A largely self-contained and complete security proof for quantum key distribution

Marco Tomamichel1 and Anthony Leverrier2

1Centre for Quantum Software and Information, University of Technology Sydney, Australia
2Inria Paris, France

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

In this work we present a security analysis for quantum key distribution, establishing a rigorous tradeoff between various protocol and security parameters for a class of entanglement-based and prepare-and-measure protocols. The goal of this paper is twofold: 1) to review and clarify the stateof-the-art security analysis based on entropic uncertainty relations, and 2) to provide an accessible resource for researchers interested in a security analysis of quantum cryptographic protocols that takes into account finite resource effects. For this purpose we collect and clarify several arguments spread in the literature on the subject with the goal of making this treatment largely self-contained.
More precisely, we focus on a class of prepare-and-measure protocols based on the Bennett-Brassard (BB84) protocol as well as a class of entanglement-based protocols similar to the Bennett-Brassard-Mermin (BBM92) protocol. We carefully formalize the different steps in these protocols, including randomization, measurement, parameter estimation, error correction and privacy amplification, allowing us to be mathematically precise throughout the security analysis. We start from an operational definition of what it means for a quantum key distribution protocol to be secure and derive simple conditions that serve as sufficient condition for secrecy and correctness. We then derive and eventually discuss tradeoff relations between the block length of the classical computation, the noise tolerance, the secret key length and the security parameters for our protocols. Our results significantly improve upon previously reported tradeoffs.

► BibTeX data

► References

[1] C.H. Bennett and G. Brassard. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proc. IEEE International Conference on Computers, Systems and Signal Processing 1984, volume 1, pages 175–179, Bangalore, 1984.

[2] A.K. Ekert. Quantum Cryptography Based on Bell's Theorem. Physical Review Letters, 67 (6): 661–663, 1991. 10.1103/​PhysRevLett.67.661.
https:/​/​doi.org/​10.1103/​PhysRevLett.67.661

[3] C. Bennett, G. Brassard, and N. Mermin. Quantum Cryptography Without Bell's Theorem. Physical Review Letters, 68 (5): 557–559, 1992. 10.1103/​PhysRevLett.68.557.
https:/​/​doi.org/​10.1103/​PhysRevLett.68.557

[4] H.-K. Lo and H.F. Chau. Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science, 283 (5410): 2050–2056, 1999. 10.1126/​science.283.5410.2050.
https:/​/​doi.org/​10.1126/​science.283.5410.2050

[5] P.W. Shor and J. Preskill. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Physical Review Letters, 85 (2): 441–444, 2000. 10.1103/​PhysRevLett.85.441.
https:/​/​doi.org/​10.1103/​PhysRevLett.85.441

[6] D. Mayers. Unconditional Security in Quantum Cryptography. Journal of the ACM, 48 (3): 351–406, 2001. 10.1145/​382780.382781.
https:/​/​doi.org/​10.1145/​382780.382781

[7] M. Koashi. Unconditional Security of Quantum Key Distribution and the Uncertainty Principle. Journal of Physics: Conference Series, 36 (1): 98–102, 2006. 10.1088/​1742-6596/​36/​1/​016.
https:/​/​doi.org/​10.1088/​1742-6596/​36/​1/​016

[8] H. Maassen and J. Uffink. Generalized Entropic Uncertainty Relations. Physical Review Letters, 60 (12): 1103–1106, 1988. 10.1103/​PhysRevLett.60.1103.
https:/​/​doi.org/​10.1103/​PhysRevLett.60.1103

[9] W. Heisenberg. Über den Anschaulichen Inhalt der Quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43 (3-4): 172–198, mar 1927.

