A purification postulate for quantum mechanics with indefinite causal order
1Faculty of Physics, University of Vienna, Boltzmanngasse 5 1090 Vienna, Austria
2Institute for Quantum Optics and Quantum Information (IQOQI), Boltzmanngasse 3 1090 Vienna, Austria
3Institute for Theoretical Physics, University of Cologne, Germany
Published: | 2017-04-26, volume 1, page 10 |
Eprint: | arXiv:1611.08535v4 |
Doi: | https://doi.org/10.22331/q-2017-04-26-10 |
Citation: | Quantum 1, 10 (2017). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
To study which are the most general causal structures which are compatible with local quantum mechanics, Oreshkov $et$ $al.$ [1] introduced the notion of a process: a resource shared between some parties that allows for quantum communication between them without a predetermined causal order. These processes can be used to perform several tasks that are impossible in standard quantum mechanics: they allow for the violation of causal inequalities, and provide an advantage for computational and communication complexity. Nonetheless, no process that can be used to violate a causal inequality is known to be physically implementable. There is therefore considerable interest in determining which processes are physical and which are just mathematical artefacts of the framework. Here we make key progress in this direction by proposing a purification postulate: processes are physical only if they are purifiable. We derive necessary conditions for a process to be purifiable, and show that several known processes do not satisfy them.

Featured image: A process $W$ without past and future is purifiable iff it can be recovered from a pure process $S$ by inputting the state $|{0}\rangle$ in the past $P$ and tracing out the future $F$. If reversibility is respected in nature, only purifiable processes are physical.
Popular summary
Recently, a theoretical class of processes was found that do not respect causality, but nevertheless can not create logical paradoxes such as those where you travel back in time and kill your own grandfather. Whether such “non-causal” processes are physical and can be found in nature is an open question. In our paper we showed that there exists “non-causal” processes that do not generate paradoxes, but nevertheless violate the condition of reversibility. If reversibility is indeed respected in nature, then these processes must be unphysical.
► BibTeX data
► References
[1] O. Oreshkov, F. Costa, and Č. Brukner, ``Quantum correlations with no causal order'' Nat. Commun. 3, 1092 (2012).
https://doi.org/10.1038/ncomms2076
arXiv:1105.4464
[2] A. Ashtekar ``Large Quantum Gravity Effects: Unforeseen Limitations of the Classical Theory'' Phys. Rev. Lett. 77, 4864–4867 (1996).
https://doi.org/10.1103/PhysRevLett.77.4864
[3] Ä. Baumelerand S. Wolf ``Perfect signaling among three parties violating predefined causal order'' Information Theory (ISIT), 2014 IEEE International Symposium on 526–530 (2014).
https://doi.org/10.1109/ISIT.2014.6874888
arXiv:1312.5916
[4] Ämin Baumeler, Adrien Feix, and Stefan Wolf, ``Maximal incompatibility of locally classical behavior and global causal order in multi-party scenarios'' Phys. Rev. A 90, 042106 (2014).
https://doi.org/10.1103/PhysRevA.90.042106
arXiv:1403.7333
[5] Cyril Branciard, Mateus Araújo, Adrien Feix, Fabio Costa, and Časlav Brukner, ``The simplest causal inequalities and their violation'' New J. Phys. 18, 013008 (2015).
https://doi.org/10.1088/1367-2630/18/1/013008
arXiv:1508.01704
[6] Ä. Baumelerand S. Wolf ``The space of logically consistent classical processes without causal order'' New J. Phys. 18, 013036 (2016).
https://doi.org/10.1088/1367-2630/18/1/013036
arXiv:1507.01714
[7] O. Oreshkovand C. Giarmatzi ``Causal and causally separable processes'' New J. Phys. 18, 093020 (2015).
https://doi.org/10.1088/1367-2630/18/9/093020
arXiv:1506.05449
[8] A. A. Abbott, C. Giarmatzi, F. Costa, and C. Branciard, ``Multipartite Causal Correlations: Polytopes and Inequalities'' Phys. Rev. A 94, 032131 (2016).
https://doi.org/10.1103/PhysRevA.94.032131
arXiv:1608.01528
[9] Mateus Araújo, Cyril Branciard, Fabio Costa, Adrien Feix, Christina Giarmatzi, and Časlav Brukner, ``Witnessing causal nonseparability'' New J. Phys. 17, 102001 (2015).
https://doi.org/10.1088/1367-2630/17/10/102001
arXiv:1506.03776
[10] G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, ``Quantum computations without definite causal structure'' Phys. Rev. A 88, 022318 (2013).
