Optimal quantum metrology of distant black bodies

Mark E. Pearce, Earl T. Campbell, and Pieter Kok

Department of Physics & Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Measurements of an object's temperature are important in many disciplines, from astronomy to engineering, as are estimates of an object's spatial configuration. We present the quantum optimal estimator for the temperature of a distant body based on the black body radiation received in the far-field. We also show how to perform separable quantum optimal estimates of the spatial configuration of a distant object, i.e. imaging. In doing so we necessarily deal with multi-parameter quantum estimation of incompatible observables, a problem that is poorly understood. We compare our optimal observables to the two mode analogue of lensed imaging and find that the latter is far from optimal, even when compared to measurements which are separable. To prove the optimality of the estimators we show that they minimise the cost function weighted by the quantum Fisher information---this is equivalent to maximising the average fidelity between the actual state and the estimated one.

► BibTeX data

► References

[1] A. Alonso, S. Arribas, and C. Martínez-Roger. Astron. Astrophys. Suppl. Ser., 139 (2): 335–358, 1999.

[2] E. Bagan, M. A. Ballester, R. D. Gill, A. Monras, and R. Muñoz-Tapia. Physical Review A, 73 (3): 1–19, 2006.

[3] O. E. Barndorff-Nielsen and R. D. Gill. Journal of Physics A: Mathematical and General, 33 (24): 4481, 2000.

[4] Samuel L. Braunstein and Carlton M. Caves. Phys. Rev. Lett., 72: 3439–3443, 1994.

[5] B. M. Escher, L. Davidovich, N. Zagury, and R. L. de Matos Filho. Phys. Rev. Lett., 109: 190404, 2012.

[6] D. J. Fixsen. The Astrophysical Journal, 707 (2): 916–920, 2009.

[7] Yang Gao and Hwang Lee. The European Physical Journal D, 68 (11): 347, 2014.

[8] Richard D. Gill and Mădălin I. Guţă. 10.1214/​12-IMSCOLL909.

[9] Richard D. Gill and Serge Massar. Physical Review A, 61 (4): 042312, 2000.

[10] Vittorio Giovannetti, Seth Lloyd and Lorenzo Maccone. Nature Photonics, 5 (4): 222-229, 2011.

[11] C. Helstrom. IEEE Transactions on Information Theory, 14 (2): 234–242, 1968.

[12] Carl W. Helstrom. Quantum Detection and Estimation Theory. Academic Press, 1976.

[13] C.W. Helstrom. Physics Letters A, 25 (2): 101–102, 1967.

[14] Alexander Holevo. Probabilistic and Statistical Aspects of Quantum Theory. Edizioni Della Normale, 2011.

[15] R. L. Hudson. Journal of Applied Probability, 10 (3): 502–509, 1973.

[16] Marcin Jarzyna and Rafał Demkowicz-Dobrzański. New Journal of Physics, 17 (1): 013010, 2015.

[17] Steven M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, 1993.

[18] P. A. Knott, T. J. Proctor, A. J. Hayes, J. P. Cooling, and J. A. Dunningham. Phys. Rev. A, 93: 033859, 2016.

[19] Pieter Kok, Jacob Dunningham, and Jason F. Ralph. Physical Review A, 95, 012326, 2017.

[20] Cosmo Lupo and Stefano Pirandola Phys. Rev. Lett., 117: 190802, 2016.

[21] Katarzyna Macieszczak, Martin Fraas, and Rafal Demkowicz-Dobrzański. New Journal of Physics, 16, 2014.

[22] Leonard Mandel and Emil Wolf. Optical Coherence and Quantum Optics. Cambridge University Press, 1995.

[23] Paulina Marian and Tudor A. Marian. Phys. Rev. A, 93: 052330, 2016.

[24] Michael R. Moldover, Weston L. Tew, and Howard W. Yoon. Nature Publishing Group, 12 (1): 7–11, 2016.

[25] Alex Monras. arXiv:1303.3682, 2013.

[26] Alex Monras and Fabrizio Illuminati. Physical Review A - Atomic, Molecular, and Optical Physics, 83 (1): 1–12, 2011.

[27] Ranjith Nair and Mankei Tsang. The Astrophysical Journal, 808 (2): 125, 2015.

[28] Matteo G. A. Paris. International Journal of Quantum Information, 07 : 125–137, 2009.

[29] M. E. Pearce, T. Mehringer, J. von Zanthier, and P. Kok. Physical Review A, 92 (4): 043831, 2015.

[30] Sammy Ragy, Marcin Jarzyna, and Rafał Demkowicz-Dobrzański. Phys. Rev. A, 94: 052108, 2016.

[31] Magdalena Szczykulska, Tillmann Baumgratz, and Animesh Datta. Advances in Physics: X, 1 (4): 621–639, 2016.