[10] R. Renner. Security of Quantum Key Distribution. PhD thesis, ETH Zurich, 2005. URL http:/​/​arxiv.org/​abs/​quant-ph/​0512258.
arXiv:quant-ph/0512258

[11] L.C. Comandar, M. Lucamarini, B. Fröhlich, J.F. Dynes, A.W. Sharpe, S.W.-B. Tam, Z.L. Yuan, R.V. Penty, and A.J. Shields. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nature Photonics, 10 (5): 312–315, 2016. 10.1038/​nphoton.2016.50.
https:/​/​doi.org/​10.1038/​nphoton.2016.50

[12] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photonics, 7 (5): 378–381, 2013. 10.1038/​nphoton.2013.63.
https:/​/​doi.org/​10.1038/​nphoton.2013.63

[13] M. Tomamichel, C.C.W. Lim, N. Gisin, and R. Renner. Tight Finite-Key Analysis for Quantum Cryptography. Nature Communications, 3: 634, 2012. 10.1038/​ncomms1631.
https:/​/​doi.org/​10.1038/​ncomms1631

[14] M. Hayashi and T. Tsurumaru. Concise and Tight Security Analysis of the Bennett-Brassard 1984 Protocol with Finite Key Lengths. New Journal of Physics, 14 (9): 093014, 2012. 10.1088/​1367-2630/​14/​9/​093014.
https:/​/​doi.org/​10.1088/​1367-2630/​14/​9/​093014

[15] V. Scarani and R. Renner. Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing. Physical Review Letters, 100 (20), 2008. 10.1103/​PhysRevLett.100.200501.
https:/​/​doi.org/​10.1103/​PhysRevLett.100.200501

[16] R. Renner. Symmetry of Large Physical Systems Implies Independence of Subsystems. Nature Physics, 3 (9): 645–649, 2007. 10.1038/​nphys684.
https:/​/​doi.org/​10.1038/​nphys684

[17] M. Christandl, R. König, and R. Renner. Postselection Technique for Quantum Channels with Applications to Quantum Cryptography. Physical Review Letters, 102 (2), 2009. 10.1103/​PhysRevLett.102.020504.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.020504

[18] L. Sheridan, T.P. Le, and V. Scarani. Finite-Key Security Against Coherent Attacks in Quantum Key Distribution. New Journal of Physics, 12: 123019, 2010.

[19] C. Pfister, N. Lütkenhaus, S. Wehner, and P.J. Coles. Sifting Attacks in Finite-Size Quantum Key Distribution. New Journal of Physics, 18 (5): 053001, 2016. 10.1088/​1367-2630/​18/​5/​053001.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​5/​053001

[20] M. Tomamichel, S. Fehr, J. Kaniewski, and S. Wehner. A Monogamy-of-Entanglement Game with Applications to Device-Independent Quantum Cryptography. New Journal of Physics, 15 (10): 103002, 2013. 10.1088/​1367-2630/​15/​10/​103002.
https:/​/​doi.org/​10.1088/​1367-2630/​15/​10/​103002

[21] M. Tomamichel and R. Renner. Uncertainty Relation for Smooth Entropies. Physical Review Letters, 106 (11): 110506, 2011. 10.1103/​PhysRevLett.106.110506.
https:/​/​doi.org/​10.1103/​PhysRevLett.106.110506

[22] M. Tomamichel. Quantum Information Processing with Finite Resources — Mathematical Foundations, volume 5 of SpringerBriefs in Mathematical Physics. Springer International Publishing, 2016. ISBN 978-3-319-21890-8. 10.1007/​978-3-319-21891-5.
https:/​/​doi.org/​10.1007/​978-3-319-21891-5

[23] C.W. Helstrom. Quantum Detection and Estimation Theory. Academic Press, New York, NY, 1976.

