A purification postulate for quantum mechanics with indefinite causal order

Mateus Araújo1,2,3, Adrien Feix1,2, Miguel Navascués2, and Časlav Brukner1,2

1Faculty of Physics, University of Vienna, Boltzmanngasse 5 1090 Vienna, Austria
2Institute for Quantum Optics and Quantum Information (IQOQI), Boltzmanngasse 3 1090 Vienna, Austria
3Institute for Theoretical Physics, University of Cologne, Germany

To study which are the most general causal structures which are compatible with local quantum mechanics, Oreshkov et al. introduced the notion of a process: a resource shared between some parties that allows for quantum communication between them without a predetermined causal order. These processes can be used to perform several tasks that are impossible in standard quantum mechanics: they allow for the violation of causal inequalities, and provide an advantage for computational and communication complexity. Nonetheless, no process that can be used to violate a causal inequality is known to be physically implementable. There is therefore considerable interest in determining which processes are physical and which are just mathematical artefacts of the framework. Here we make the first step in this direction, by proposing a purification postulate: processes are physical only if they are purifiable. We derive necessary conditions for a process to be purifiable, and show that several known processes do not satisfy them.

Among the most fundamental concepts in physics are those of causality and reversibility. The first encapsulates the idea that events in the present are caused by events in the past and, in their turn, act as causes for events in the future. The second is the idea that physical processes are reversible, that is, that information is never created or destroyed.

Recently, a theoretical class of processes was found that do not respect causality, but nevertheless can not create logical paradoxes such as those where you travel back in time and kill your own grandfather. Whether such “non-causal” processes are physical and can be found in nature is an open question. In our paper we showed that there exists “non-causal” processes that do not generate paradoxes, but nevertheless violate the condition of reversibility. If reversibility is indeed respected in nature, then these processes must be unphysical.

► BibTeX data

► References

[1] O. Oreshkov, F. Costa, and Č. Brukner, ``Quantum correlations with no causal order'' Nat. Commun. 3, 1092 (2012).

[2] A. Ashtekar ``Large Quantum Gravity Effects: Unforeseen Limitations of the Classical Theory'' Phys. Rev. Lett. 77, 4864-4867 (1996).

[3] Ä. Baumelerand S. Wolf ``Perfect signaling among three parties violating predefined causal order'' Information Theory (ISIT), 2014 IEEE International Symposium on 526-530 (2014).

[4] Ä. Baumeler, A. Feix, and S. Wolf, ``Maximal incompatibility of locally classical behavior and global causal order in multi-party scenarios'' Phys. Rev. A 90, 042106 (2014).

[5] C. Branciard, M. Araújo, A. Feix, F. Costa, and Č. Brukner, ``The simplest causal inequalities and their violation'' New J. Phys. 18, 013008 (2015).

[6] Ä. Baumelerand S. Wolf ``The space of logically consistent classical processes without causal order'' New J. Phys. 18, 013036 (2016).

[7] O. Oreshkovand C. Giarmatzi ``Causal and causally separable processes'' New J. Phys. 18, 093020 (2015).

[8] A. A. Abbott, C. Giarmatzi, F. Costa, and C. Branciard, ``Multipartite Causal Correlations: Polytopes and Inequalities'' Phys. Rev. A 94, 032131 (2016).

[9] M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, and Č. Brukner, ``Witnessing causal nonseparability'' New J. Phys. 17, 102001 (2015).

[10] G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, ``Quantum computations without definite causal structure'' Phys. Rev. A 88, 022318 (2013).

[11] G. Chiribella ``Perfect discrimination of no-signalling channels via quantum superposition of causal structures'' Phys. Rev. A 86, 040301 (2012).

[12] M. Araújo, F. Costa, and Č. Brukner, ``Computational Advantage from Quantum-Controlled Ordering of Gates'' Phys. Rev. Lett. 113, 250402 (2014).

[13] A. Feix, M. Araújo, and Č. Brukner, ``Quantum superposition of the order of parties as a communication resource'' Phys. Rev. A 92, 052326 (2015).