https://doi.org/10.1103/PhysRevA.88.022318
arXiv:0912.0195
[11] G. Chiribella ``Perfect discrimination of no-signalling channels via quantum superposition of causal structures'' Phys. Rev. A 86, 040301 (2012).
https://doi.org/10.1103/PhysRevA.86.040301
arXiv:1109.5154
[12] M. Araújo, F. Costa, and Č. Brukner, ``Computational Advantage from Quantum-Controlled Ordering of Gates'' Phys. Rev. Lett. 113, 250402 (2014).
https://doi.org/10.1103/PhysRevLett.113.250402
arXiv:1401.8127
[13] A. Feix, M. Araújo, and Č. Brukner, ``Quantum superposition of the order of parties as a communication resource'' Phys. Rev. A 92, 052326 (2015).
https://doi.org/10.1103/PhysRevA.92.052326
arXiv:1508.07840
[14] P. Allard Guérin, A. Feix, M. Araújo, and Č. Brukner, ``Exponential communication complexity advantage from quantum superposition of the direction of communication'' Phys. Rev. Lett. 117, 100502 (2016).
https://doi.org/10.1103/PhysRevLett.117.100502
arXiv:1605.07372
[15] Lorenzo M Procopio, Amir Moqanaki, Mateus Araújo, Fabio Costa, Irati A Calafell, Emma G Dowd, Deny R Hamel, Lee A Rozema, Časlav Brukner, and Philip Walther, ``Experimental superposition of orders of quantum gates'' Nat. Commun. 6, 7913 (2015).
https://doi.org/10.1038/ncomms8913
arXiv:1412.4006
[16] G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. Procopio, Č. Brukner, and P. Walther, ``Experimental verification of an indefinite causal order'' Sci. Adv. 3 (2017).
https://doi.org/10.1126/sciadv.1602589
arXiv:1608.01683
[17] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, and F. Unger, ``Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial'' Phys. Rev. Lett. 96, 250401 (2006).
https://doi.org/10.1103/PhysRevLett.96.250401
[18] Noah Linden, Sandu Popescu, Anthony J. Short, and Andreas Winter, ``Quantum Nonlocality and Beyond: Limits from Nonlocal Computation'' Phys. Rev. Lett. 99, 180502 (2007).
https://doi.org/10.1103/PhysRevLett.99.180502
[19] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, and M. Żukowski, ``Information causality as a physical principle'' Nature 461, 1101–1104 (2009).
https://doi.org/10.1038/nature08400
arXiv:0905.2292
[20] M. Navascuésand H. Wunderlich ``A glance beyond the quantum model'' Proc. Royal Soc. A 466, 881–890 (2009).
https://doi.org/10.1098/rspa.2009.0453
arXiv:0907.0372
[21] T. Fritz, A. B. Sainz, R. Augusiak, J. B. Brask, R. Chaves, A. Leverrier, and A. Acín, ``Local orthogonality as a multipartite principle for quantum correlations'' Nat. Commun. 4, 2263 (2013).
https://doi.org/10.1038/ncomms3263
arXiv:1210.3018
[22] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti, ``Probabilistic theories with purification'' Phys. Rev. A 81, 062348 (2010).
https://doi.org/10.1103/PhysRevA.81.062348
arXiv:0908.1583
[23] L. Hardy ``Quantum Theory From Five Reasonable Axioms'' (2001).
[24] B. Dakićand Č. Brukner ``Deep Beauty: Understanding the Quantum World through Mathematical Innovation'' Cambridge University Press chapter Quantum Theory and Beyond: Is Entanglement Special? (2011).
arXiv:0911.0695
[25] L. Masanesand M. P. Müller ``A derivation of quantum theory from physical requirements'' New J. Phys. 13, 063001 (2011).
https://doi.org/10.1088/1367-2630/13/6/063001
arXiv:1004.1483
[26] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti, ``Informational derivation of quantum theory'' Phys. Rev. A 84, 012311 (2011).
https://doi.org/10.1103/PhysRevA.84.012311
arXiv:1011.6451
[27] H. Barnum, M. P. Müller, and C. Ududec, ``Higher-order interference and single-system postulates characterizing quantum theory'' New J. Phys. 16, 123029 (2014).
https://doi.org/10.1088/1367-2630/16/12/123029
arXiv:1403.4147
[28] P. A Hoehn ``Toolbox for reconstructing quantum theory from rules on information acquisition'' (2014).
https://doi.org/10.22331/q-2017-12-14-38
arXiv:1412.8323
[29] P. A Höhnand C. Wever ``Quantum theory from questions'' Phys. Rev. A 95, 012102 (2017).
https://doi.org/10.1103/PhysRevA.95.012102
arXiv:1511.01130
[30] M. Araújoand A. Feix (2014) Private communication.
