3234

[30] M. Campisi, P. Hänggi, and P. Talkner, Colloquium. Quantum Fluctuation Relations: Foundations and Applications, Rev. Mod. Phys. 83, 771 (2011); Erratum: Rev. Mod. Phys. 83, 1653 (2011) [arXiv:1012.2268].
https://doi.org/10.1103/RevModPhys.83.771
arXiv:1012.2268

[31] Á. M. Alhambra, L. Masanes, J. Oppenheim, and C. Perry, The second law of quantum thermodynamics as an equality, Phys. Rev. X 6, 041017 (2016) [arXiv:1601.05799].
https://doi.org/10.1103/PhysRevX.6.041017
arXiv:1601.05799

[32] J. G. Richens and L. Masanes, From single-shot to general work extraction with bounded fluctuations in work, Nat. Commun. 7, 13511 (2016) [arXiv:1603.02417].
https://doi.org/10.1038/ncomms13511
arXiv:1603.02417

[33] M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81, 1665 (2009) [arXiv:0811.3717].
https://doi.org/10.1103/RevModPhys.81.1665
arXiv:0811.3717

[34] S. Olivares, Quantum optics in the phase space - A tutorial on Gaussian states, Eur. Phys. J. 203, 3 (2012) [arXiv:1111.0786].
https://doi.org/10.1140/epjst/e2012-01532-4
arXiv:1111.0786

[35] S. L. Braunstein, Squeezing as an irreducible resource, Phys. Rev. A 71, 055801 (2005) [arXiv:quant-ph/​9904002].
https://doi.org/10.1103/PhysRevA.71.055801
arXiv:quant-ph/9904002

[36] S. Lloyd and S. L. Braunstein, Quantum computation over continuous variables, Phys. Rev. Lett. 82, 1784 (1999) [arXiv:quant-ph/​9810082].
https://doi.org/10.1103/PhysRevLett.82.1784
arXiv:quant-ph/9810082

[37] D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, The thermodynamics of creating correlations: Limitations and optimal protocols, Phys. Rev. E 91, 032118 (2015) [arXiv:1409.4647].
https://doi.org/10.1103/PhysRevE.91.032118
arXiv:1409.4647

[38] D. E. Bruschi, N. Friis, I. Fuentes, and S. Weinfurtner, On the robustness of entanglement in analogue gravity systems, New J. Phys. 15, 113016 (2013) [arXiv:1305.3867].
https://doi.org/10.1088/1367-2630/15/11/113016
arXiv:arXiv:1305.3867

[39] M. Perarnau-Llobet, K. V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, and A. Acín, Extractable work from correlations, Phys. Rev. X 5, 041011 (2015) [arXiv:1407.7765].
https://doi.org/10.1103/PhysRevX.5.041011
arXiv:1407.7765

[40] M. Huber, M. Perarnau-Llobet, K. V. Hovhannisyan, P. Skrzypczyk, C. Klöckl, N. Brunner, and A. Acín, Thermodynamic cost of creating correlations, New J. Phys. 17, 065008 (2015) [arXiv:1404.2169].
https://doi.org/10.1088/1367-2630/17/6/065008
arXiv:1404.2169

[41] N. Friis, M. Huber, and M. Perarnau-Llobet, Energetics of correlations in interacting systems, Phys. Rev. E 93, 042135 (2016) [arXiv:1511.08654].
https://doi.org/10.1103/PhysRevE.93.042135
arXiv:1511.08654

[42] M. Brunelli, M. G. Genoni, M. Barbieri, and M. Paternostro, Detecting Gaussian entanglement via extractable work, Phys. Rev. A 96, 062311 (2017) [arXiv:1702.05110].
https://doi.org/10.1103/PhysRevA.96.062311
arXiv:1702.05110

► Cited by (beta)

[1] Niels Lörch, Christoph Bruder, Nicolas Brunner, Patrick P Hofer, "Optimal work extraction from quantum states by photo-assisted Cooper pair tunneling", Quantum Science and Technology 3, 035014 (2018).

[2] Emma McKay, Nayeli A. Rodríguez-Briones, Eduardo Martín-Martínez, "Fluctuations of work cost in optimal generation of correlations", Physical Review E 98, 032132 (2018).

[3] Ludovico Lami, Bartosz Regula, Xin Wang, Rosanna Nichols, Andreas Winter, Gerardo Adesso, "Gaussian quantum resource theories", Physical Review A 98, 022335 (2018).

(The above data is from Crossref's cited-by service. Unfortunately not all publishers provide suitable and complete citation data so that some citing works or bibliographic details may be missing.)