Semi-device-independent framework based on natural physical assumptions

Thomas Van Himbeeck1,2, Erik Woodhead3, Nicolas J. Cerf2, Raúl García-Patrón2, and Stefano Pironio1

1Laboratoire d’Information Quantique, Universit´e libre de Bruxelles (ULB), Belgium
2Centre for Quantum Information and Communication, Universit´e libre de Bruxelles (ULB), Belgium
3ICFO - Institut de Cíencies Fotóniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

The semi-device-independent approach provides a framework for prepare-and-measure quantum protocols using devices whose behavior must not be characterized nor trusted, except for a single assumption on the dimension of the Hilbert space characterizing the quantum carriers. Here, we propose instead to constrain the quantum carriers through a bound on the mean value of a well-chosen observable. This modified assumption is physically better motivated than a dimension bound and closer to the description of actual experiments. In particular, we consider quantum optical schemes where the source emits quantum states described in an infinite-dimensional Fock space and model our assumption as an upper bound on the average photon number in the emitted states. We characterize the set of correlations that may be exhibited in the simplest possible scenario compatible with our new framework, based on two energy-constrained state preparations and a two-outcome measurement. Interestingly, we uncover the existence of quantum correlations exceeding the set of classical correlations that can be produced by devices behaving in a purely pre-determined fashion (possibly including shared randomness). This feature suggests immediate applications to certified randomness generation. Along this line, we analyze the achievable correlations in several prepare-and-measure optical schemes with a mean photon number constraint and demonstrate that they allow for the generation of certified randomness. Our simplest optical scheme works by the on-off keying of an attenuated laser source followed by photocounting. It opens the path to more sophisticated energy-constrained semi-device-independent quantum cryptography protocols, such as quantum key distribution.

Share

► BibTeX data

► References

[1] D. Mayers and A. Yao, in Proceedings of the 39th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 1998) pp. 503-509, arXiv:quant-ph/​9809039.
https://doi.org/10.1109/SFCS.1998.743501
arXiv:quant-ph/9809039

[2] J. Barrett, L. Hardy, and A. Kent, Physical Review Letters 95, 010503 (2005), arXiv:quant-ph/​0405101.
https://doi.org/10.1103/PhysRevLett.95.010503
arXiv:quant-ph/0405101

[3] R. Colbeck, Quantum And Relativistic Protocols For Secure Multi-Party Computation, Ph.D. thesis, University of Cambridge (2006), arXiv:0911.3814 [quant-ph].
arXiv:0911.3814

[4] R. Colbeck and A. Kent, Journal of Physics A 44, 095305 (2011), arXiv:1011.4474 [quant-ph].
https://doi.org/10.1088/1751-8113/44/9/095305
arXiv:1011.4474

[5] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Physical Review Letters 98, 230501 (2007), arXiv:quant-ph/​0702152.
https://doi.org/10.1103/PhysRevLett.98.230501
arXiv:quant-ph/0702152

[6] B. W. Reichardt, F. Unger, and U. Vazirani, Nature 496, 456 (2013), arXiv:1209.0448 [quant-ph].
https://doi.org/10.1038/nature12035
arXiv:1209.0448

[7] C. A. Miller and Y. Shi, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC '14 (ACM, New York, NY, USA, 2014) pp. 417-426, arXiv:1402.0489 [quant-ph].
https://doi.org/10.1145/2591796.2591843
arXiv:1402.0489

[8] R. Arnon-Friedman, R. Renner, and T. Vidick, Simple and tight device-independent security proofs, (2016), arXiv:1607.01797 [quant-ph].
arXiv:1607.01797

[9] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Reviews of Modern Physics 86, 419 (2014), arXiv:1303.2849 [quant-ph].
https://doi.org/10.1103/RevModPhys.86.419
arXiv:1303.2849

[10] N. Brunner, S. Pironio, A. Acín, N. Gisin, A. A. Méthot, and V. Scarani, Physical Review Letters 100, 210503 (2008), arXiv:0802.0760 [quant-ph].
https://doi.org/10.1103/PhysRevLett.100.210503
arXiv:0802.0760

[11] R. Gallego, N. Brunner, C. Hadley, and A. Acín, Physical Review Letters 105, 230501 (2010), arXiv:1010.5064 [quant-ph].
https://doi.org/10.1103/PhysRevLett.105.230501
arXiv:1010.5064

[12] J. Bowles, M. T. Quintino, and N. Brunner, Physical Review Letters 112, 140407 (2014), arXiv:1311.1525 [quant-ph].
https://doi.org/10.1103/PhysRevLett.112.140407
arXiv:1311.1525

[13] T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, Physical Review Letters 114, 150501 (2015), arXiv:1410.2790 [quant-ph].
https://doi.org/10.1103/PhysRevLett.114.150501
arXiv:1410.2790

[14] M. Pawłowski and N. Brunner, Physical Review A 84, 010302(R) (2011), arXiv:1103.4105 [quant-ph].
https://doi.org/10.1103/PhysRevA.84.010302
arXiv:1103.4105