[31] Ä. Baumelerand S. Wolf (2014) Private communication.
[32] A. Feix, M. Araújo, and Č. Brukner, ``Causally nonseparable processes admitting a causal model'' New J. Phys. 18, 083040 (2016).
https://doi.org/10.1088/1367-2630/18/8/083040
arXiv:1604.03391
[33] G. Chiribella, G. M. D'Ariano, and P. Perinotti, ``Theoretical framework for quantum networks'' Phys. Rev. A 80, 022339 (2009).
https://doi.org/10.1103/PhysRevA.80.022339
arXiv:0904.4483
[34] G. C. Ghirardi, A. Rimini, and T. Weber, ``Unified dynamics for microscopic and macroscopic systems'' Phys. Rev. D 34, 470–491 (1986).
https://doi.org/10.1103/PhysRevD.34.470
[35] Gian Carlo Ghirardi, Philip Pearle, and Alberto Rimini, ``Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles'' Phys. Rev. A 42, 78–89 (1990).
https://doi.org/10.1103/PhysRevA.42.78
[36] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, ``Models of wave-function collapse, underlying theories, and experimental tests'' Rev. Mod. Phys. 85, 471–527 (2013).
https://doi.org/10.1103/RevModPhys.85.471
arXiv:1204.4325
[37] S. W. Hawking ``Breakdown of predictability in gravitational collapse'' Phys. Rev. D 14, 2460–2473 (1976).
https://doi.org/10.1103/PhysRevD.14.2460
[38] D. Harlow ``Jerusalem Lectures on Black Holes and Quantum Information'' Rev. Mod. Phys. 88, 015002 (2016).
https://doi.org/10.1103/RevModPhys.88.015002
arXiv:1409.1231
[39] T. Jacobson ``Trans-Planckian Redshifts andthe Substance of the Space-Time River'' Prog. Theor. Phys. 136, 1–17 (1999).
https://doi.org/10.1143/PTPS.136.1
[40] M. Bojowald, D. Cartin, and G. Khanna, ``Lattice refining loop quantum cosmology, anisotropic models, and stability'' Phys. Rev. D 76, 064018 (2007).
https://doi.org/10.1103/PhysRevD.76.064018
arXiv:0704.1137
[41] S. Gielenand L. Sindoni ``Quantum Cosmology from Group Field Theory Condensates: a Review'' SIGMA 12, 082 (2016).
https://doi.org/10.3842/SIGMA.2016.082
arXiv:1602.08104
[42] P. A. Höhn ``Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces'' J. Math. Phys. 55, 083508 (2014).
https://doi.org/10.1063/1.4890558
arXiv:1401.6062
[43] V.F. Mukhanov ``Physical Foundations of Cosmology'' Cambridge University Press (2005).
[44] Karol Życzkowskiand Ingmar Bengtsson ``Geometry of Quantum States'' Cambridge University Press (2006).
[45] Č. Brukner ``Bounding quantum correlations with indefinite causal order'' New J. Phys. 17, 083034 (2015).
https://doi.org/10.1088/1367-2630/17/8/083034
arXiv:1404.0721
[46] Antoine Royer ``Wigner function in Liouville space: A canonical formalism'' Phys. Rev. A 43, 44–56 (1991).
https://doi.org/10.1103/PhysRevA.43.44
[47] Samuel L. Braunstein, Giacomo M. D'Ariano, G. J. Milburn, and Massimiliano F. Sacchi, ``Universal Teleportation with a Twist'' Phys. Rev. Lett. 84, 3486–3489 (2000).
https://doi.org/10.1103/PhysRevLett.84.3486
Cited by
[1] Mateus Araújo, Philippe Allard Guérin, and Ämin Baumeler, "Quantum computation with indefinite causal structures", Physical Review A 96 5, 052315 (2017).
[2] Marco Túlio Quintino, Qingxiuxiong Dong, Atsushi Shimbo, Akihito Soeda, and Mio Murao, "Reversing Unknown Quantum Transformations: Universal Quantum Circuit for Inverting General Unitary Operations", Physical Review Letters 123 21, 210502 (2019).
