Quantifying high dimensional entanglement with two mutually unbiased bases

Paul Erker1,2,3, Mario Krenn4,5, and Marcus Huber1,5,6,7

1Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
2Faculty of Informatics, Università della Svizzera italiana, Via G. Buffi 13, 6900 Lugano, Switzerland
3Facoltà indipendente di Gandria, Lunga scala, 6978 Gandria, Switzerland
4Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
5Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
6Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
7ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain

We derive a framework for quantifying entanglement in multipartite and high dimensional systems using only correlations in two unbiased bases. We furthermore develop such bounds in cases where the second basis is not characterized beyond being unbiased, thus enabling entanglement quantification with minimal assumptions. Furthermore, we show that it is feasible to experimentally implement our method with readily available equipment and even conservative estimates of physical parameters.

High dimensional entanglement naturally created in down conversion processes carries great potential for improving quantum communication tasks. A central challenge is developing feasible methods for its experimental certification that scale well in system dimension. Here, we make progress on this task by developing a general method for quantifying high-dimensional entanglement using correlations in only two local unbiased bases. Surprisingly, in the ideal case all entanglement can be certified with only two measurements, even if detailed phase relations between the measurements are not known. This enables an experimental proposal using only a camera and a lens as measurement devices, which we show could realistically compete with the currently highest certified entanglement in more complicated setups.

► BibTeX data

► References

[1] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991), 10.1103/​PhysRevLett.67.661.

[2] C. Bennett, S. Wiesner, Phys. Rev. Lett. 69 (20): 2881 (1992), 10.1103/​PhysRevLett.69.2881.

[3] C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyal, IEEE Transactions on Information Theory, Vol. 48 (10), 2637 - 2655 (2002), 10.1109/​TIT.2002.802612.

[4] M. Zukowski, A. Zeilinger, and M. Horne, Phys. Rev. A, 55, 2564-2579, (1997), 10.1103/​PhysRevA.55.2564.

[5] M. Suda, C. Pacher, M. Peev, M. Dusek, and F. Hipp, Quantum Inf. Process. 12 :1915-1945 (2013), 10.1007/​s11128-012-0479-3.

[6] R. Fickler, R. Lapkiewicz, M. Huber, M. Lavery, M. Padgett, A. Zeilinger, Nature Communications 5, 4502 (2014), 10.1038/​ncomms5502.

[7] Ch. Schäff, R. Polster, M. Huber, S. Ramelow, A. Zeilinger, Optica 2(6), 523-529 (2015), 10.1364/​OPTICA.2.000523.

[8] A. Vaziri, G. Weihs, A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002), 10.1103/​PhysRevLett.89.240401.

[9] G. Molina-Terriza, J. P. Torres and L. Torner, Opt. Comm. 228 (1-3), pp. 155-160 (2003), 10.1088/​1464-4266/​7/​9/​001.

[10] G. Molina-Terriza, A. Vaziri, J. Řeháček, Z. Hradil and A. Zeilinger, Phys. Rev. Lett. 92, 167903 (2004),10.1103/​PhysRevLett.92.167903.

[11] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, E. Andersson, Nature Physics 7, 677680 (2011), 10.1038/​nphys1996.

[12] M. Agnew, J. Leach, M. McLaren, F. S. Roux, R. W. Boyd, Phys. Rev. A, 84(6), 062101 (2011), 10.1103/​PhysRevA.84.062101.

[13] M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, A. Forbes, Optics express, 20(21), 23589-23597 (2012), 10.1364/​OE.20.023589.

[14] D. Giovannini, et. al. Phys. Rev. Lett. 110, 143601 (2013), 10.1103/​PhysRevLett.110.143601.

[15] M. Krenn, et.al., PNAS 111(17), 6243-6247 (2014), 10.1073/​pnas.1402365111.

[16] C. Bernhard, B. Bessire, A. Montina, M. Pfaffhauser, A. Stefanov and S. Wolf, J. of Phys. A: Math. and Theor., 47(42):424013 (2014), 10.1088/​1751-8113/​47/​42/​424013.

[17] A. Tiranov, et.al Optica, 2, 279-287 (2015), 10.1364/​OPTICA.2.000279.

[18] A. Tiranov, et.al arXiv:1609.05033 (2016).

[19] C. Wang, F. Deng, Y. Li, X. Liu, and G. Long, Phys. Rev. A 71, 044305 (2005), 10.1103/​PhysRevA.71.044305.

[20] S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, New J. Phys., 8 , 75-75, (2006), 10.1088/​1367-2630/​8/​5/​075.

[21] B. P. Lanyon, et.al., Nature Physics 5, 134 - 140 (2009), 10.1038/​nphys1150.

