Fast and high-fidelity entangling gate through parametrically modulated longitudinal coupling

Baptiste Royer1, Arne L. Grimsmo1, Nicolas Didier2,3, and Alexandre Blais1,4

1Institut quantique and D'epartment de Physique, Universit'e de Sherbrooke, 2500 boulevard de l'Universit'e, Sherbrooke, Qu'ebec J1K 2R1, Canada
2Current address: Rigetti Quantum Computing, 775 Heinz Avenue, Berkeley, California 94710, USA.
3QUANTIC team, Inria Paris, 2 rue Simone Iff, 75012 Paris, France
4Canadian Institute for Advanced Research, Toronto, Canada

We investigate an approach to universal quantum computation based on the modulation of longitudinal qubit-oscillator coupling. We show how to realize a controlled-phase gate by simultaneously modulating the longitudinal coupling of two qubits to a common oscillator mode. In contrast to the more familiar transversal qubit-oscillator coupling, the magnitude of the effective qubit-qubit interaction does not rely on a small perturbative parameter. As a result, this effective interaction strength can be made large, leading to short gate times and high gate fidelities. We moreover show how the gate infidelity can be exponentially suppressed with squeezing and how the entangling gate can be generalized to qubits coupled to separate oscillators. Our proposal can be realized in multiple physical platforms for quantum computing, including superconducting and spin qubits.

Share

► BibTeX data

► References

[1] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006).
https:/​/​books.google.ca/​books/​about/​Exploring_the_Quantum.html?id=ynwSDAAAQBAJ&redir_esc=y

[2] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).
https://doi.org/10.1103/PhysRevA.69.062320

[3] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).
https://doi.org/10.1103/PhysRevLett.83.4204

[4] A. A. Houck, J. A. Schreier, B. R. Johnson, J. M. Chow, J. Koch, J. M. Gambetta, D. I. Schuster, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 101, 080502 (2008).
https://doi.org/10.1103/PhysRevLett.101.080502

[5] M. Boissonneault, J. M. Gambetta, and A. Blais, Phys. Rev. A 79, 013819 (2009).
https://doi.org/10.1103/PhysRevA.79.013819

[6] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. A 75, 032329 (2007).
http:/​/​link.aps.org/​abstract/​PRA/​v75/​e032329

[7] J. M. Chow, J. M. Gambetta, A. W. Cross, S. T. Merkel, C. Rigetti, and M. Steffen, New Journal of Physics 15, 115012 (2013).
http:/​/​stacks.iop.org/​1367-2630/​15/​i=11/​a=115012

[8] H. Paik, A. Mezzacapo, M. Sandberg, D. T. McClure, B. Abdo, A. D. Córcoles, O. Dial, D. F. Bogorin, B. L. T. Plourde, M. Steffen, A. W. Cross, J. M. Gambetta, and J. M. Chow, Phys. Rev. Lett. 117, 250502 (2016).
https://doi.org/10.1103/PhysRevLett.117.250502

[9] A. J. Kerman and W. D. Oliver, Phys. Rev. Lett. 101, 070501 (2008).
https://doi.org/10.1103/PhysRevLett.101.070501

[10] A. J. Kerman, New Journal of Physics 15, 123011 (2013).
http:/​/​stacks.iop.org/​1367-2630/​15/​i=12/​a=123011

[11] P.-M. Billangeon, J. S. Tsai, and Y. Nakamura, Phys. Rev. B 91, 094517 (2015a).
https://doi.org/10.1103/PhysRevB.91.094517

[12] P.-M. Billangeon, J. S. Tsai, and Y. Nakamura, Phys. Rev. B 92, 020509 (2015b).
https://doi.org/10.1103/PhysRevB.92.020509

[13] N. Didier, J. Bourassa, and A. Blais, Phys. Rev. Lett. 115, 203601 (2015).
https://doi.org/10.1103/PhysRevLett.115.203601

[14] S. Richer and D. DiVincenzo, Phys. Rev. B 93, 134501 (2016).
https://doi.org/10.1103/PhysRevB.93.134501

