Time-local unraveling of non-Markovian stochastic Schrödinger equations

Antoine Tilloy

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

Non-Markovian stochastic Schrödinger equations (NMSSE) are important tools in quantum mechanics, from the theory of open systems to foundations. Yet, in general, they are but formal objects: their solution can be computed numerically only in some specific cases or perturbatively. This article is focused on the NMSSE themselves rather than on the open-system evolution they unravel and aims at making them less abstract. Namely, we propose to write the stochastic realizations of linear NMSSE as averages over the solutions of an auxiliary equation with an additional random field. Our method yields a non-perturbative numerical simulation algorithm for generic linear NMSSE that can be made arbitrarily accurate for reasonably short times. For isotropic complex noises, the method extends from linear to non-linear NMSSE and allows to sample the solutions of norm-preserving NMSSE directly.


► BibTeX data

► References

[1] S. L. Adler and A. Bassi. Collapse models with non-white noises. Journal of Physics A: Mathematical and Theoretical, 40 (50): 15083, 2007. 10.1088/​1751-8113/​40/​50/​012.

[2] A. Bassi and G. Ghirardi. Dynamical reduction models. Physics Reports, 379 (5–6): 257 - 426, 2003. 10.1016/​S0370-1573(03)00103-0.

[3] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys., 85: 471-527, Apr 2013. 10.1103/​RevModPhys.85.471.

[4] J. Dalibard, Y. Castin, and K. Mølmer. Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett., 68: 580-583, Feb 1992. 10.1103/​PhysRevLett.68.580.

[5] I. de Vega, D. Alonso, and P. Gaspard. Two-level system immersed in a photonic band-gap material: A non-markovian stochastic schrödinger-equation approach. Phys. Rev. A, 71: 023812, Feb 2005. 10.1103/​PhysRevA.71.023812.

[6] L. Diósi. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A, 40: 1165-1174, Aug 1989. 10.1103/​PhysRevA.40.1165.

[7] L. Diósi and L. Ferialdi. General non-markovian structure of gaussian master and stochastic schrödinger equations. Phys. Rev. Lett., 113: 200403, Nov 2014. 10.1103/​PhysRevLett.113.200403.

[8] L. Diósi. Stochastic pure state representation for open quantum systems. Phys. Lett. A, 114 (8): 451 - 454, 1986. 10.1016/​0375-9601(86)90692-4.

[9] L. Diósi. Non-markovian continuous quantum measurement of retarded observables. Phys. Rev. Lett., 100: 080401, Feb 2008a. 10.1103/​PhysRevLett.100.080401.

[10] L. Diósi. Erratum: Non-markovian continuous quantum measurement of retarded observables [phys. rev. lett. 100 , 080401 (2008)]. Phys. Rev. Lett., 101: 149902, Oct 2008b. 10.1103/​PhysRevLett.101.149902.

[11] L. Diósi and W. T. Strunz. The non-markovian stochastic schrödinger equation for open systems. Phys. Lett. A, 235 (6): 569-573, 1997. 10.1016/​S0375-9601(97)00717-2.

[12] R. Dum, P. Zoller, and H. Ritsch. Monte carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A, 45: 4879-4887, Apr 1992. 10.1103/​PhysRevA.45.4879.

[13] L. Ferialdi and A. Bassi. Dissipative collapse models with nonwhite noises. Phys. Rev. A, 86: 022108, Aug 2012. 10.1103/​PhysRevA.86.022108.

[14] R. P. Feynman and F. L. Vernon. The theory of a general quantum system interacting with a linear dissipative system. Annals of physics, 24: 118-173, 1963. 10.1016/​0003-4916(63)90068-X.

[15] J. Gambetta and H. M. Wiseman. Non-markovian stochastic schrödinger equations: Generalization to real-valued noise using quantum-measurement theory. Phys. Rev. A, 66: 012108, Jul 2002. 10.1103/​PhysRevA.66.012108.

[16] J. Gambetta and H. M. Wiseman. Interpretation of non-markovian stochastic schrödinger equations as a hidden-variable theory. Phys. Rev. A, 68: 062104, Dec 2003. 10.1103/​PhysRevA.68.062104.

[17] G. C. Ghirardi, P. Pearle, and A. Rimini. Markov processes in hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A, 42: 78-89, Jul 1990. 10.1103/​PhysRevA.42.78.