[3] Germain Tobar and Fabio Costa, "Reversible dynamics with closed time-like curves and freedom of choice", Classical and Quantum Gravity 37 20, 205011 (2020).
[4] Philippe Allard Guérin, Giulia Rubino, and Časlav Brukner, "Communication through quantum-controlled noise", Physical Review A 99 6, 062317 (2019).
[5] Sally Shrapnel and Fabio Costa, "Causation does not explain contextuality", Quantum 2, 63 (2018).
[6] Ämin Baumeler, Amin Shiraz Gilani, and Jibran Rashid, "Unlimited non-causal correlations and their relation to non-locality", Quantum 6, 673 (2022).
[7] Kejin Wei, Nora Tischler, Si-Ran Zhao, Yu-Huai Li, Juan Miguel Arrazola, Yang Liu, Weijun Zhang, Hao Li, Lixing You, Zhen Wang, Yu-Ao Chen, Barry C. Sanders, Qiang Zhang, Geoff J. Pryde, Feihu Xu, and Jian-Wei Pan, "Experimental Quantum Switching for Exponentially Superior Quantum Communication Complexity", Physical Review Letters 122 12, 120504 (2019).
[8] Ognyan Oreshkov, "Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics", Quantum 3, 206 (2019).
[9] Márcio M. Taddei, Ranieri V. Nery, and Leandro Aolita, "Quantum superpositions of causal orders as an operational resource", Physical Review Research 1 3, 033174 (2019).
[10] Jonathan Barrett, Robin Lorenz, and Ognyan Oreshkov, "Cyclic quantum causal models", Nature Communications 12 1, 885 (2021).
[11] Simon Milz, Felix A Pollock, Thao P Le, Giulio Chiribella, and Kavan Modi, "Entanglement, non-Markovianity, and causal non-separability", New Journal of Physics 20 3, 033033 (2018).
[12] John H. Selby, Carlo Maria Scandolo, and Bob Coecke, "Reconstructing quantum theory from diagrammatic postulates", Quantum 5, 445 (2021).
[13] Fabio Costa, "A no-go theorem for superpositions of causal orders", Quantum 6, 663 (2022).
[14] Jessica Bavaresco, Mateus Araújo, Časlav Brukner, and Marco Túlio Quintino, "Semi-device-independent certification of indefinite causal order", Quantum 3, 176 (2019).
[15] Jessica Bavaresco, Mio Murao, and Marco Túlio Quintino, "Unitary channel discrimination beyond group structures: Advantages of sequential and indefinite-causal-order strategies", Journal of Mathematical Physics 63 4, 042203 (2022).
[16] Manabendra N. Bera, "Quantifying superpositions of quantum evolutions", Physical Review A 100 4, 042307 (2019).
[17] Christina Giarmatzi, Springer Theses 7 (2019) ISBN:978-3-030-31929-8.
[18] Emily Adlam, "Is there causation in fundamental physics? New insights from process matrices and quantum causal modelling", Synthese 201 5, 152 (2023).
[19] Lorenzo Maccone, "A Fundamental Problem in Quantizing General Relativity", Foundations of Physics 49 12, 1394 (2019).
[20] Laurie Letertre, "Causal nonseparability and its implications for spatiotemporal relations", Studies in History and Philosophy of Science 95, 64 (2022).
[21] Ding Jia and Fabio Costa, "Causal order as a resource for quantum communication", Physical Review A 100 5, 052319 (2019).
[22] Marco Túlio Quintino and Daniel Ebler, "Deterministic transformations between unitary operations: Exponential advantage with adaptive quantum circuits and the power of indefinite causality", Quantum 6, 679 (2022).
[23] Nick Ormrod, Augustin Vanrietvelde, and Jonathan Barrett, "Causal structure in the presence of sectorial constraints, with application to the quantum switch", Quantum 7, 1028 (2023).
[24] Simon Milz, Dominic Jurkschat, Felix A. Pollock, and Kavan Modi, "Delayed-choice causal order and nonclassical correlations", Physical Review Research 3 2, 023028 (2021).
[25] Ämin Baumeler, Fabio Costa, Timothy C Ralph, Stefan Wolf, and Magdalena Zych, "Reversible time travel with freedom of choice", Classical and Quantum Gravity 36 22, 224002 (2019).
[26] Márcio M. Taddei, Jaime Cariñe, Daniel Martínez, Tania García, Nayda Guerrero, Alastair A. Abbott, Mateus Araújo, Cyril Branciard, Esteban S. Gómez, Stephen P. Walborn, Leandro Aolita, and Gustavo Lima, "Computational Advantage from the Quantum Superposition of Multiple Temporal Orders of Photonic Gates", PRX Quantum 2 1, 010320 (2021).