[32] Mankei Tsang. Optica, 2 (7): 646–653, 2015.

[33] Mankei Tsang, Ranjith Nair, and Xiao-Ming Lu. Phys. Rev. X, 6: 031033, 2016.

[34] Dominik Šafránek, Antony R Lee, and Ivette Fuentes. New Journal of Physics, 17 (7): 073016, 2015.

Cited by

[1] Rosanna Nichols, Pietro Liuzzo-Scorpo, Paul A. Knott, and Gerardo Adesso, "Multiparameter Gaussian quantum metrology", Physical Review A 98 1, 012114 (2018).

[2] Mankei Tsang, "Resolving starlight: a quantum perspective", Contemporary Physics 60 4, 279 (2019).

[3] L. A. Howard, G. G. Gillett, M. E. Pearce, R. A. Abrahao, T. J. Weinhold, P. Kok, and A. G. White, "Optimal Imaging of Remote Bodies Using Quantum Detectors", Physical Review Letters 123 14, 143604 (2019).

[4] Yunkai Wang, Yujie Zhang, and Virginia O. Lorenz, "Superresolution in interferometric imaging of strong thermal sources", Physical Review A 104 2, 022613 (2021).

[5] Jesse Crawford, Denis Dolzhenko, Michael Keach, Aaron Mueninghoff, Raphael A. Abrahao, Julian Martinez-Rincon, Paul Stankus, Stephen Vintskevich, and Andrei Nomerotski, "Towards quantum telescopes: demonstration of a two-photon interferometer for precision astrometry", Optics Express 31 26, 44246 (2023).

[6] Jesús Rubio, "Quantum scale estimation", Quantum Science and Technology 8 1, 015009 (2023).

[7] Marta Maria Marchese and Pieter Kok, "Large Baseline Optical Imaging Assisted by Single Photons and Linear Quantum Optics", Physical Review Letters 130 16, 160801 (2023).

[8] Manuel Bojer, Zixin Huang, Sebastian Karl, Stefan Richter, Pieter Kok, and Joachim von Zanthier, "A quantitative comparison of amplitude versus intensity interferometry for astronomy", New Journal of Physics 24 4, 043026 (2022).

[9] Andrzej Chrostowski, Rafał Demkowicz-Dobrzański, Marcin Jarzyna, and Konrad Banaszek, "On super-resolution imaging as a multiparameter estimation problem", International Journal of Quantum Information 15 08, 1740005 (2017).

[10] Jesús Rubio, Janet Anders, and Luis A. Correa, "Global Quantum Thermometry", Physical Review Letters 127 19, 190402 (2021).

[11] L. A. Howard, G. G. Gillett, M. E. Pearce, R. A. Abrahao, T. J. Weinhold, P. Kok, and A. G. White, Frontiers in Optics / Laser Science FM4A.6 (2020) ISBN:978-1-943580-80-4.

[12] Cosmo Lupo, Zixin Huang, and Pieter Kok, "Quantum Limits to Incoherent Imaging are Achieved by Linear Interferometry", Physical Review Letters 124 8, 080503 (2020).

[13] Jasminder S. Sidhu and Pieter Kok, "Geometric perspective on quantum parameter estimation", AVS Quantum Science 2 1, 014701 (2020).

[14] J. Řehaček, Z. Hradil, B. Stoklasa, M. Paúr, J. Grover, A. Krzic, and L. L. Sánchez-Soto, "Multiparameter quantum metrology of incoherent point sources: Towards realistic superresolution", Physical Review A 96 6, 062107 (2017).

[15] Erik F. Matlin and Lucas J. Zipp, "Imaging arbitrary incoherent source distributions with near quantum-limited resolution", Scientific Reports 12 1, 2810 (2022).

[16] Emre Köse, Gerardo Adesso, and Daniel Braun, "Quantum-enhanced passive remote sensing", Physical Review A 106 1, 012601 (2022).

[17] Zixin Huang, Gavin K. Brennen, and Yingkai Ouyang, "Imaging Stars with Quantum Error Correction", Physical Review Letters 129 21, 210502 (2022).

[18] Jonas Glatthard, Jesús Rubio, Rahul Sawant, Thomas Hewitt, Giovanni Barontini, and Luis A. Correa, "Optimal Cold Atom Thermometry Using Adaptive Bayesian Strategies", PRX Quantum 3 4, 040330 (2022).

[19] Mankei Tsang, "Quantum limit to subdiffraction incoherent optical imaging", Physical Review A 99 1, 012305 (2019).

[20] Jasminder S. Sidhu and Pieter Kok, "Quantum metrology of spatial deformation using arrays of classical and quantum light emitters", Physical Review A 95 6, 063829 (2017).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-21 11:38:07) and SAO/NASA ADS (last updated successfully 2024-05-21 11:38:08). The list may be incomplete as not all publishers provide suitable and complete citation data.