[18] N. Gisin. Quantum measurements and stochastic processes. Phys. Rev. Lett., 52: 1657-1660, May 1984. 10.1103/​PhysRevLett.52.1657.

[19] N. Gisin and I. C. Percival. The quantum-state diffusion model applied to open systems. J. Phys. A: Math. Gen., 25 (21): 5677, 1992. 10.1088/​0305-4470/​25/​21/​023.

[20] B. L. Hu, J. P. Paz, and Y. Zhang. Quantum brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D, 45: 2843-2861, Apr 1992. 10.1103/​PhysRevD.45.2843.

[21] B. L. Hu, J. P. Paz, and Y. Zhang. Quantum brownian motion in a general environment. ii. nonlinear coupling and perturbative approach. Phys. Rev. D, 47: 1576-1594, Feb 1993. 10.1103/​PhysRevD.47.1576.

[22] K. Jacobs and D. A. Steck. A straightforward introduction to continuous quantum measurement. Contemporary Physics, 47 (5): 279-303, 2006. 10.1080/​00107510601101934.

[23] J. Jing and T. Yu. Non-markovian relaxation of a three-level system: Quantum trajectory approach. Phys. Rev. Lett., 105: 240403, Dec 2010. 10.1103/​PhysRevLett.105.240403.

[24] J. Jing, X. Zhao, J. Q. You, and T. Yu. Time-local quantum-state-diffusion equation for multilevel quantum systems. Phys. Rev. A, 85: 042106, Apr 2012. 10.1103/​PhysRevA.85.042106.

[25] J. Jing, X. Zhao, J. Q. You, W. T. Strunz, and T. Yu. Many-body quantum trajectories of non-markovian open systems. Phys. Rev. A, 88: 052122, Nov 2013. 10.1103/​PhysRevA.88.052122.

[26] K. Mølmer, Y. Castin, and J. Dalibard. Monte carlo wave-function method in quantum optics. J. Opt. Soc. Am. B, 10 (3): 524-538, Mar 1993. 10.1364/​JOSAB.10.000524.

[27] P. Pearle. Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A, 39: 2277-2289, Mar 1989. 10.1103/​PhysRevA.39.2277.

[28] J. T. Stockburger. Simulating spin-boson dynamics with stochastic liouville-von neumann equations. Chemical physics, 296 (2): 159-169, 2004. 10.1016/​j.chemphys.2003.09.014.

[29] J. T. Stockburger and H. Grabert. Exact $\mathit{c}$-number representation of non-markovian quantum dissipation. Phys. Rev. Lett., 88: 170407, Apr 2002. 10.1103/​PhysRevLett.88.170407.

[30] W. T. Strunz. Linear quantum state diffusion for non-markovian open quantum systems. Phys. Lett. A, 224 (1): 25 - 30, 1996. 10.1016/​S0375-9601(96)00805-5.

[31] W. T. Strunz and T. Yu. Convolutionless non-markovian master equations and quantum trajectories: Brownian motion. Phys. Rev. A, 69: 052115, May 2004. 10.1103/​PhysRevA.69.052115.

[32] W. T. Strunz, L. Diósi, N. Gisin, and T. Yu. Quantum trajectories for brownian motion. Phys. Rev. Lett., 83: 4909-4913, Dec 1999. 10.1103/​PhysRevLett.83.4909.

[33] A. Tilloy. Interacting quantum field theories as relativistic statistical field theories of local beables. arXiv:1702.06325, 2017.

[34] U. Weiss. Quantum dissipative systems, volume 10. World Scientific, 1999.

[35] H. M. Wiseman and G. J. Milburn. Quantum theory of field-quadrature measurements. Phys. Rev. A, 47: 642-662, Jan 1993. 10.1103/​PhysRevA.47.642.

[36] H. M. Wiseman and J. M. Gambetta. Pure-state quantum trajectories for general non-markovian systems do not exist. Phys. Rev. Lett., 101: 140401, Sep 2008. 10.1103/​PhysRevLett.101.140401.

[37] X. Zhao, J. Jing, B. Corn, and T. Yu. Dynamics of interacting qubits coupled to a common bath: Non-markovian quantum-state-diffusion approach. Phys. Rev. A, 84: 032101, Sep 2011. 10.1103/​PhysRevA.84.032101.

► Cited by (beta)

Corssref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.