[27] Ciarán M. Lee and John H. Selby, "A no-go theorem for theories that decohere to quantum mechanics", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 2214, 20170732 (2018).
[28] Kaumudibikash Goswami and Fabio Costa, "Classical communication through quantum causal structures", Physical Review A 103 4, 042606 (2021).
[29] Julian Wechs, Hippolyte Dourdent, Alastair A. Abbott, and Cyril Branciard, "Quantum Circuits with Classical Versus Quantum Control of Causal Order", PRX Quantum 2 3, 030335 (2021).
[30] Marco Túlio Quintino, Qingxiuxiong Dong, Atsushi Shimbo, Akihito Soeda, and Mio Murao, "Probabilistic exact universal quantum circuits for transforming unitary operations", Physical Review A 100 6, 062339 (2019).
[31] Wataru Yokojima, Marco Túlio Quintino, Akihito Soeda, and Mio Murao, "Consequences of preserving reversibility in quantum superchannels", Quantum 5, 441 (2021).
[32] Qingxiuxiong Dong, Marco Túlio Quintino, Akihito Soeda, and Mio Murao, "Success-or-Draw: A Strategy Allowing Repeat-Until-Success in Quantum Computation", Physical Review Letters 126 15, 150504 (2021).
[33] Alastair A. Abbott, Julian Wechs, Fabio Costa, and Cyril Branciard, "Genuinely multipartite noncausality", Quantum 1, 39 (2017).
[34] Philippe Allard Guérin and Časlav Brukner, "Observer-dependent locality of quantum events", New Journal of Physics 20 10, 103031 (2018).
[35] Simon Milz and Kavan Modi, "Quantum Stochastic Processes and Quantum non-Markovian Phenomena", PRX Quantum 2 3, 030201 (2021).
[36] Juan Gu, Longsuo Li, and Zhi Yin, "Two Multi-Setting Causal Inequalities and Their Violations", International Journal of Theoretical Physics 59 1, 97 (2020).
[37] Esteban Castro-Ruiz, Flaminia Giacomini, Alessio Belenchia, and Časlav Brukner, "Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems", Nature Communications 11 1, 2672 (2020).
[38] Satoshi Yoshida, Akihito Soeda, and Mio Murao, "Universal construction of decoders from encoding black boxes", Quantum 7, 957 (2023).
[39] Roope Uola, Tristan Kraft, and Alastair A. Abbott, "Quantification of quantum dynamics with input-output games", Physical Review A 101 5, 052306 (2020).
[40] Veronika Baumann, Marius Krumm, Philippe Allard Guérin, and Časlav Brukner, "Noncausal Page-Wootters circuits", Physical Review Research 4 1, 013180 (2022).
[41] Julian Wechs, Cyril Branciard, and Ognyan Oreshkov, "Existence of processes violating causal inequalities on time-delocalised subsystems", Nature Communications 14 1, 1471 (2023).
[42] Marco Túlio Quintino and Daniel Ebler, "Deterministic transformations between unitary operations: Exponential advantage with adaptive quantum circuits and the power of indefinite causality", arXiv:2109.08202, (2021).
[43] Márcio M. Taddei, Jaime Cariñe, Daniel Martínez, Tania García, Nayda Guerrero, Alastair A. Abbott, Mateus Araújo, Cyril Branciard, Esteban S. Gómez, Stephen P. Walborn, Leandro Aolita, and Gustavo Lima, "Computational advantage from quantum superposition of multiple temporal orders of photonic gates", arXiv:2002.07817, (2020).
[44] Simon Milz and Marco Túlio Quintino, "Transformations between arbitrary (quantum) objects and the emergence of indefinite causality", arXiv:2305.01247, (2023).
[45] Augustin Vanrietvelde, Nick Ormrod, Hlér Kristjánsson, and Jonathan Barrett, "Consistent circuits for indefinite causal order", arXiv:2206.10042, (2022).
[46] Qingxiuxiong Dong, Marco Túlio Quintino, Akihito Soeda, and Mio Murao, "The quantum switch is uniquely defined by its action on unitary operations", arXiv:2106.00034, (2021).
[47] Matthias Salzger, "Connecting indefinite causal order processes to composable quantum protocols in a spacetime", arXiv:2304.06735, (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-06-08 14:13:58) and SAO/NASA ADS (last updated successfully 2023-06-08 14:13:59). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.