[24] M. Tomamichel, R. Colbeck, and R. Renner. Duality Between Smooth Min- and Max-Entropies. IEEE Transactions on Information Theory, 56 (9): 4674–4681, 2010. 10.1109/​TIT.2010.2054130.
https:/​/​doi.org/​10.1109/​TIT.2010.2054130

[25] J.L. Carter and M.N. Wegman. Universal Classes of Hash Functions. Journal of Computer and System Sciences, 18 (2): 143–154, 1979. 10.1016/​0022-0000(79)90044-8.
https:/​/​doi.org/​10.1016/​0022-0000(79)90044-8

[26] M.N. Wegman and J.L. Carter. New Hash Functions and their Use in Authentication and Set Equality. Journal of Computer and System Sciences, 22 (3): 265–279, 1981. 10.1016/​0022-0000(81)90033-7.
https:/​/​doi.org/​10.1016/​0022-0000(81)90033-7

[27] A. Rényi. On Measures of Information and Entropy. In Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 547–561, Berkeley, California, USA, 1961. University of California Press.

[28] R. König, R. Renner, and C. Schaffner. The Operational Meaning of Min- and Max-Entropy. IEEE Transactions on Information Theory, 55 (9): 4337–4347, 2009. 10.1109/​TIT.2009.2025545.
https:/​/​doi.org/​10.1109/​TIT.2009.2025545

[29] S. Winkler, M. Tomamichel, S. Hengl, and R. Renner. Impossibility of Growing Quantum Bit Commitments. Physical Review Letters, 107 (9): 090502, 2011. ISSN 0031-9007. 10.1103/​PhysRevLett.107.090502.
https:/​/​doi.org/​10.1103/​PhysRevLett.107.090502

[30] H.-K. Lo, H.F. Chau, and M. Ardehali. Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security. Journal of Cryptology, 18(2):133–165, 2004 10.1007/​s00145-004-0142-y.
https:/​/​doi.org/​10.1007/​s00145-004-0142-y

[31] D. Frauchiger, R. Renner, and M. Troyer. True randomness from realistic quantum devices, 2013. URL http:/​/​arxiv.org/​abs/​1311.4547.
arXiv:1311.4547

[32] C. Portmann and R. Renner. Cryptographic Security of Quantum Key Distribution, 2014. URL http:/​/​arxiv.org/​abs/​1409.3525.
arXiv:1409.3525

[33] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov. Hacking Commercial Quantum Cryptography Systems by Tailored Bright Illumination. Nature Photonics, 4 (10): 686–689, 2010. 10.1038/​nphoton.2010.214.
https:/​/​doi.org/​10.1038/​nphoton.2010.214

[34] M. Tomamichel and Esther Hänggi. The Link Between Entropic Uncertainty and Nonlocality. Journal of Physics A: Mathematical and Theoretical, 46 (5): 055301, 2013. 10.1088/​1751-8113/​46/​5/​055301.
https:/​/​doi.org/​10.1088/​1751-8113/​46/​5/​055301

[35] C.C.W. Lim, C. Portmann, M. Tomamichel, R. Renner, and Nicolas Gisin. Device-Independent Quantum Key Distribution with Local Bell Test. Physical Review X, 3 (3): 031006, 2013. 10.1103/​PhysRevX.3.031006.
https:/​/​doi.org/​10.1103/​PhysRevX.3.031006

[36] I. Devetak and A. Winter. Distillation of Secret Key and Entanglement from Quantum States. Proceedings of the Royal Society A, 461 (2053): 207–235, 2005. 10.1098/​rspa.2004.1372.
https:/​/​doi.org/​10.1098/​rspa.2004.1372

[37] D. Elkouss, A. Leverrier, R. Alleaume, and J.J. Boutros. Efficient Reconciliation Protocol for Discrete-Variable Quantum Key Distribution. In Proc. IEEE ISIT 2009, pages 1879–1883, 2009. 10.1109/​ISIT.2009.5205475.
https:/​/​doi.org/​10.1109/​ISIT.2009.5205475

[38] M. Tomamichel, J. Martinez-Mateo, C. Pacher, and D. Elkouss. Fundamental Finite Key Limits for Information Reconciliation in Quantum Key Distribution, 2014. URL http:/​/​arxiv.org/​abs/​1401.5194.
arXiv:1401.5194

[39] M. Tomamichel. A Framework for Non-Asymptotic Quantum Information Theory. PhD thesis, ETH Zurich, 2012. URL http:/​/​arxiv.org/​abs/​1203.2142.
arXiv:1203.2142

[40] R.J. Serfling. Probability Inequalities for the Sum in Sampling without Replacement. Annals of Statistics, 2 (1): 39–48, 1974.

