Semi-device-independent framework based on natural physical assumptions

Thomas Van Himbeeck1,2, Erik Woodhead3, Nicolas J. Cerf2, Raúl García-Patrón2, and Stefano Pironio1

1Laboratoire d’Information Quantique, Université libre de Bruxelles (ULB), Belgium
2Centre for Quantum Information and Communication, Universit´e libre de Bruxelles (ULB), Belgium
3ICFO - Institut de Cíencies Fotóniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The semi-device-independent approach provides a framework for prepare-and-measure quantum protocols using devices whose behavior must not be characterized nor trusted, except for a single assumption on the dimension of the Hilbert space characterizing the quantum carriers. Here, we propose instead to constrain the quantum carriers through a bound on the mean value of a well-chosen observable. This modified assumption is physically better motivated than a dimension bound and closer to the description of actual experiments. In particular, we consider quantum optical schemes where the source emits quantum states described in an infinite-dimensional Fock space and model our assumption as an upper bound on the average photon number in the emitted states. We characterize the set of correlations that may be exhibited in the simplest possible scenario compatible with our new framework, based on two energy-constrained state preparations and a two-outcome measurement. Interestingly, we uncover the existence of quantum correlations exceeding the set of classical correlations that can be produced by devices behaving in a purely pre-determined fashion (possibly including shared randomness). This feature suggests immediate applications to certified randomness generation. Along this line, we analyze the achievable correlations in several prepare-and-measure optical schemes with a mean photon number constraint and demonstrate that they allow for the generation of certified randomness. Our simplest optical scheme works by the on-off keying of an attenuated laser source followed by photocounting. It opens the path to more sophisticated energy-constrained semi-device-independent quantum cryptography protocols, such as quantum key distribution.

► BibTeX data

► References

[1] D. Mayers and A. Yao, in Proceedings of the 39th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 1998) pp. 503–509, arXiv:quant-ph/​9809039.
https:/​/​doi.org/​10.1109/​SFCS.1998.743501
arXiv:quant-ph/9809039

[2] J. Barrett, L. Hardy, and A. Kent, Physical Review Letters 95, 010503 (2005), arXiv:quant-ph/​0405101.
https:/​/​doi.org/​10.1103/​PhysRevLett.95.010503
arXiv:quant-ph/0405101

[3] R. Colbeck, Quantum And Relativistic Protocols For Secure Multi-Party Computation, Ph.D. thesis, University of Cambridge (2006), arXiv:0911.3814 [quant-ph].
arXiv:0911.3814

[4] R. Colbeck and A. Kent, Journal of Physics A 44, 095305 (2011), arXiv:1011.4474 [quant-ph].
https:/​/​doi.org/​10.1088/​1751-8113/​44/​9/​095305
arXiv:1011.4474

[5] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Physical Review Letters 98, 230501 (2007), arXiv:quant-ph/​0702152.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.230501
arXiv:quant-ph/0702152

[6] B. W. Reichardt, F. Unger, and U. Vazirani, Nature 496, 456 (2013), arXiv:1209.0448 [quant-ph].
https:/​/​doi.org/​10.1038/​nature12035
arXiv:1209.0448

[7] C. A. Miller and Y. Shi, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC '14 (ACM, New York, NY, USA, 2014) pp. 417–426, arXiv:1402.0489 [quant-ph].
https:/​/​doi.org/​10.1145/​2591796.2591843
arXiv:1402.0489

[8] R. Arnon-Friedman, R. Renner, and T. Vidick, Simple and tight device-independent security proofs, (2016), arXiv:1607.01797 [quant-ph].
arXiv:1607.01797

[9] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Reviews of Modern Physics 86, 419 (2014), arXiv:1303.2849 [quant-ph].
https:/​/​doi.org/​10.1103/​RevModPhys.86.419
arXiv:1303.2849

[10] N. Brunner, S. Pironio, A. Acín, N. Gisin, A. A. Méthot, and V. Scarani, Physical Review Letters 100, 210503 (2008), arXiv:0802.0760 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.100.210503
arXiv:0802.0760

[11] R. Gallego, N. Brunner, C. Hadley, and A. Acín, Physical Review Letters 105, 230501 (2010), arXiv:1010.5064 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.105.230501
arXiv:1010.5064

