Dissipative stabilization of entangled cat states using a driven Bose-Hubbard dimer

M. Mamaev1, L. C. G. Govia2, and A. A. Clerk2

1Department of Physics, McGill University, Montréal, Québec, Canada.
2Institute for Molecular Engineering, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We analyze a modified Bose-Hubbard model, where two cavities having on-site Kerr interactions are subject to two-photon driving and correlated dissipation. We derive an exact solution for the steady state of this interacting driven-dissipative system, and use it show that the system permits the preparation and stabilization of pure entangled non-Gaussian states, so-called entangled cat states. Unlike previous proposals for dissipative stabilization of such states, our approach requires only a linear coupling to a single engineered reservoir (as opposed to nonlinear couplings to two or more reservoirs). Our scheme is within the reach of state-of-the-art experiments in circuit QED.

► BibTeX data

► References

[1] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).

[2] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 77, 4728 (1996).

[3] A. S. Parkins, E. Solano, and J. I. Cirac, Phys. Rev. Lett. 96, 053602 (2006).

[4] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, Phys. Rev. Lett. 107, 080503 (2011).

[5] C. A. Muschik, E. S. Polzik, and J. I. Cirac, Phys. Rev. A 83, 052312 (2011).

[6] M. J. Woolley and A. A. Clerk, Phys. Rev. A 89, 063805 (2014).

[7] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University Press, Oxford, 2006).

[8] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Science 342, 607 (2013).

[9] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, New J. Phys. 16, 045014 (2014).

[10] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Science 352, 1087 (2016).

[11] B. C. Sanders, J. Phys. A: Math. Theor. 45, 244002 (2012).

[12] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M. Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M. H. Devoret, Science 347, 853 (2015).

[13] A. Sarlette, Z. Leghtas, M. Brune, J. M. Raimond, and P. Rouchon, Phys. Rev. A 86, 012114 (2012).

[14] C. Arenz, C. Cormick, D. Vitali, and G. Morigi, J. Phys. B: At. Mol. Opt. Phys. 46, 224001 (2013).

[15] T. Pudlik, H. Hennig, D. Witthaut, and D. K. Campbell, Phys. Rev. A 88, 063606 (2013).

[16] T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, Phys. Rev. A 87, 053846 (2013).

[17] B. Cao, K. W. Mahmud, and M. Hafezi, Phys. Rev. A 94, 063805 (2016).

[18] W. Casteels and C. Ciuti, Phys. Rev. A 95, 013812 (2017).

[19] W. Casteels and M. Wouters, Phys. Rev. A 95, 043833 (2017).

[20] C. Noh and D. G. Angelakis, Rep. Prog. Phys 80, 016401 (2017).

[21] D. E. Chang, L. Jiang, A. V. Gorshkov, and H. J. Kimble, New J. Phys. 14, 063003 (2012).

[22] A. Metelmann and A. A. Clerk, Phys. Rev. X 5, 021025 (2015).

[23] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. 93, 042510 (2008).

[24] P. Krantz, A. Bengtsson, M. Simoen, S. Gustavsson, V. Shumeiko, W. D. Oliver, C. M. Wilson, P. Delsing, and J. Bylander, Nat. Comm. 7, 11417 EP (2016).

[25] J. Y. Mutus, T. C. White, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, C. Neill, P. J. J. O'Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, K. M. Sundqvist, A. N. Cleland, and J. M. Martinis, Appl. Phys. Lett. 104, 263513 (2014).

[26] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature 495, 205 EP (2013).

[27] K. M. Sliwa, M. Hatridge, A. Narla, S. Shankar, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys. Rev. X 5, 041020 (2015).

[28] F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel, and J. Aumentado, Phys. Rev. Applied 7, 024028 (2017).

[29] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Phys. Rev. Lett. 116, 043601 (2016).

[30] J. I. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, Phys. Rev. Lett. 70, 556 (1993).

[31] P. Rabl, A. Shnirman, and P. Zoller, Phys. Rev. B 70, 205304 (2004).

[32] A. Kronwald, F. Marquardt, and A. A. Clerk, Phys. Rev. A 88, 063833 (2013).

[33] E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, Science 349, 952 (2015).

[34] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Phys. Rev. X 5, 041037 (2015).

[35] J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, Phys. Rev. Lett. 115, 243601 (2015).

[36] D. Kienzler, H.-Y. Lo, B. Keitch, L. de Clercq, F. Leupold, F. Lindenfelser, M. Marinelli, V. Negnevitsky, and J. P. Home, Science 347, 53 (2015).

[37] J. K. Asbóth, P. Adam, M. Koniorczyk, and J. Janszky, Eur. Phys. J. B 30, 403 (2004).

[38] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, Nature Physics 13, 465 EP (2017).