[41] J.H. van Lint. Introduction to Coding Theory. Graduate Texts in Mathematics. Springer, third edition, 1999.

[42] H.-K. Lo, X. Ma, and K. Chen. Decoy State Quantum Key Distribution. Physical Review Letters, 94 (23), 2005. 10.1103/​PhysRevLett.94.230504.
https:/​/​doi.org/​10.1103/​PhysRevLett.94.230504

[43] J. Hasegawa, M. Hayashi, T. Hiroshima, and A. Tomita. Security analysis of decoy state quantum key distribution incorporating finite statistics, 2007. URL http:/​/​arxiv.org/​abs/​0707.3541.
arXiv:0707.3541

[44] C.C.W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden. Concise security bounds for practical decoy-state quantum key distribution. Physical Review A, 89 (2): 022307, 2014. 10.1103/​PhysRevA.89.022307.
https:/​/​doi.org/​10.1103/​PhysRevA.89.022307

[45] D. Bruss. Optimal Eavesdropping in Quantum Cryptography with Six States. Physical Review Letters, 81 (14): 3018–3021, 1998. 10.1103/​PhysRevLett.81.3018.
https:/​/​doi.org/​10.1103/​PhysRevLett.81.3018

[46] F. Dupuis, O. Fawzi, and R. Renner. Entropy accumulation, 2016. URL http:/​/​arxiv.org/​abs/​1607.01796.
arXiv:1607.01796

[47] R. Arnon-Friedman, R. Renner, and T. Vidick. Simple and tight device-independent security proofs, 2016. URL http:/​/​arxiv.org/​abs/​1607.01797.
arXiv:1607.01797

[48] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics. Springer, 1997. ISBN 0-387-94846-5.

Cited by

[1] Masahito Hayashi, "Quantum-Inspired Secure Wireless Communication Protocol Under Spatial and Local Gaussian Noise Assumptions", IEEE Access 10, 29040 (2022).

[2] Michel Boyer, Gilles Brassard, Nicolas Godbout, Rotem Liss, and Stéphane Virally, "Simple and Rigorous Proof Method for the Security of Practical Quantum Key Distribution in the Single-Qubit Regime Using Mismatched Basis Measurements", Quantum Reports 5 1, 52 (2023).

[3] Keegan Yao, Walter O. Krawec, and Jiadong Zhu, "Quantum Sampling for Finite Key Rates in High Dimensional Quantum Cryptography", IEEE Transactions on Information Theory 68 5, 3144 (2022).

[4] Ernest Y.-Z. Tan, Charles C.-W. Lim, and Renato Renner, "Advantage Distillation for Device-Independent Quantum Key Distribution", Physical Review Letters 124 2, 020502 (2020).

[5] A Pirker, M Zwerger, V Dunjko, H J Briegel, and W Dür, "Simple proof of confidentiality for private quantum channels in noisy environments", Quantum Science and Technology 4 2, 025009 (2019).

[6] Akihiro Mizutani, "Quantum key distribution with any two independent and identically distributed states", Physical Review A 102 2, 022613 (2020).

[7] Sebastian Philipp Neumann, Alexander Buchner, Lukas Bulla, Martin Bohmann, and Rupert Ursin, "Continuous entanglement distribution over a transnational 248 km fiber link", Nature Communications 13 1, 6134 (2022).

[8] M. K. Bochkov and A. S. Trushechkin, "Security of quantum key distribution with detection-efficiency mismatch in the single-photon case: Tight bounds", Physical Review A 99 3, 032308 (2019).