[15] E. Woodhead and S. Pironio, Physical Review Letters 115, 150501 (2015), arXiv:1507.02889 [quant-ph].
https://doi.org/10.1103/PhysRevLett.115.150501
arXiv:1507.02889

[16] J. Ahrens, P. Badziag, A. Cabello, and M. Bourennane, Nature Physics 8, 592 (2012), arXiv:1111.1277 [quant-ph].
https://doi.org/10.1038/nphys2333
arXiv:1111.1277

[17] M. Hendrych, R. Gallego, M. Mičuda, N. Brunner, A. Acín, and J. P. Torres, Nature Physics 8, 588 (2012), arXiv:1111.1208 [quant-ph].
https://doi.org/10.1038/nphys2334
arXiv:1111.1208

[18] B. S. Tsirel'son, Journal of Soviet Mathematics 36, 557 (1987).
https://doi.org/10.1007/BF01663472

[19] R. F. Werner and M. M. Wolf, Physical Review A 64, 032112 (2001), arXiv:quant-ph/​0102024.
https://doi.org/10.1103/PhysRevA.64.032112
arXiv:quant-ph/0102024

[20] L. Masanes, Necessary and sufficient condition for quantum-generated correlations, (2003), arXiv:quant-ph/​0309137.
arXiv:quant-ph/0309137

[21] R. Cleve, P. Hoyer, B. Toner, and J. Watrous, in Proc. Annu. IEEE Conf. Comput. Complex. (IEEE, 2004) pp. 236-249, arXiv:quant-ph/​0404076.
https://doi.org/10.1109/CCC.2004.1313847
arXiv:quant-ph/0404076

[22] M. Navascués, S. Pironio, and A. Acín, Phys. Rev. Lett. 98, 010401 (2007), arXiv:quant-ph/​0607119.
https://doi.org/10.1103/PhysRevLett.98.010401
arXiv:quant-ph/0607119

[23] M. Navascués, S. Pironio, and A. Acín, New Journal of Physics 10, 073013 (2008), arXiv:0803.4290 [quant-ph].
https://doi.org/10.1088/1367-2630/10/7/073013
arXiv:0803.4290

[24] A. C. Doherty, B. Toner, Y. C. Liang, and S. Wehner, in Proc. Annu. IEEE Conf. Comput. Complex. (IEEE, 2008) pp. 199-210, arXiv:0803.4373 [quant-ph].
https://doi.org/10.1109/CCC.2008.26
arXiv:0803.4373

[25] N. Brunner, M. Navascués, and T. Vértesi, Physical Review Letters 110, 150501 (2013), arXiv:1209.5643 [quant-ph].
https://doi.org/10.1103/PhysRevLett.110.150501
arXiv:1209.5643

[26] M. Navascues and T. Vertési, Physical Review Letters 115, 020501 (2015), arXiv:1412.0924 [quant-ph].
https://doi.org/10.1103/PhysRevLett.115.020501
arXiv:1412.0924

[27] T. Van Himbeeck et al., in preparation.

[28] B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Physical Review X 5, 041009 (2015), arXiv:1503.00662 [quant-ph].
https://doi.org/10.1103/PhysRevX.5.041009
arXiv:1503.00662

[29] J. Barrett, A. Kent, and S. Pironio, Physical Review Letters 97, 170409 (2006), arXiv:quant-ph/​0605182.
https://doi.org/10.1103/PhysRevLett.97.170409
arXiv:quant-ph/0605182

[30] S. Pironio, A. Acín, S. Massar, A. Boyer de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Nature 464, 1021 (2010), arXiv:0911.3427 [quant-ph].
https://doi.org/10.1038/nature09008
arXiv:0911.3427

[31] S. Pironio and S. Massar, Physical Review A 87, 012336 (2013), arXiv:1111.6056 [quant-ph].
https://doi.org/10.1103/PhysRevA.87.012336
arXiv:1111.6056

[32] O. Nieto-Silleras, C. Bamps, J. Silman, and S. Pironio, Device-independent randomness generation from several Bell estimators, (2016), arXiv:1611.00352 [quant-ph].
arXiv:1611.00352

[33] R. Chaves, J. B. Brask, and N. Brunner, Physical Review Letters 115, 110501 (2015), arXiv:1505.07802 [quant-ph].
https://doi.org/10.1103/PhysRevLett.115.110501
arXiv:1505.07802

[34] J. Silman, S. Pironio, and S. Massar, Physical Review Letters 110, 100504 (2013), arXiv:1211.5921 [quant-ph].
https://doi.org/10.1103/PhysRevLett.110.100504
arXiv:1211.5921

[35] J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, Physical Review A 7, 054018 (2017), arXiv:1612.06566 [quant-ph].
https://doi.org/10.1103/PhysRevApplied.7.054018
arXiv:1612.06566

► Cited by (beta)

Corssref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.