[22] M. Huber, M. Pawlowski, Phys. Rev. A 88, 032309 (2013), 10.1103/​PhysRevA.88.032309.

[23] M. Mirhosseini, et. al. New J. Phys. 17, 033033 (2015), 10.1088/​1367-2630/​17/​3/​033033.

[24] R. Fickler, et.al. Science, 338, 640-643 (2012), 10.1126/​science.1227193.

[25] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903 (2004), 10.1103/​PhysRevLett.92.127903.

[26] M. N. O'Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, Phys. Rev. Lett. 94, 220501 (2005), 10.1103/​PhysRevLett.94.220501.

[27] J.B. Pors, et.al. Phys. Rev. Lett. 101, 120502 (2008), 10.1103/​PhysRevLett.101.120502.

[28] P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell, Phys. Rev. Lett. 108, 143603 (2012), 10.1103/​PhysRevLett.108.143603.

[29] P.-A. Moreau, F. Devaux, and E. Lantz, Phys. Rev. Lett. 113, 160401 (2014), 10.1103/​PhysRevLett.113.160401.

[30] Ch. Eltschka and J. Siewert, J. Phys. A: Math. Theor. 47 424005 (2014), 10.1088/​1751-8113/​47/​42/​424005.

[31] A. W. Harrow, A. Natarajan, X. Wu, Commun. Math. Phys. 352: 881 (2017), 10.1007/​s00220-017-2859-0.

[32] D. Bruss, J. Math. Phys. 43, 4237 (2002), 10.1063/​1.1494474.

[33] H.F. Hofmann, S. Takeuchi, Phys. Rev. A 68, 032103 (2003), 10.1103/​PhysRevA.68.034307.

[34] O. Gühne, M. Reimpell, R.F. Werner, Phys. Rev. Lett. 98, 110502 (2007), 10.1103/​PhysRevLett.98.110502.

[35] J. Eisert, F. Brandao, K. Audenaert, New J. Phys. 9, 46 (2007), 10.1088/​1367-2630/​9/​3/​046.

[36] Zhi-Hao Ma, et.al. Phys. Rev. A 83, 062325 (2011), 10.1103/​PhysRevA.83.062325.

[37] J. Wu, H. Kampermann, D. Bruß, C. Klöckl, M. Huber, Phys. Rev. A 86, 022319 (2012), 10.1103/​PhysRevA.86.022319.

[38] S. M. Hashemi Rafsanjani, M. Huber, C. J. Broadbent, J. H. Eberly, Phys. Rev. A 86, 062303 (2012), 10.1103/​PhysRevA.86.062303.

[39] Ch. Spengler, M. Huber, S. Brierley, T. Adaktylos, B. C. Hiesmayr, Phys. Rev. A 86, 022311 (2012), 10.1103/​PhysRevA.86.022311.

[40] B. C. Hiesmayr, W. Löffler, New J. Phys. 15, 083036 (2013), 10.1088/​1367-2630/​15/​8/​083036.

[41] D. S. Tasca, et.al. arXiv:1506.01095 (2015).

[42] E. C. Paul, D. S. Tasca, L. Rudnicki, and S. P. Walborn, Phys. Rev. A 94, 012303 (2016), 10.1103/​PhysRevA.94.012303.

[43] D. S. Tasca, Lukasz Rudnicki, R. M. Gomes, F. Toscano, S. P. Walborn, Phys. Rev. Lett. 110, 210502 (2013), 10.1103/​PhysRevLett.110.210502.

[44] J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, J. C. Howell, Phys. Rev. Lett. 110, 130407 (2013), 10.1103/​PhysRevLett.110.130407.

[45] G. A. Howland, J. C. Howell, Phys. Rev. X 3, 011013 (2013), 10.1103/​PhysRevX.3.011003.

[46] W. K. Wootters and B. D. Fields, Ann. Phys. 191, 363 (1989), 10.1016/​0003-4916(89)90322-9.

[47] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902 (2002),10.1103/​PhysRevLett.88.127902.

[48] T. Durt, B.-G. Englert, I. Bengtsson, and K. Zyczkowski, Int. J. Quant. Inf. 8, 535 (2010), 10.1142/​S0219749910006502.

[49] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998), 10.1103/​PhysRevLett.80.2245.

[50] L. Gurvits, Classical deterministic complexity of Edmonds' problem and quantum entanglement in Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, 10 (2003), 10.1145/​780542.780545.

[51] G. Toth, T. Moroder, O. Gühne, Phys. Rev. Lett. 114, 160501 (2015), 10.1103/​PhysRevLett.114.160501.

[52] J. I. de Vicente, C. Spee, B. Kraus, Phys. Rev. Lett. 111, 110502 (2013), 10.1103/​PhysRevLett.111.110502.