[9] Anqi Huang, Akihiro Mizutani, Hoi-Kwong Lo, Vadim Makarov, and Kiyoshi Tamaki, "Characterization of State-Preparation Uncertainty in Quantum Key Distribution", Physical Review Applied 19 1, 014048 (2023).

[10] Dimiter Ostrev, "QKD parameter estimation by two-universal hashing", Quantum 7, 894 (2023).

[11] Anurag Anshu, Mario Berta, Rahul Jain, and Marco Tomamichel, "A minimax approach to one-shot entropy inequalities", Journal of Mathematical Physics 60 12, 122201 (2019).

[12] A. S. Trushechkin, E. O. Kiktenko, and A. K. Fedorov, "Practical issues in decoy-state quantum key distribution based on the central limit theorem", Physical Review A 96 2, 022316 (2017).

[13] Anton Trushechkin, "Security of quantum key distribution with detection-efficiency mismatch in the multiphoton case", Quantum 6, 771 (2022).

[14] Anne Broadbent and Rabib Islam, Lecture Notes in Computer Science 12552, 92 (2020) ISBN:978-3-030-64380-5.

[15] Yuki Takeuchi, Yuichiro Matsuzaki, Koichiro Miyanishi, Takanori Sugiyama, and William J. Munro, "Quantum remote sensing with asymmetric information gain", Physical Review A 99 2, 022325 (2019).

[16] Eric Culf and Thomas Vidick, "A monogamy-of-entanglement game for subspace coset states", Quantum 6, 791 (2022).

[17] Michael Epping, Hermann Kampermann, Chiara macchiavello, and Dagmar Bruß, "Multi-partite entanglement can speed up quantum key distribution in networks", New Journal of Physics 19 9, 093012 (2017).

[18] Sarnava Datta, Hermann Kampermann, and Dagmar Bruß, "Device-independent secret key rates via a postselected Bell inequality", Physical Review A 105 3, 032451 (2022).

[19] H. F. Chau, "Security of finite-key-length measurement-device-independent quantum key distribution using an arbitrary number of decoys", Physical Review A 102 1, 012611 (2020).

[20] Anton S. Trushechkin, Evgeniy O. Kiktenko, Dmitry A. Kronberg, and Aleksey K. Fedorov, "Security of the decoy state method for quantum key distribution", Uspekhi Fizicheskih Nauk 191 01, 93 (2021).

[21] Christopher Portmann and Renato Renner, "Security in quantum cryptography", Reviews of Modern Physics 94 2, 025008 (2022).

[22] Khodakhast Bibak, "Quantum key distribution using universal hash functions over finite fields", Quantum Information Processing 21 4, 121 (2022).

[23] Marie Ioannou, Maria Ana Pereira, Davide Rusca, Fadri Grünenfelder, Alberto Boaron, Matthieu Perrenoud, Alastair A. Abbott, Pavel Sekatski, Jean-Daniel Bancal, Nicolas Maring, Hugo Zbinden, and Nicolas Brunner, "Receiver-Device-Independent Quantum Key Distribution", Quantum 6, 718 (2022).

[24] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, "Advances in quantum cryptography", Advances in Optics and Photonics 12 4, 1012 (2020).

[25] Mario Mastriani and Sundaraja Sitharama Iyengar, "Satellite quantum repeaters for a quantum Internet", Quantum Engineering 2 4(2020).

[26] Neha Sharma and Vikas Saxena, 2022 8th International Conference on Signal Processing and Communication (ICSC) 36 (2022) ISBN:978-1-6654-5430-8.

[27] Snigdha Kashyap, Bharat Bhushan, Avinash Kumar, and Parma Nand, Studies in Big Data 108, 1 (2022) ISBN:978-981-19-0923-8.

[28] Renato Renner and Ramona Wolf, "Quantum Advantage in Cryptography", AIAA Journal 1 (2023).