[12] J. Bowles, M. T. Quintino, and N. Brunner, Physical Review Letters 112, 140407 (2014), arXiv:1311.1525 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.112.140407
arXiv:1311.1525

[13] T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, Physical Review Letters 114, 150501 (2015), arXiv:1410.2790 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.114.150501
arXiv:1410.2790

[14] M. Pawłowski and N. Brunner, Physical Review A 84, 010302(R) (2011), arXiv:1103.4105 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.84.010302
arXiv:1103.4105

[15] E. Woodhead and S. Pironio, Physical Review Letters 115, 150501 (2015), arXiv:1507.02889 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.115.150501
arXiv:1507.02889

[16] J. Ahrens, P. Badziag, A. Cabello, and M. Bourennane, Nature Physics 8, 592 (2012), arXiv:1111.1277 [quant-ph].
https:/​/​doi.org/​10.1038/​nphys2333
arXiv:1111.1277

[17] M. Hendrych, R. Gallego, M. Mičuda, N. Brunner, A. Acín, and J. P. Torres, Nature Physics 8, 588 (2012), arXiv:1111.1208 [quant-ph].
https:/​/​doi.org/​10.1038/​nphys2334
arXiv:1111.1208

[18] B. S. Tsirel'son, Journal of Soviet Mathematics 36, 557 (1987).
https:/​/​doi.org/​10.1007/​BF01663472

[19] R. F. Werner and M. M. Wolf, Physical Review A 64, 032112 (2001), arXiv:quant-ph/​0102024.
https:/​/​doi.org/​10.1103/​PhysRevA.64.032112
arXiv:quant-ph/0102024

[20] L. Masanes, Necessary and sufficient condition for quantum-generated correlations, (2003), arXiv:quant-ph/​0309137.
arXiv:quant-ph/0309137

[21] R. Cleve, P. Hoyer, B. Toner, and J. Watrous, in Proc. Annu. IEEE Conf. Comput. Complex. (IEEE, 2004) pp. 236–249, arXiv:quant-ph/​0404076.
https:/​/​doi.org/​10.1109/​CCC.2004.1313847
arXiv:quant-ph/0404076

[22] M. Navascués, S. Pironio, and A. Acín, Phys. Rev. Lett. 98, 010401 (2007), arXiv:quant-ph/​0607119.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.010401
arXiv:quant-ph/0607119

[23] M. Navascués, S. Pironio, and A. Acín, New Journal of Physics 10, 073013 (2008), arXiv:0803.4290 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​10/​7/​073013
arXiv:0803.4290

[24] A. C. Doherty, B. Toner, Y. C. Liang, and S. Wehner, in Proc. Annu. IEEE Conf. Comput. Complex. (IEEE, 2008) pp. 199–210, arXiv:0803.4373 [quant-ph].
https:/​/​doi.org/​10.1109/​CCC.2008.26
arXiv:0803.4373

[25] N. Brunner, M. Navascués, and T. Vértesi, Physical Review Letters 110, 150501 (2013), arXiv:1209.5643 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.110.150501
arXiv:1209.5643

[26] M. Navascues and T. Vertési, Physical Review Letters 115, 020501 (2015), arXiv:1412.0924 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.115.020501
arXiv:1412.0924

[27] T. Van Himbeeck et al., in preparation.

[28] B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Physical Review X 5, 041009 (2015), arXiv:1503.00662 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevX.5.041009
arXiv:1503.00662

[29] J. Barrett, A. Kent, and S. Pironio, Physical Review Letters 97, 170409 (2006), arXiv:quant-ph/​0605182.
https:/​/​doi.org/​10.1103/​PhysRevLett.97.170409
arXiv:quant-ph/0605182

[30] S. Pironio, A. Acín, S. Massar, A. Boyer de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Nature 464, 1021 (2010), arXiv:0911.3427 [quant-ph].
https:/​/​doi.org/​10.1038/​nature09008
arXiv:0911.3427

[31] S. Pironio and S. Massar, Physical Review A 87, 012336 (2013), arXiv:1111.6056 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevA.87.012336
arXiv:1111.6056

