Optimal quantum metrology of distant black bodies

Mark E. Pearce, Earl T. Campbell, and Pieter Kok

Department of Physics & Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom

full text pdf

Measurements of an object's temperature are important in many disciplines, from astronomy to engineering, as are estimates of an object's spatial configuration. We present the quantum optimal estimator for the temperature of a distant body based on the black body radiation received in the far-field. We also show how to perform separable quantum optimal estimates of the spatial configuration of a distant object, i.e. imaging. In doing so we necessarily deal with multi-parameter quantum estimation of incompatible observables, a problem that is poorly understood. We compare our optimal observables to the two mode analogue of lensed imaging and find that the latter is far from optimal, even when compared to measurements which are separable. To prove the optimality of the estimators we show that they minimise the cost function weighted by the quantum Fisher information---this is equivalent to maximising the average fidelity between the actual state and the estimated one.


► BibTeX data

► References

[1] A. Alonso, S. Arribas, and C. Martínez-Roger. Astron. Astrophys. Suppl. Ser., 139 (2): 335-358, 1999.

[2] E. Bagan, M. A. Ballester, R. D. Gill, A. Monras, and R. Muñoz-Tapia. Physical Review A, 73 (3): 1-19, 2006.

[3] O. E. Barndorff-Nielsen and R. D. Gill. Journal of Physics A: Mathematical and General, 33 (24): 4481, 2000.

[4] Samuel L. Braunstein and Carlton M. Caves. Phys. Rev. Lett., 72: 3439-3443, 1994.

[5] B. M. Escher, L. Davidovich, N. Zagury, and R. L. de Matos Filho. Phys. Rev. Lett., 109: 190404, 2012.

[6] D. J. Fixsen. The Astrophysical Journal, 707 (2): 916-920, 2009.

[7] Yang Gao and Hwang Lee. The European Physical Journal D, 68 (11): 347, 2014.

[8] Richard D. Gill and Mădălin I. Guţă. 10.1214/​12-IMSCOLL909.

[9] Richard D. Gill and Serge Massar. Physical Review A, 61 (4): 042312, 2000.

[10] Vittorio Giovannetti, Seth Lloyd and Lorenzo Maccone. Nature Photonics, 5 (4): 222-229, 2011.

[11] C. Helstrom. IEEE Transactions on Information Theory, 14 (2): 234-242, 1968.

[12] Carl W. Helstrom. Quantum Detection and Estimation Theory. Academic Press, 1976.

[13] C.W. Helstrom. Physics Letters A, 25 (2): 101-102, 1967.

[14] Alexander Holevo. Probabilistic and Statistical Aspects of Quantum Theory. Edizioni Della Normale, 2011.

[15] R. L. Hudson. Journal of Applied Probability, 10 (3): 502-509, 1973.

[16] Marcin Jarzyna and Rafał Demkowicz-Dobrzański. New Journal of Physics, 17 (1): 013010, 2015.

[17] Steven M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, 1993.

[18] P. A. Knott, T. J. Proctor, A. J. Hayes, J. P. Cooling, and J. A. Dunningham. Phys. Rev. A, 93: 033859, 2016.

[19] Pieter Kok, Jacob Dunningham, and Jason F. Ralph. Physical Review A, 95, 012326, 2017.

[20] Cosmo Lupo and Stefano Pirandola Phys. Rev. Lett., 117: 190802, 2016.

[21] Katarzyna Macieszczak, Martin Fraas, and Rafal Demkowicz-Dobrzański. New Journal of Physics, 16, 2014.

[22] Leonard Mandel and Emil Wolf. Optical Coherence and Quantum Optics. Cambridge University Press, 1995.

[23] Paulina Marian and Tudor A. Marian. Phys. Rev. A, 93: 052330, 2016.

[24] Michael R. Moldover, Weston L. Tew, and Howard W. Yoon. Nature Publishing Group, 12 (1): 7-11, 2016.

[25] Alex Monras. arXiv:1303.3682, 2013.

[26] Alex Monras and Fabrizio Illuminati. Physical Review A - Atomic, Molecular, and Optical Physics, 83 (1): 1-12, 2011.

[27] Ranjith Nair and Mankei Tsang. The Astrophysical Journal, 808 (2): 125, 2015.

[28] Matteo G. A. Paris. International Journal of Quantum Information, 07 : 125-137, 2009.

[29] M. E. Pearce, T. Mehringer, J. von Zanthier, and P. Kok. Physical Review A, 92 (4): 043831, 2015.

[30] Sammy Ragy, Marcin Jarzyna, and Rafał Demkowicz-Dobrzański. Phys. Rev. A, 94: 052108, 2016.

[31] Magdalena Szczykulska, Tillmann Baumgratz, and Animesh Datta. Advances in Physics: X, 1 (4): 621-639, 2016.

[32] Mankei Tsang. Optica, 2 (7): 646-653, 2015.

[33] Mankei Tsang, Ranjith Nair, and Xiao-Ming Lu. Phys. Rev. X, 6: 031033, 2016.

[34] Dominik Šafránek, Antony R Lee, and Ivette Fuentes. New Journal of Physics, 17 (7): 073016, 2015.

► Cited by (beta)

[1] Rosanna Nichols, Pietro Liuzzo-Scorpo, Paul A. Knott, Gerardo Adesso, "Multiparameter Gaussian quantum metrology", Physical Review A 98, 012114 (2018).

[2] Andrzej Chrostowski, Rafał Demkowicz-Dobrzański, Marcin Jarzyna, Konrad Banaszek, "On super-resolution imaging as a multiparameter estimation problem", International Journal of Quantum Information 15, 1740005 (2017).

[3] J. Řehaček, Z. Hradil, B. Stoklasa, M. Paúr, J. Grover, A. Krzic, L. L. Sánchez-Soto, "Multiparameter quantum metrology of incoherent point sources: Towards realistic superresolution", Physical Review A 96, 062107 (2017).

(The above data is from Crossref's cited-by service. Unfortunately not all publishers provide suitable and complete citation data so that some citing works or bibliographic details may be missing.)