[39] H. Goto, Phys. Rev. A 93, 050301 (2016a).

[40] H. Goto, Sci. Rep. 6, 21686 (2016b).

[41] F. Minganti, N. Bartolo, J. Lolli, W. Casteels, and C. Ciuti, Sci. Rep. 6, 26987 (2016).

[42] S. Puri, S. Boutin, and A. Blais, npj Quant. Inf. 3, 18 (2017).

[43] P. D. Drummond and D. F. Walls, J. Phys. A: Math. Gen. 13, 725 (1980).

[44] K. Stannigel, P. Rabl, and P. Zoller, New J. Phys. 14, 063014 (2012).

[45] M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, Appl. Phys. Lett. 102, 192604 (2013).

[46] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, Phys. Rev. B 94, 014506 (2016).

[47] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, Science 326, 113 (2009).

[48] S. M. Girvin, in Quantum Machines: Measurement and Control of Engineered Quantum Systems: Lecture Notes of the Les Houches Summer School, edited by M. Devoret, R. J. Schoelkopf, B. Huard, and L. F. Cugliandolo (Oxford University Press, 2014) Chap. 3.

[49] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[50] G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, Phys. Rev. B 87, 024510 (2013).

[51] N. E. Frattini, U. Vool, S. Shankar, A. Narla, K. M. Sliwa, and M. H. Devoret, Appl. Phys. Lett. 110, 222603 (2017).

[52] W. Zhang, W. Huang, M. E. Gershenson, and M. T. Bell, Phys. Rev. Applied 8, 051001 (2017).

Cited by

[1] Łukasz Rudnicki and Clemens Gneiting, "Stabilizable Gaussian states", Physical Review A 98 3, 032120 (2018).

[2] Tobias Graß, "Excitations and correlations in the driven-dissipative Bose-Hubbard model", Physical Review A 99 4, 043607 (2019).

[3] Fabrizio Minganti, Vincenzo Macrì, Alessio Settineri, Salvatore Savasta, and Franco Nori, "Dissipative state transfer and Maxwell's demon in single quantum trajectories: Excitation transfer between two noninteracting qubits via unbalanced dissipation rates", Physical Review A 103 5, 052201 (2021).

[4] José Lebreuilly, Camille Aron, and Christophe Mora, "Stabilizing Arrays of Photonic Cat States via Spontaneous Symmetry Breaking", Physical Review Letters 122 12, 120402 (2019).

[5] S.O. Mundhada, A. Grimm, J. Venkatraman, Z.K. Minev, S. Touzard, N.E. Frattini, V.V. Sivak, K. Sliwa, P. Reinhold, S. Shankar, M. Mirrahimi, and M.H. Devoret, "Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process", Physical Review Applied 12 5, 054051 (2019).

[6] Zheng-Yang Zhou, Clemens Gneiting, J. Q. You, and Franco Nori, "Generating and detecting entangled cat states in dissipatively coupled degenerate optical parametric oscillators", Physical Review A 104 1, 013715 (2021).

[7] Niels Lörch, Yaxing Zhang, Christoph Bruder, and M. I. Dykman, "Quantum state preparation for coupled period tripling oscillators", Physical Review Research 1 2, 023023 (2019).

[8] R. Dassonneville, R. Assouly, T. Peronnin, A.A. Clerk, A. Bienfait, and B. Huard, "Dissipative Stabilization of Squeezing Beyond 3 dB in a Microwave Mode", PRX Quantum 2 2, 020323 (2021).

[9] Zhi-Rong Zhong, Xin-Jie Huang, Zhen-Biao Yang, Li-Tuo Shen, and Shi-Biao Zheng, "Generation and stabilization of entangled coherent states for the vibrational modes of a trapped ion", Physical Review A 98 3, 032311 (2018).

[10] Tomasz Linowski, Clemens Gneiting, and Łukasz Rudnicki, "Stabilizing entanglement in two-mode Gaussian states", Physical Review A 102 4, 042405 (2020).

[11] Iacopo Carusotto, Andrew A. Houck, Alicia J. Kollár, Pedram Roushan, David I. Schuster, and Jonathan Simon, "Photonic materials in circuit quantum electrodynamics", Nature Physics 16 3, 268 (2020).

[12] David Roberts, Andrew Lingenfelter, and A.A. Clerk, "Hidden Time-Reversal Symmetry, Quantum Detailed Balance and Exact Solutions of Driven-Dissipative Quantum Systems", PRX Quantum 2 2, 020336 (2021).

[13] Martin Koppenhöfer, Christoph Bruder, and Niels Lörch, "Heralded dissipative preparation of nonclassical states in a Kerr oscillator", Physical Review Research 2 1, 013071 (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2021-10-20 06:08:34). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2021-10-20 06:08:34).