[14] P. Allard Guérin, A. Feix, M. Araújo, and Č. Brukner, ``Exponential communication complexity advantage from quantum superposition of the direction of communication'' Phys. Rev. Lett. 117, 100502 (2016).

[15] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. A. Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner, and P. Walther, ``Experimental superposition of orders of quantum gates'' Nat. Commun. 6, 7913 (2015).

[16] G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. Procopio, Č. Brukner, and P. Walther, ``Experimental verification of an indefinite causal order'' Sci. Adv. 3 (2017).

[17] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, and F. Unger, ``Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial'' Phys. Rev. Lett. 96, 250401 (2006).

[18] N. Linden, S. Popescu, A. J. Short, and A. Winter, ``Quantum Nonlocality and Beyond: Limits from Nonlocal Computation'' Phys. Rev. Lett. 99, 180502 (2007).

[19] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, and M. Żukowski, ``Information causality as a physical principle'' Nature 461, 1101-1104 (2009).

[20] M. Navascuésand H. Wunderlich ``A glance beyond the quantum model'' Proc. Royal Soc. A 466, 881-890 (2009).

[21] T. Fritz, A. B. Sainz, R. Augusiak, J. B. Brask, R. Chaves, A. Leverrier, and A. Acín, ``Local orthogonality as a multipartite principle for quantum correlations'' Nat. Commun. 4, 2263 (2013).

[22] G. Chiribella, G. M. D'Ariano, and P. Perinotti, ``Probabilistic theories with purification'' Phys. Rev. A 81, 062348 (2010).

[23] L. Hardy ``Quantum Theory From Five Reasonable Axioms'' (2001).

[24] B. Dakićand Č. Brukner ``Deep Beauty: Understanding the Quantum World through Mathematical Innovation'' Cambridge University Press chapter Quantum Theory and Beyond: Is Entanglement Special? (2011).

[25] L. Masanesand M. P. Müller ``A derivation of quantum theory from physical requirements'' New J. Phys. 13, 063001 (2011).

[26] G. Chiribella, G. M. D'Ariano, and P. Perinotti, ``Informational derivation of quantum theory'' Phys. Rev. A 84, 012311 (2011).

[27] H. Barnum, M. P. Müller, and C. Ududec, ``Higher-order interference and single-system postulates characterizing quantum theory'' New J. Phys. 16, 123029 (2014).

[28] P. A Höhn ``Toolbox for reconstructing quantum theory from rules on information acquisition'' (2014).

[29] P. A Höhnand C. Wever ``Quantum theory from questions'' Phys. Rev. A 95, 012102 (2017).

[30] Ä. Baumelerand S. Wolf Private communication (2015).

[31] A. Feix, M. Araújo, and Č. Brukner, ``Causally nonseparable processes admitting a causal model'' New J. Phys. 18, 083040 (2016).

[32] G. Chiribella, G. M. D'Ariano, and P. Perinotti, ``Theoretical framework for quantum networks'' Phys. Rev. A 80, 022339 (2009).

[33] G. C. Ghirardi, A. Rimini, and T. Weber, ``Unified dynamics for microscopic and macroscopic systems'' Phys. Rev. D 34, 470-491 (1986).

[34] G. C. Ghirardi, P. Pearle, and A. Rimini, ``Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles'' Phys. Rev. A 42, 78-89 (1990).

[35] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, ``Models of wave-function collapse, underlying theories, and experimental tests'' Rev. Mod. Phys. 85, 471-527 (2013).

[36] S. W. Hawking ``Breakdown of predictability in gravitational collapse'' Phys. Rev. D 14, 2460-2473 (1976).

[37] D. Harlow ``Jerusalem Lectures on Black Holes and Quantum Information'' Rev. Mod. Phys. 88, 015002 (2016).

[38] T. Jacobson ``Trans-Planckian Redshifts andthe Substance of the Space-Time River'' Prog. Theor. Phys. 136, 1-17 (1999).

[39] M. Bojowald, D. Cartin, and G. Khanna, ``Lattice refining loop quantum cosmology, anisotropic models, and stability'' Phys. Rev. D 76, 064018 (2007).