[32] O. Nieto-Silleras, C. Bamps, J. Silman, and S. Pironio, Device-independent randomness generation from several Bell estimators, (2016), arXiv:1611.00352 [quant-ph].
arXiv:1611.00352

[33] R. Chaves, J. B. Brask, and N. Brunner, Physical Review Letters 115, 110501 (2015), arXiv:1505.07802 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.115.110501
arXiv:1505.07802

[34] J. Silman, S. Pironio, and S. Massar, Physical Review Letters 110, 100504 (2013), arXiv:1211.5921 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevLett.110.100504
arXiv:1211.5921

[35] J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, Physical Review A 7, 054018 (2017), arXiv:1612.06566 [quant-ph].
https:/​/​doi.org/​10.1103/​PhysRevApplied.7.054018
arXiv:1612.06566

Cited by

[1] P. R. Smith, D. G. Marangon, M. Lucamarini, Z. L. Yuan, and A. J. Shields, "Simple source device-independent continuous-variable quantum random number generator", Physical Review A 99 6, 062326 (2019).

[2] Armin Tavakoli, Massimiliano Smania, Tamás Vértesi, Nicolas Brunner, and Mohamed Bourennane, "Self-testing nonprojective quantum measurements in prepare-and-measure experiments", Science Advances 6 16, eaaw6664 (2020).

[3] Kieran Flatt, Hanwool Lee, Carles Roch I Carceller, Jonatan Bohr Brask, and Joonwoo Bae, "Contextual Advantages and Certification for Maximum-Confidence Discrimination", PRX Quantum 3 3, 030337 (2022).

[4] Mathieu Bozzio, Eleni Diamanti, and Frédéric Grosshans, "Semi-device-independent quantum money with coherent states", Physical Review A 99 2, 022336 (2019).

[5] Yukun Wang, Ignatius William Primaatmaja, Emilien Lavie, Antonios Varvitsiotis, and Charles Ci Wen Lim, "Characterising the correlations of prepare-and-measure quantum networks", npj Quantum Information 5 1, 17 (2019).

[6] Weixu Shi, Yu Cai, Jonatan Bohr Brask, Hugo Zbinden, and Nicolas Brunner, "Semi-device-independent characterization of quantum measurements under a minimum overlap assumption", Physical Review A 100 4, 042108 (2019).

[7] Nikolai Miklin and Michał Oszmaniec, "A universal scheme for robust self-testing in the prepare-and-measure scenario", Quantum 5, 424 (2021).

[8] Gong-Chu Li, Zhen-Qiang Yin, Wen-Hao Zhang, Lei Chen, Peng Yin, Xing-Xiang Peng, Xue-Song Hong, Geng Chen, Chuan-Feng Li, and Guang-Can Guo, "Experimental full calibration of quantum devices in a semi-device-independent way", Optica 10 12, 1723 (2023).

[9] Nicolò Leone, Davide Rusca, Stefano Azzini, Giorgio Fontana, Fabio Acerbi, Alberto Gola, Alessandro Tontini, Nicola Massari, Hugo Zbinden, and Lorenzo Pavesi, "An optical chip for self-testing quantum random number generation", APL Photonics 5 10, 101301 (2020).

[10] Gong Zhang, Ignatius William Primaatmaja, Jing Yan Haw, Xiao Gong, Chao Wang, and Charles Ci Wen Lim, "Securing Practical Quantum Communication Systems with Optical Power Limiters", PRX Quantum 2 3, 030304 (2021).

[11] Marco Avesani, Hamid Tebyanian, Paolo Villoresi, and Giuseppe Vallone, "Semi-Device-Independent Heterodyne-Based Quantum Random-Number Generator", Physical Review Applied 15 3, 034034 (2021).

[12] Marie Ioannou, Maria Ana Pereira, Davide Rusca, Fadri Grünenfelder, Alberto Boaron, Matthieu Perrenoud, Alastair A. Abbott, Pavel Sekatski, Jean-Daniel Bancal, Nicolas Maring, Hugo Zbinden, and Nicolas Brunner, "Receiver-Device-Independent Quantum Key Distribution", Quantum 6, 718 (2022).

[13] George Moreno, Ranieri Nery, Carlos de Gois, Rafael Rabelo, and Rafael Chaves, "Semi-device-independent certification of entanglement in superdense coding", Physical Review A 103 2, 022426 (2021).