[29] Manuel B. Santos, Ana C. Gomes, Armando N. Pinto, and Paulo Mateus, "Private Computation of Phylogenetic Trees Based on Quantum Technologies", IEEE Access 10, 38065 (2022).

[30] Akihiro Mizutani, Go Kato, Koji Azuma, Marcos Curty, Rikizo Ikuta, Takashi Yamamoto, Nobuyuki Imoto, Hoi-Kwong Lo, and Kiyoshi Tamaki, "Quantum key distribution with setting-choice-independently correlated light sources", npj Quantum Information 5 1, 8 (2019).

[31] Ernest Y.-Z. Tan, Pavel Sekatski, Jean-Daniel Bancal, René Schwonnek, Renato Renner, Nicolas Sangouard, and Charles C.-W. Lim, "Improved DIQKD protocols with finite-size analysis", Quantum 6, 880 (2022).

[32] A S Trushechkin, E O Kiktenko, D A Kronberg, and A K Fedorov, "Security of the decoy state method for quantum key distribution", Physics-Uspekhi 64 1, 88 (2021).

[33] Fabio Banfi, Ueli Maurer, Christopher Portmann, and Jiamin Zhu, Lecture Notes in Computer Science 11891, 282 (2019) ISBN:978-3-030-36029-0.

[34] Khodakhast Bibak, Bruce M. Kapron, and Venkatesh Srinivasan, "Authentication of variable length messages in quantum key distribution", EPJ Quantum Technology 9 1, 8 (2022).

[35] Ya-Dong Wu, Ge Bai, Giulio Chiribella, and Nana Liu, "Efficient Verification of Continuous-Variable Quantum States and Devices without Assuming Identical and Independent Operations", Physical Review Letters 126 24, 240503 (2021).

[36] Kiyoshi Tamaki, Hoi-Kwong Lo, Akihiro Mizutani, Go Kato, Charles Ci Wen Lim, Koji Azuma, and Marcos Curty, "Security of quantum key distribution with iterative sifting", Quantum Science and Technology 3 1, 014002 (2018).

[37] Gláucia Murta, Federico Grasselli, Hermann Kampermann, and Dagmar Bruß, "Quantum Conference Key Agreement: A Review", Advanced Quantum Technologies 3 11, 2000025 (2020).

[38] Walter O. Krawec, "Security of a High Dimensional Two‐Way Quantum Key Distribution Protocol", Advanced Quantum Technologies 5 10, 2200024 (2022).

[39] Evgeniy O. Kiktenko, Aleksei O. Malyshev, Maxim A. Gavreev, Anton A. Bozhedarov, Nikolay O. Pozhar, Maxim N. Anufriev, and Aleksey K. Fedorov, "Lightweight Authentication for Quantum Key Distribution", IEEE Transactions on Information Theory 66 10, 6354 (2020).

[40] Alireza Poostindouz and Reihaneh Safavi-Naini, 2021 IEEE International Symposium on Information Theory (ISIT) 1254 (2021) ISBN:978-1-5386-8209-8.

[41] Shouvik Ghorai, Philippe Grangier, Eleni Diamanti, and Anthony Leverrier, "Asymptotic Security of Continuous-Variable Quantum Key Distribution with a Discrete Modulation", Physical Review X 9 2, 021059 (2019).

[42] Jiawei Wu, Gui-Lu Long, and Masahito Hayashi, "Quantum Secure Direct Communication with Private Dense Coding Using a General Preshared Quantum State", Physical Review Applied 17 6, 064011 (2022).

[43] Sumeet Khatri, "On the design and analysis of near-term quantum network protocols using Markov decision processes", AVS Quantum Science 4 3, 030501 (2022).

[44] Daan Leermakers and Boris Škorić, "Two-way unclonable encryption with a vulnerable sender", International Journal of Quantum Information 20 02, 2150037 (2022).