[15] T. Brecht, W. Pfaff, C. Wang, Y. Chu, L. Frunzio, M. H. Devoret, and R. J. Schoelkopf, Npj Quantum Information 2, 16002 EP (2016).
http:/​/​dx.doi.org/​10.1038/​npjqi.2016.2

[16] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge University Press, 2000).
https:/​/​books.google.ca/​books?id=65FqEKQOfP8C

[17] A. W. Cross and J. M. Gambetta, Phys. Rev. A 91, 032325 (2015).
https://doi.org/10.1103/PhysRevA.91.032325

[18] S. Puri and A. Blais, Phys. Rev. Lett. 116, 180501 (2016).
https://doi.org/10.1103/PhysRevLett.116.180501

[19] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics (Springer, 2004).
https:/​/​books.google.ca/​books?id=a_xsT8oGhdgC

[20] M. A. Nielsen, Physics Letters A 303, 249 (2002).
https://doi.org/http://dx.doi.org/10.1016/S0375-9601(02)01272-0

[21] F. Beaudoin, D. Lachance-Quirion, W. A. Coish, and M. Pioro-Ladrière, Nanotechnology 27, 464003 (2016).
http:/​/​stacks.iop.org/​0957-4484/​27/​i=46/​a=464003

[22] P.-Q. Jin, M. Marthaler, A. Shnirman, and G. Schön, Phys. Rev. Lett. 108, 190506 (2012).
https://doi.org/10.1103/PhysRevLett.108.190506

[23] A. Bruno, G. de Lange, S. Asaad, K. L. van der Enden, N. K. Langford, and L. DiCarlo, Applied Physics Letters 106, 182601 (2015).
http:/​/​dx.doi.org/​10.1063/​1.4919761

[24] A. D. Corcoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M. Steffen, J. M. Gambetta, and J. M. Chow, Nat Commun 6 (2015).
http:/​/​dx.doi.org/​10.1038/​ncomms7979

[25] C. Macklin, K. OėxtquoterightBrien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, Science 350, 307 (2015).
https://doi.org/10.1126/science.aaa8525

[26] T. White, J. Mutus, I.-C. Hoi, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, et al., Applied Physics Letters 106, 242601 (2015).
http:/​/​dx.doi.org/​10.1063/​1.4922348

[27] M. D. Reed, B. R. Johnson, A. A. Houck, L. DiCarlo, J. M. Chow, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Applied Physics Letters 96, 203110 (2010).
http:/​/​dx.doi.org/​10.1063/​1.3435463

[28] N. T. Bronn, Y. Liu, J. B. Hertzberg, A. D. Córcoles, A. A. Houck, J. M. Gambetta, and J. M. Chow, Applied Physics Letters 107 (2015).
http:/​/​dx.doi.org/​10.1063/​1.4934867

[29] H. Breuer and F. Petruccione, The Theory of Open Quantum Systems (OUP Oxford, 2007).
https:/​/​books.google.ca/​books?id=DkcJPwAACAAJ

► Cited by (beta)

[1] Samuel J. Elman, Stephen D. Bartlett, Andrew C. Doherty, "Long-range entanglement for spin qubits via quantum Hall edge modes", Physical Review B 96, 115407 (2017).

[2] Maximilian Russ, Guido Burkard, "Three-electron spin qubits", Journal of Physics: Condensed Matter 29, 393001 (2017).

[3] Mauro Cirio, Kamanasish Debnath, Neill Lambert, Franco Nori, "Amplified Optomechanical Transduction of Virtual Radiation Pressure", Physical Review Letters 119, 053601 (2017).

[4] Xiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu-xi Liu, Franco Nori, "Microwave photonics with superconducting quantum circuits", Physics Reports 718-719, 1 (2017).

[5] Susanne Richer, Nataliya Maleeva, Sebastian T. Skacel, Ioan M. Pop, David DiVincenzo, "Inductively shunted transmon qubit with tunable transverse and longitudinal coupling", Physical Review B 96, 174520 (2017).

(The above data is from Crossref's cited-by service. Unfortunately not all publishers provide suitable and complete citation data so that some citing works or bibliographic details may be missing.)