[14] Armin Tavakoli, Jędrzej Kaniewski, Tamás Vértesi, Denis Rosset, and Nicolas Brunner, "Self-testing quantum states and measurements in the prepare-and-measure scenario", Physical Review A 98 6, 062307 (2018).

[15] Mário Silva, Ricardo Faleiro, Paulo Mateus, and Emmanuel Zambrini Cruzeiro, "A coherence-witnessing game and applications to semi-device-independent quantum key distribution", Quantum 7, 1090 (2023).

[16] Miguel Navascués, Károly F. Pál, Tamás Vértesi, and Mateus Araújo, "Self-Testing in Prepare-and-Measure Scenarios and a Robust Version of Wigner’s Theorem", Physical Review Letters 131 25, 250802 (2023).

[17] J. Cariñe, G. Cañas, P. Skrzypczyk, I. Šupić, N. Guerrero, T. Garcia, L. Pereira, M. A. S. Prosser, G. B. Xavier, A. Delgado, S. P. Walborn, D. Cavalcanti, and G. Lima, "Multi-core fiber integrated multi-port beam splitters for quantum information processing", Optica 7 5, 542 (2020).

[18] A. K. Pan, "Oblivious communication game, self-testing of projective and nonprojective measurements, and certification of randomness", Physical Review A 104 2, 022212 (2021).

[19] Davide Rusca, Thomas van Himbeeck, Anthony Martin, Jonatan Bohr Brask, Weixu Shi, Stefano Pironio, Nicolas Brunner, and Hugo Zbinden, "Self-testing quantum random-number generator based on an energy bound", Physical Review A 100 6, 062338 (2019).

[20] Simon Morelli, Hayata Yamasaki, Marcus Huber, and Armin Tavakoli, "Entanglement Detection with Imprecise Measurements", Physical Review Letters 128 25, 250501 (2022).

[21] Yichen Zhang, Yiming Bian, Zhengyu Li, Song Yu, and Hong Guo, "Continuous-variable quantum key distribution system: Past, present, and future", Applied Physics Reviews 11 1, 011318 (2024).

[22] Andrew J. P. Garner, Marius Krumm, and Markus P. Müller, "Semi-device-independent information processing with spatiotemporal degrees of freedom", Physical Review Research 2 1, 013112 (2020).

[23] Máté Farkas, Nayda Guerrero, Jaime Cariñe, Gustavo Cañas, and Gustavo Lima, "Self-Testing Mutually Unbiased Bases in Higher Dimensions with Space-Division Multiplexing Optical Fiber Technology", Physical Review Applied 15 1, 014028 (2021).

[24] Armin Tavakoli, Emmanuel Zambrini Cruzeiro, Erik Woodhead, and Stefano Pironio, "Informationally restricted correlations: a general framework for classical and quantum systems", Quantum 6, 620 (2022).

[25] Davide Rusca, Hamid Tebyanian, Anthony Martin, and Hugo Zbinden, "Fast self-testing quantum random number generator based on homodyne detection", Applied Physics Letters 116 26, 264004 (2020).

[26] Hamid Tebyanian, Marco Avesani, Giuseppe Vallone, and Paolo Villoresi, "Semi-device-independent randomness from d -outcome continuous-variable detection", Physical Review A 104 6, 062424 (2021).

[27] Víctor Zapatero, Tim van Leent, Rotem Arnon-Friedman, Wen-Zhao Liu, Qiang Zhang, Harald Weinfurter, and Marcos Curty, "Advances in device-independent quantum key distribution", npj Quantum Information 9 1, 10 (2023).

[28] Matej Pivoluska, Martin Plesch, Máté Farkas, Natália Ružičková, Clara Flegel, Natalia Herrera Valencia, Will McCutcheon, Mehul Malik, and Edgar A. Aguilar, "Semi-device-independent random number generation with flexible assumptions", npj Quantum Information 7 1, 50 (2021).

[29] Hamid Tebyanian, Mujtaba Zahidy, Marco Avesani, Andrea Stanco, Paolo Villoresi, and Giuseppe Vallone, "Semi-device independent randomness generation based on quantum state’s indistinguishability", Quantum Science and Technology 6 4, 045026 (2021).