[45] Akihiro Mizutani, Toshihiko Sasaki, Yuki Takeuchi, Kiyoshi Tamaki, and Masato Koashi, "Quantum key distribution with simply characterized light sources", npj Quantum Information 5 1, 87 (2019).

[46] Federico Grasselli, Gláucia Murta, Jarn de Jong, Frederik Hahn, Dagmar Bruß, Hermann Kampermann, and Anna Pappa, "Secure Anonymous Conferencing in Quantum Networks", PRX Quantum 3 4, 040306 (2022).

[47] Pawel Sniatala, S.S. Iyengar, and Sanjeev Kaushik Ramani, Evolution of Smart Sensing Ecosystems with Tamper Evident Security 107 (2021) ISBN:978-3-030-77763-0.

[48] F Basso Basset, M Valeri, J Neuwirth, E Polino, M B Rota, D Poderini, C Pardo, G Rodari, E Roccia, S F Covre da Silva, G Ronco, N Spagnolo, A Rastelli, G Carvacho, F Sciarrino, and R Trotta, "Daylight entanglement-based quantum key distribution with a quantum dot source", Quantum Science and Technology 8 2, 025002 (2023).

[49] Marie Ioannou, Pavel Sekatski, Alastair A Abbott, Denis Rosset, Jean-Daniel Bancal, and Nicolas Brunner, "Receiver-device-independent quantum key distribution protocols", New Journal of Physics 24 6, 063006 (2022).

[50] A.S. Trushechkin, "On the operational meaning and practical aspects of using the security parameter in quantum key distribution", Quantum Electronics 50 5, 426 (2020).

[51] V. E. Rodimin, E. O. Kiktenko, V. V. Usova, M. Y. Ponomarev, T. V. Kazieva, A. V. Miller, A. S. Sokolov, A. A. Kanapin, A. V. Losev, A. S. Trushechkin, M. N. Anufriev, N. O. Pozhar, V. L. Kurochkin, Y. V. Kurochkin, and A. K. Fedorov, "Modular Quantum Key Distribution Setup for Research and Development Applications", Journal of Russian Laser Research 40 3, 221 (2019).

[52] Yuki Takeuchi, Atul Mantri, Tomoyuki Morimae, Akihiro Mizutani, and Joseph F. Fitzsimons, "Resource-efficient verification of quantum computing using Serfling’s bound", npj Quantum Information 5 1, 27 (2019).

[53] Charles Ci-Wen Lim, Feihu Xu, Jian-Wei Pan, and Artur Ekert, "Security Analysis of Quantum Key Distribution with Small Block Length and Its Application to Quantum Space Communications", Physical Review Letters 126 10, 100501 (2021).

[54] G Murta, S B van Dam, J Ribeiro, R Hanson, and S Wehner, "Towards a realization of device-independent quantum key distribution", Quantum Science and Technology 4 3, 035011 (2019).

[55] Jérémy Ribeiro, Gláucia Murta, and Stephanie Wehner, "Fully device-independent conference key agreement", Physical Review A 97 2, 022307 (2018).

[56] Ryan Amiri, Petros Wallden, Adrian Kent, and Erika Andersson, "Secure quantum signatures using insecure quantum channels", Physical Review A 93 3, 032325 (2016).

[57] Mario Berta, Stephanie Wehner, and Mark M. Wilde, "Entropic uncertainty and measurement reversibility", New Journal of Physics 18 7, 073004 (2016).

[58] Ittoop Vergheese Puthoor, Ryan Amiri, Petros Wallden, Marcos Curty, and Erika Andersson, "Measurement-device-independent quantum digital signatures", Physical Review A 94 2, 022328 (2016).

[59] Janusz Czub, Ryszard Veynar, Wiesław Laskowski, and Marcin Pawłowski, "Optimal pumping strength for BBM92 key distribution protocol", International Journal of Quantum Information 14 8, 1650049-179 (2016).