[40] S. Gielenand L. Sindoni ``Quantum Cosmology from Group Field Theory Condensates: a Review'' SIGMA 12, 082 (2016).

[41] P. A. Höhn ``Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces'' J. Math. Phys. 55, 083508 (2014).

[42] V. Mukhanov ``Physical Foundations of Cosmology'' Cambridge University Press (2005).

[43] K. Życzkowskiand I. Bengtsson ``Geometry of Quantum States'' Cambridge University Press (2006).

[44] Č. Brukner ``Bounding quantum correlations with indefinite causal order'' New J. Phys. 17, 083034 (2015).

[45] A. Royer ``Wigner function in Liouville space: A canonical formalism'' Phys. Rev. A 43, 44-56 (1991).

[46] S. L. Braunstein, G. M. D'Ariano, G. J. Milburn, and M. F. Sacchi, ``Universal Teleportation with a Twist'' Phys. Rev. Lett. 84, 3486-3489 (2000).

Cited by

[1] Mateus Araújo, Philippe Allard Guérin, and Ämin Baumeler, "Quantum computation with indefinite causal structures", Physical Review A 96 5, 052315 (2017).

[2] Philippe Allard Guérin, Giulia Rubino, and Časlav Brukner, "Communication through quantum-controlled noise", Physical Review A 99 6, 062317 (2019).

[3] Sally Shrapnel and Fabio Costa, "Causation does not explain contextuality", Quantum 2, 63 (2018).

[4] Alastair A. Abbott, Julian Wechs, Fabio Costa, and Cyril Branciard, "Genuinely multipartite noncausality", Quantum 1, 39 (2017).

[5] Philippe Allard Guérin and Časlav Brukner, "Observer-dependent locality of quantum events", New Journal of Physics 20 10, 103031 (2018).

[6] Kejin Wei, Nora Tischler, Si-Ran Zhao, Yu-Huai Li, Juan Miguel Arrazola, Yang Liu, Weijun Zhang, Hao Li, Lixing You, Zhen Wang, Yu-Ao Chen, Barry C. Sanders, Qiang Zhang, Geoff J. Pryde, Feihu Xu, and Jian-Wei Pan, "Experimental Quantum Switching for Exponentially Superior Quantum Communication Complexity", Physical Review Letters 122 12, 120504 (2019).

[7] Simon Milz, Felix A Pollock, Thao P Le, Giulio Chiribella, and Kavan Modi, "Entanglement, non-Markovianity, and causal non-separability", New Journal of Physics 20 3, 033033 (2018).

[8] Ämin Baumeler, Fabio Costa, Timothy C. Ralph, Stefan Wolf, and Magdalena Zych, "Reversible time travel with freedom of choice", arXiv:1703.00779.

[9] Ciarán M. Lee and John H. Selby, "A no-go theorem for theories that decohere to quantum mechanics", Proceedings of the Royal Society of London Series A 474 2214, 20170732 (2018).

[10] Ilya Kull, Philippe Allard Guérin, and Časlav Brukner, "A Spacetime Area Law Bound on Quantum Correlations", arXiv:1807.09187.

[11] Ognyan Oreshkov, "Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics", arXiv:1801.07594.

[12] John H. Selby, Carlo Maria Scandolo, and Bob Coecke, "Reconstructing quantum theory from diagrammatic postulates", arXiv:1802.00367.

[13] Marco Túlio Quintino, Qingxiuxiong Dong, Atsushi Shimbo, Akihito Soeda, and Mio Murao, "Reversing unknown quantum transformations: A universal protocol for inverting general unitary operations", arXiv:1810.06944.

[14] Jessica Bavaresco, Mateus Araújo, Časlav Brukner, and Marco Túlio Quintino, "Semi-device-independent certification of indefinite causal order", arXiv:1903.10526.

[15] Márcio M. Taddei, Ranieri V. Nery, and Leandro Aolita, "Quantum superpositions of causal orders as an operational resource", arXiv:1903.06180.

The above citations are from Crossref's cited-by service (last updated 2019-06-18 12:16:23) and SAO/NASA ADS (last updated 2019-06-18 12:16:24). The list may be incomplete as not all publishers provide suitable and complete citation data.