[30] Jef Pauwels, Stefano Pironio, Erik Woodhead, and Armin Tavakoli, "Almost Qudits in the Prepare-and-Measure Scenario", Physical Review Letters 129 25, 250504 (2022).

[31] Thibault Michel, Jing Yan Haw, Davide G. Marangon, Oliver Thearle, Giuseppe Vallone, Paolo Villoresi, Ping Koy Lam, and Syed M. Assad, "Real-Time Source-Independent Quantum Random-Number Generator with Squeezed States", Physical Review Applied 12 3, 034017 (2019).

[32] Alastair A Abbott, Cristian S Calude, Michael J Dinneen, and Nan Huang, "Experimentally probing the algorithmic randomness and incomputability of quantum randomness", Physica Scripta 94 4, 045103 (2019).

[33] Jiajun Ma, Aishwarya Hakande, Xiao Yuan, and Xiongfeng Ma, "Coherence as a resource for source-independent quantum random-number generation", Physical Review A 99 2, 022328 (2019).

[34] Armin Tavakoli, Emmanuel Zambrini Cruzeiro, Jonatan Bohr Brask, Nicolas Gisin, and Nicolas Brunner, "Informationally restricted quantum correlations", Quantum 4, 332 (2020).

[35] Jialin Cheng, Shaocong Liang, Jiliang Qin, Jiatong Li, Zhihui Yan, Xiaojun Jia, Changde Xie, and Kunchi Peng, "Semi-device-independent quantum random number generator with a broadband squeezed state of light", npj Quantum Information 10 1, 20 (2024).

[36] Qin Fan, Meng-Yun Ma, Yong-Nan Sun, Qi-Ping Su, and Chui-Ping Yang, "Experimental certification of nonprojective quantum measurements under a minimum overlap assumption", Optics Express 30 19, 34441 (2022).

[37] Ignatius William Primaatmaja, Asaph Ho, and Valerio Scarani, "Optimal single-shot discrimination of optical modes", Physical Review A 103 5, 052410 (2021).

[38] Hamid Tebyanian, Mujtaba Zahidy, Ronny Müller, Søren Forchhammer, Davide Bacco, and Leif. K. Oxenløwe, "Generalized time-bin quantum random number generator with uncharacterized devices", EPJ Quantum Technology 11 1, 15 (2024).

[39] David Drahi, Nathan Walk, Matty J. Hoban, Aleksey K. Fedorov, Roman Shakhovoy, Akky Feimov, Yury Kurochkin, W. Steven Kolthammer, Joshua Nunn, Jonathan Barrett, and Ian A. Walmsley, "Certified Quantum Random Numbers from Untrusted Light", Physical Review X 10 4, 041048 (2020).

[40] Davide Rusca, Thomas van Himbeeck, Anthony Martin, Jonatan Bohr Brask, Stefano Pironio, Nicolas Brunner, and Hugo Zbinden, Quantum Information and Measurement (QIM) V: Quantum Technologies S1B.3 (2019) ISBN:978-1-943580-56-9.

[41] Nicolò Leone, Stefano Azzini, Sonia Mazzucchi, Valter Moretti, and Lorenzo Pavesi, "Certified Quantum Random-Number Generator Based on Single-Photon Entanglement", Physical Review Applied 17 3, 034011 (2022).

[42] Yanbao Zhang, Emanuel Knill, and Peter Bierhorst, "Certifying quantum randomness by probability estimation", Physical Review A 98 4, 040304 (2018).

[43] Cameron Foreman, Sherilyn Wright, Alec Edgington, Mario Berta, and Florian J. Curchod, "Practical randomness amplification and privatisation with implementations on quantum computers", Quantum 7, 969 (2023).

[44] Jiheon Seong and Joonwoo Bae, "Detecting Entanglement-Generating Circuits in Cloud-Based Quantum Computing", Intelligent Computing 2, 0051 (2023).

[45] Marie Ioannou, Jonatan Bohr Brask, and Nicolas Brunner, "Upper bound on certifiable randomness from a quantum black-box device", Physical Review A 99 5, 052338 (2019).

[46] Sumit Mukherjee and A. K. Pan, "Semi-device-independent certification of multiple unsharpness parameters through sequential measurements", Physical Review A 104 6, 062214 (2021).