[53] K. Schwaiger, D. Sauerwein, M. Cuquet, J.I. de Vicente, B. Kraus, Phys. Rev. Lett. 115, 150502 (2015), 10.1103/​PhysRevLett.115.150502.

[54] M. Huber and J. I. de Vicente, Phys. Rev. Lett. 110, 030501 (2013), 10.1103/​PhysRevLett.110.030501.

[55] M. Huber, M. Perarnau-Llobet and J. I. de Vicente, Phys. Rev. A 88, 042328 (2013),10.1103/​PhysRevA.88.042328.

[56] J. Cadney, M. Huber, N. Linden, A. Winter, Linear Algebra and Applications, vol. 452, pp. 153-171 (2014), 10.1016/​j.laa.2014.03.035.

[57] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, A. Zeilinger, Nature Photonics 10, 248-252 (2016), 10.1038/​nphoton.2016.12.

[58] S. P. Walborn, C. H. Monken, S. Padua, and P. H. Souto Ribeiro, Physics Reports, vol. 495, 2010, 10.1016/​j.physrep.2010.06.003.

[59] P. A. Moreau, F. Devaux, E. Lantz, Phys. Rev. Lett., 113(16), 160401 (2014), 10.1103/​PhysRevLett.113.160401.

[60] M. P. Edgar, et.al. Nat. commun., 3, 984 (2012), 10.1038/​ncomms1988.

[61] S. P. Walborn and C. H. Monken, Phys. Rev. A 76(6), 62305, (2007), 10.1103/​PhysRevA.76.062305.

[62] N. M. Phan, M. F. Cheng, D. A. Bessarab, L. A. Krivitsky, Physical Review Letters, 112(21), 213601 (2014), 10.1103/​PhysRevLett.112.213601.

[63] M. Jachura, R. Chrapkiewicz, Optics letters, 40(7), 1540-1543 (2015), 10.1364/​OL.40.001540.

[64] R. Chrapkiewicz, M. Jachura, K. Banaszek, W. Wasilewski, Nature Photonics 10, 576-579 (2016), 10.1038/​nphoton.2016.129.
https://doi.org/ 10.1038/nphoton.2016.129

[65] Z. Xie, et al. Nature Photonics 9, 536-542 (2015), 10.1038/​nphoton.2015.110.

[66] J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, N. Treps, Nature Photonics, 8(2), 109-112 (2014), 10.1038/​nphoton.2013.340.

[67] S. Yokoyama, et al. Nature Photonics, 7(12), 982-986 (2013), 10.1038/​nphoton.2013.287.

► Cited by (beta)

[1] Yu Guo, Xiao-Min Hu, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, "Experimental witness of genuine high-dimensional entanglement", Physical Review A 97 6, 062309 (2018).

[2] Michał Dąbrowski, Matuesz Mazelanik, Michał Parniak, Adam Leszczyński, Michał Lipka, Wojciech Wasilewski, "Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory", Physical Review A 98 4, 042126 (2018).

[3] James Schneeloch, Gregory A. Howland, "Quantifying high-dimensional entanglement with Einstein-Podolsky-Rosen correlations", Physical Review A 97 4, 042338 (2018).

[4] Alexey Tiranov, Sébastien Designolle, Emmanuel Zambrini Cruzeiro, Jonathan Lavoie, Nicolas Brunner, Mikael Afzelius, Marcus Huber, Nicolas Gisin, "Quantification of multidimensional entanglement stored in a crystal", Physical Review A 96 4, 040303 (2017).

[5] Takuya Ikuta, Hiroki Takesue, "Four-dimensional entanglement distribution over 100 km", Scientific Reports 8 1, 817 (2018).

[6] Jessica Bavaresco, Natalia Herrera Valencia, Claude Klöckl, Matej Pivoluska, Paul Erker, Nicolai Friis, Mehul Malik, Marcus Huber, "Measurements in two bases are sufficient for certifying high-dimensional entanglement", Nature Physics 14 10, 1032 (2018).

[7] D. S. Tasca, Łukasz Rudnicki, R. S. Aspden, M. J. Padgett, P. H. Souto Ribeiro, S. P. Walborn, "Testing for entanglement with periodic coarse graining", Physical Review A 97 4, 042312 (2018).

[8] Fabricio Toscano, Daniel Tasca, Łukasz Rudnicki, Stephen Walborn, "Uncertainty Relations for Coarse–Grained Measurements: An Overview", Entropy 20 6, 454 (2018).

[9] Vahid Ansari, John M. Donohue, Benjamin Brecht, Christine Silberhorn, "Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings", Optica 5 5, 534 (2018).

(The above data is from Crossref's cited-by service. Unfortunately not all publishers provide suitable and complete citation data so that some citing works or bibliographic details may be missing.)