[60] Akihiro Mizutani, Nobuyuki Imoto, and Kiyoshi Tamaki, "Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws", Physical Review A 92 6, 060303 (2015).

[61] Kamil Brádler, Mohammad Mirhosseini, Robert Fickler, Anne Broadbent, and Robert Boyd, "Finite-key security analysis for multilevel quantum key distribution", New Journal of Physics 18 7, 073030 (2016).

[62] Carl A. Miller and Yaoyun Shi, "Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices", arXiv:1402.0489, (2014).

[63] Evgeny Kiktenko, Anton Trushechkin, Yury Kurochkin, and Aleksey Fedorov, "Post-processing procedure for industrial quantum key distribution systems", Journal of Physics Conference Series 741 1, 012081 (2016).

[64] Marco Tomamichel, Jesus Martinez-Mateo, Christoph Pacher, and David Elkouss, "Fundamental finite key limits for one-way information reconciliation in quantum key distribution", Quantum Information Processing 16 11, 280 (2017).

[65] Corsin Pfister, Norbert Lütkenhaus, Stephanie Wehner, and Patrick J. Coles, "Sifting attacks in finite-size quantum key distribution", New Journal of Physics 18 5, 053001 (2016).

[66] Thomas Vidick, "Parallel DIQKD from parallel repetition", arXiv:1703.08508, (2017).

[67] Sumeet Khatri, Eneet Kaur, Saikat Guha, and Mark M. Wilde, "Second-order coding rates for key distillation in quantum key distribution", arXiv:1910.03883, (2019).

[68] Vladimir L. Kurochkin, Yuriy V. Kurochkin, Alexander V. Miller, Alexander S. Sokolov, and Alan A. Kanapin, "Effect of crosstalk on QBER in QKD in urban telecommunication fiber lines", Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10224, 102242U (2016).

[69] Renato Renner and Ramona Wolf, "Quantum Advantage in Cryptography", arXiv:2206.04078, (2022).

[70] Anne Broadbent and Christian Schaffner, "Quantum Cryptography Beyond Quantum Key Distribution", arXiv:1510.06120, (2015).

[71] S. N. Molotkov, "Quantum Key Distribution As a Scheme with Bernoulli Tests", Soviet Journal of Experimental and Theoretical Physics 126 6, 741 (2018).

[72] Marco Tomamichel, Jesus Martinez-Mateo, Christoph Pacher, and David Elkouss, "Fundamental Finite Key Limits for One-Way Information Reconciliation in Quantum Key Distribution", arXiv:1401.5194, (2014).

[73] Christopher Portmann, "(Quantum) Min-Entropy Resources", arXiv:1705.10595, (2017).

[74] Arash Atashpendar, "From Information Theory Puzzles in Deletion Channels to Deniability in Quantum Cryptography", arXiv:2003.11663, (2020).

[75] Corsin Pfister, Norbert Lütkenhaus, Stephanie Wehner, and Patrick J. Coles, "Sifting attacks in finite-size quantum key distribution", arXiv:1506.07502, (2015).

[76] Yixin Zhang, "Blockchain of Signature Material Combining Cryptographic Hash Function and DNA Steganography", arXiv:1909.07914, (2019).

[77] Ramona Wolf, "Quantum Key Distribution in the Non-Asymptotic Regime", arXiv:1511.06519, (2015).

[78] Fabio Banfi, Ueli Maurer, Christopher Portmann, and Jiamin Zhu, "Composable and Finite Computational Security of Quantum Message Transmission", arXiv:1908.03436, (2019).

[79] Martin Sandfuchs, Marcus Haberland, V. Vilasini, and Ramona Wolf, "Security of differential phase shift QKD from relativistic principles", arXiv:2301.11340, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2023-02-04 18:17:41) and SAO/NASA ADS (last updated successfully 2023-02-04 18:17:42). The list may be incomplete as not all publishers provide suitable and complete citation data.