[47] Sreeja Chowdhury, Ana Covic, Rabin Yu Acharya, Spencer Dupee, Fatemeh Ganji, and Domenic Forte, "Physical security in the post-quantum era", Journal of Cryptographic Engineering 12 3, 267 (2022).

[48] Jef Pauwels, Armin Tavakoli, Erik Woodhead, and Stefano Pironio, "Entanglement in prepare-and-measure scenarios: many questions, a few answers", New Journal of Physics 24 6, 063015 (2022).

[49] Li Liu, Yukun Wang, Emilien Lavie, Chao Wang, Arno Ricou, Fen Zhuo Guo, and Charles Ci Wen Lim, "Practical Quantum Key Distribution with Non-Phase-Randomized Coherent States", Physical Review Applied 12 2, 024048 (2019).

[50] Armin Tavakoli, "Semi-Device-Independent Framework Based on Restricted Distrust in Prepare-and-Measure Experiments", Physical Review Letters 126 21, 210503 (2021).

[51] Marco Avesani, Hamid Tebyanian, Paolo Villoresi, and Giuseppe Vallone, "Unbounded randomness from uncharacterized sources", Communications Physics 5 1, 273 (2022).

[52] A. K. Pan, "Semi-device-independent randomness certification using Mermin’s proof of Kochen–Specker contextuality", The European Physical Journal D 75 3, 98 (2021).

[53] Marco Avesani, Davide G. Marangon, Giuseppe Vallone, and Paolo Villoresi, "Source-device-independent heterodyne-based quantum random number generator at 17 Gbps", Nature Communications 9 1, 5365 (2018).

[54] Ignatius W. Primaatmaja, Koon Tong Goh, Ernest Y.-Z. Tan, John T.-F. Khoo, Shouvik Ghorai, and Charles C.-W. Lim, "Security of device-independent quantum key distribution protocols: a review", Quantum 7, 932 (2023).

[55] Brian Coyle, Elham Kashefi, and Matty J. Hoban, "Certified Randomness From Steering Using Sequential Measurements", Cryptography 3 4, 27 (2019).

[56] Xunan Wang, Jiabin Yuan, Yuqian Zhou, Ying Liu, and Lili Fan, "Semi-device-independent randomness certification with partially free random sources using $$4\rightarrow 1$$ quantum random access code", Quantum Information Processing 21 1, 38 (2022).

[57] Vaisakh Mannalatha, Sandeep Mishra, and Anirban Pathak, "A comprehensive review of quantum random number generators: concepts, classification and the origin of randomness", Quantum Information Processing 22 12, 439 (2023).

[58] Jonatan Bohr Brask, Anthony Martin, William Esposito, Raphael Houlmann, Joseph Bowles, Hugo Zbinden, and Nicolas Brunner, "Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination", Physical Review Applied 7 5, 054018 (2017).

[59] Cameron Foreman, Sherilyn Wright, Alec Edgington, Mario Berta, and Florian J. Curchod, "Practical randomness amplification and privatisation with implementations on quantum computers", arXiv:2009.06551, (2020).

[60] Ji-Ning Zhang, Ran Yang, Xinhui Li, Chang-Wei Sun, Yi-Chen Liu, Ying Wei, Jia-Chen Duan, Zhenda Xie, Yan-Xiao Gong, and Shi-Ning Zhu, "Realization of a source-device-independent quantum random number generator secured by nonlocal dispersion cancellation", Advanced Photonics 5, 036003 (2023).

[61] Carlos de Gois, George Moreno, Ranieri Nery, Samuraí Brito, Rafael Chaves, and Rafael Rabelo, "General Method for Classicality Certification in the Prepare and Measure Scenario", PRX Quantum 2 3, 030311 (2021).

[62] Jonatan Bohr Brask, Anthony Martin, William Esposito, Raphael Houlmann, Joseph Bowles, Hugo Zbinden, and Nicolas Brunner, "MHz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination", arXiv:1612.06566, (2016).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-24 20:10:37) and SAO/NASA ADS (last updated successfully 2024-05-24 20:10:38). The list may be incomplete as not all publishers provide suitable and complete citation data.